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Abstract
In this work we present an improvement to the popular Active Appearance Model (AAM)
algorithm, that we call the Multiple-Levelset AAM (MLA). The MLA can simultaneously
segment multiple objects, and makes use of multiple levelsets, rather than anatomical landmarks,
to define the shapes. AAMs traditionally define the shape of each object using a set of anatomical
landmarks. However, landmarks can be difficult to identify, and AAMs traditionally only allow
for segmentation of a single object of interest. The MLA, which is a landmark independent AAM,
allows for levelsets of multiple objects to be determined and allows for them to be coupled with
image intensities. This gives the MLA the flexibility to simulataneously segmentation multiple
objects of interest in a new image.

In this work we apply the MLA to segment the prostate capsule, the prostate peripheral zone (PZ),
and the prostate central gland (CG), from a set of 40 endorectal, T2-weighted MRI images. The
MLA system we employ in this work leverages a hierarchical segmentation framework, so
constructed as to exploit domain specific attributes, by utilizing a given prostate segmentation to
help drive the segmentations of the CG and PZ, which are embedded within the prostate. Our
coupled MLA scheme yielded mean Dice accuracy values of .81, .79 and .68 for the prostate, CG,
and PZ, respectively using a leave-one-out cross validation scheme over 40 patient studies. When
only considering the midgland of the prostate, the mean DSC values were .89, .84, and .76 for the
prostate, CG, and PZ respectively.
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1. Introduction
1.1. Background and Motivation

Statistical Shape Models (SSMs) use shape information to yield an accurate, shape
constrained, segmentation of an object of interest, and are extremely popular in medical
image segmentation [1, 2, 3, 4, 5, 6]. A common SSM methodology is the Active
Appearance Model (AAM) segmentation algorithm [7]. AAMs attempt to learn both the
appearance, and the shape, of an object of interest. In addition, AAMs aim to learn the
relationship between the shape and appearance. When using an AAM to segment a new
image, the appearance of the new image is matched to the AAM, and the associated shape
yields a segmentation of the object of interest.

AAMs achieve this by performing principal component analysis (PCA) on a set of
intensities defining the object of interest to yield a low dimensional intensity projection. The
intensity projections are then concatenated with the shape information, and PCA is
performed a second time. The eigenvectors resulting from the second “coupled” PCA define
the linear relationship between shape and appearance. Thus a given coupled projection
defines both shape and appearance, and can be used to reconstruct the high dimensional
intensity and shape information. However, traditional AAMs define the shape by a set of
Cartesian coordinates defined from the landmarks of a single object. Yet there are several
issues with using landmarks to construct statistical shape models,

1. 1. A large number of anatomical landmarks are required to accurately capture shape
variations.

2. 2. Anatomical landmarks must be accurately aligned and landmark
correspondences must be established on all training images [8].

3. 3. Automated method for landmark detection and alignment can be prone to errors
[9].

4. 4. Landmarks require triangulation, and the triangulation algorithm may be prone to
errors [10].

Leventon et al. [11] first proposed performing PCA on a series of signed distance maps
(levelsets) to capture shape variations, to overcome the issues with landmark based SSMs. A
levelset is defined as a set of positive values at every pixel outside the object of interest, and
a set of negative values at every pixel outside the object of interest. Therefore, a value of 0
would represent the surface of the object. The simplest way to compute a levelset is at each
pixel in the image, calculate the Euclidean distance to the closest border pixel, and negate
that value if the pixel values within the object of interest. To define multiple levelsets, the
signed distance to the border of each object is computed.

Tsai et al. [12] concatenated the levelsets of multiple objects prior to performing PCA,
essentially “coupling” the levelsets. Hence a single set of low dimensional values (a
“projection”) is used to represent the shape of multiple objects. This allows for simultaneous
segmentation of multiple objects. In addition, coupling the individual SSMs allows one to
take advantage of the inherent dependency between the spatial location of multiple adjoining
organs. The technique used by Tsai et al. [12] was in 2D, and the SSMs included not just
shape, but also pose information. Akhondi-Asl et al. [13] developed a coupled SSM in 3D,
which only accounted for shape variations (but not pose) by first aligning the training
shapes. Akhondi-Asl et al. [13] then explored whether coupling the SSMs actually improved
segmentation accuracy over simply constructing individual SSMs. It was found that in most
cases, shape coupling improves results only when the levelsets were first aligned prior to
training.

Toth et al. Page 2

Comput Vis Image Underst. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1.2. Novel Contributions
In this work, we present a new 3D AAM framework which is landmark-free, and which can
segment multiple objects simultaneously in a new image via coupling multiple levelsets. Our
model, the multiple levelset AAM (hereafter denoted as MLA) uses multiple coupled level
sets to model the 3D shapes, thereby helping to alleviate many of the issues facing
traditional landmark-based AAMs. The MLA offers the advantage of (1) not having to deal
with the landmark identification problem, and (2) not having to triangulate a series of
landmarks to generate a 3D model. In addition, we take a similar approach that proposed by
Leventon et al. [11] and Akhondi-Asl et al. [13], in that multiple levelsets are coupled to
allow for simultaneous segmentation of multiple objects.

Previous work in coupling multiple levelsets involved concatenating the high dimensional
levelsets of multiple objects [12, 13]. Yet this can be computationally infeasible when
dealing with (a) multiple levelsets, (b) a large number of training images, or (c) very large
images. To overcome these issues, the MLA performs PCA on each shape, prior to coupling
the levelsets, similar to how AAMs perform PCA on the intensities prior to coupling.

In addition, the MLA can also use existing segmentations of one or more organs to generate
more accurate segmentations of the adjacent organs (for example using the prostate
segmentation to simultaneously segment the bladder and rectum [14]). This is accomplished
by generating the coupled projections using both intensities and levesets, whereas prior
AAM models are only able to consider intensity information [7].

This approach also allows the MLA to be used hierarchically, in which one object can first
be segmented, and then used to drive the segmentations of other embedded objects. For
example, in the case of prostate MRI, the central gland (CG) and peripheral zone (PZ) are
substructures of the prostate itself (see Figure 1). Using an existing prostate segmentation to
segment the CG and PZ reduces the search space, which can help hone in on the embedded
substructures within the gland. In addition, the coupled model allows for structural linking
of of the adjoining sub-structures, thereby permitting incorporation of anatomic constraints.

1.3. Application to Prostatic Zone Segmentation
Our MLA is applied to the task of prostate segmentation from endorectal, 3 Tesla, T2-
weighted (T2-w) MRI images. The prostate gland consists of internal structures including
the peripheral zone (PZ), central zone (CZ), and transition zone (TZ), where the latter 2
structures are jointly referred to as the central gland (CG) [15] (see Figure 1). While most
tumors are found in the PZ, tumors can also be found in the CG, and CG tumors can have
drastically different appearance than PZ tumors [16, 17, 18]. In the PZ (where most cancers
are found), tumors are typically chacterized by hypointense regions on MRI images, in stark
contrast to the usually hyperintense PZ regions. However, in the CG, tumors are typically
noticeable due to their homogeneous texture, as compared to the traditionally hetergeneous
texture in the CG. In recent years, several computer aided detection (CAD) systems have
been developed for detecting tumors from prostate MRI imagery [19, 20, 21, 22, 23, 24, 25].
Since the tumors in the PZ can appear drastically different from tumors in the CT, CAD
systems would invariably benefit from knowing where each internal prostate structure was
located. In addition, treatment options can even be tailored to an individual patient, as CG
tumors have been found to be significantly less aggressive compared to PZ tumors [26].

However, most extant prostate segmentation systems only consider the prostate capsule
boundary [6, 27, 28, 29, 30, 31, 32]. Makni et al. [33] developed a system for distinguishing
the internal prostate structures on multiparametric MRI, but assumed the prostate is already
segmented. Additionally Makni et al. [33] required the use of both T2-w and DCE-MRI to
drive the segmentation, as opposed to just a single protocol; imaging with additional
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parameters (over and above standard T2-w) leads to an increased imaging time and hence
cost of exam. Liu et al. [25] circumvented the issue of zonal segmentation within the
prostate by proposing a spatially aware CAD system for cancer detection, to automatically
identify in which part of the prostate the tumor was located.

In this work, we aim to use our MLA to automatically and simultaneously segment the
prostate, PZ, and CG from T2-weighted MRI alone. As with Liu et al. [25], our ultimate
goal is to develop a spatially aware CAD system for prostate cancer detection, but by
leveraging the explicit, automated segmentations of the different prostate zones. A second
application is to create patient-specific treatment models based on the zonal location of the
tumor.

The rest of the paper is organized as follows. Section 2 describes the methodology for
training the MLA and using the MLA to segment a new image. Section 3 describes the
experimental design and dataset. Section 4 presents the results. A brief discussion is
presented in Section 5, while Section 6 presents concluding remarks and future directions.

2. Methodology
2.1. Overview of MLA

The MLA is comprised of distinct training and segmentation steps, which are summarized as
follows. To train the MLA, a series of levelsets is first calculated, where negative values
represent pixels inside the object, and positive values represent pixels outside the object.
PCA is first performed on a set of image intensities and levelsets from multiple training
images, resulting in a set of low dimensional intensity and levelset projections [34].
Coupling of the levelsets is achieved by performing PCA a second time on a concatenation
of these projections [34].

In the segmentation phase, the intensities of a new image are used to drive the segmentations
of the objects of interest. In addition, the MLA framework allows for one or more pre-
segmented objects to help drive the segmentation of other objects in the new image. The
first step of the MLA is to affinely transform the input intensities and levelsets. These
transformations will be used to align the new image with the MLA. After transforming the
inputs, a set of low dimensional projections of the inputs (intensities and, optionally,
levelsets) are calculated using the trained MLA. The matrix of coupled eigenvectors is then
used to reconstruct the high dimensional set of transformed image intensities, and levelsets
for all objects in the image. The transformation for which the reconstructions are best
correlated with the inputs is then calculated. Given the optimal transformation, the high
dimensional levelsets of all objects are reconstructed and thresholded, yielding a set of
segmentations for all objects in the image.

Figure 2 shows the entire segmentation process on a new image. A comparison between the
MLA with a traditional AAM and the coupled levelsets proposed by Tsai et al. [12] is shown
in Figure 3. Traditional AAMs couple intensities with landmarks, and traditional coupled
levelsets involve concatenating a set of levelsets, which can be computationally infeasible.
The MLA, by comparison, allows for coupling of the projections of multiple levelsets with
the intensity projections, essentially allowing simultaneous segmentations in an AAM
framework. This helps to avoid the computational cost of concatenating a series of high
dimensional levelsets.

2.2. Notation
An image scene is defined as C = (C, f), where C represents a set of spatial locations, and
each c ∊ C represents a set of Cartesian coordinates c = (x, y, z). The intensity at each c ∊ C
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is denoted as f(c). The number of segmented objects is denoted as M and the number of
training images is denoted as N. The number of pixels in each image is denoted as P = ∣C∣. A
given training object is denoted as Cn = (Cn, fn). A given segmentation for object m ∊ {1,

… , M} for image n ∊ {1, … , N}is denoted as , which defines the set of pixels
inside the object of interest. A new image to be segmented is denoted as Cθ = (Cθ, fθ). A full
list of notation and symbols used throughout the paper is presented in Table 1.

2.3. MLA Training
Step 1. Compute Levelsets—All training images are first aligned, as described in [13].
A single training image is chosen as the template, and an affine alignment is applied to align
all the segmentations to the template. The next step is to generate a levelset from each
training object, such that negative levelset values represent pixels inside the object, and
positive levelset values represent pixels outside the object.

The levelset for object m in image n is denoted as Lm,n = {l(c) ∣ c ∊ Cn} where .
The levelset is represented by the signed distances to the object’s surface [11], and is
calculated as,

(1)

Step 2. Perform PCA on Intensities and Levelsets—The set of training levelsets for
object m is denoted as Sm, where Sm = {Lm,1, … , Lm,N}. PCA is performed on each Sm, m
∊ {1, … , M} which results in a mean levelset  and a matrix of eigenvectors

 , where pm ≤ P and each column of Ψm is an eigenvector [11]. The number of
eigenvectors pm is selected to retain at least a percentage α of the variance in Sm.

The set of intensities for training image n is denoted as Fn = {fn(c) | c ∊ Cn} where .
The entire set of training intensities is denoted as SF = {F1, … FN}. PCA is performed on SF

resulting in a set of mean intensities  and a matrix of eigenvectors ,
where pF ≤ P and each column of ΨF is an eigenvector [7]. The number of eigenvectors pF
is selected to retain at least a percentage α of the variance in SF .

Step 3. Coupling Intensities and Levelsets—Once PCA has been performed, each
Fn, Lm,n, ∀ m ∊ {1, … , M}, n ∊ {1, … , N} must be projected down into the lower (p)
dimensional space. Given an object  , the optimal (least squares) projection 
is calculated as,

(2)

Ψ+ is the Moore-Penrose pseudoinverse [35], and ⊺ is the transpose operation.

The projections for each object in each image, , and the intensities,  are calculated
using Equation (2). To create the coupled model, the set of levelset and intensity projections
are concatenated for training image n as

(3)
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where . PCA is performed a second time, resulting in a matrix of eigenvectors

, where  and each column of ΨΩ is an eigenvector. The means of each
projection are 0, and therefore μΩ = 0. Hence ΨΩ defines the linear relationship between
intensity and levelset projections for M objects.

A graphical display of the coupling process is shown in Figure 4. The boxes in the left
column represent the high dimensional intensities and levelsets. The boxes in the middle
column represent the projections of each intensity and levelset. Finally, the boxes in the
right column represent the coupled matrix ΨΩ, where each column represents a single
eigenvector. Figure 4 also illustrates the fact that each row of ΨΩ corresponds precisely to a
specific projection.

2.4. MLA Segmentation
Step 1. Transform Intensities and Levelsets—For a new study Cθ to be segmented,
it is assumed that at least the intensities Fθ are given. In addition, it is possible that one or
more segmentations (and therefore levelsets) are either known or have been previously
calculated, which are denoted as {Lk,θ | k ∊ K}, where K ⊂ {1, …, M}. If just the intensities
are known, K = ∅. Given a transformation T, T(c) denotes transforming the spatial location
c ∊ Cθ. The set of transformed intensities is denoted as FT = {f(T (c)) | c ∊ Cθ} and levelsets
as,

Step 2. Project Inputs—We first calculate the projections  using Equation

(2). The projections  are concatenated as Ωθ. This is shown graphically in
Figure 5(a).

Step 3. Reconstruct Inputs—Given a projection , a reconstruction  is
calculated as,

(4)

The rows from the coupled matrix ΨΩ corresponding to Ωθ are extracted,denoted as .

Then, a set of coupled projections  is calculated using Equation (2) with X = Ωθ and
. Extracting only the rows corresponding to our known inputs allows us to estimate the

q-dimensional coupled projection vector from our inputs (see Figure 5(b)).

A reconstruction of the entire set of projections (the intensities and all levelsets) is

calculated as  using Equation (4). The individual projections  are

extracted from . Finally, the reconstructions  are
calculated using Equation (4) (see Figure 5(c)).

Step 4. Optimize Transformation—For a given transformation T, the coupled

reconstructions , k ∊ K are computed. When the recon-14 structions are most
correlated with the inputs, the correct transformation T* is presumed to be found.
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Normalized cross correlation is used as the metric to define the reconstruction accuracy,

where for an object X and its reconstruction , the NCC is defined as,

(5)

where  represents the mean, ∥ · ∥2 represents the L2 norm, and ⟨·,·⟩ represents the inner
product.

To determine the best transformation T*, the NCC between the reconstructions and the
original data is maximized as,

(6)

Equation 6 must be optimized to determine the set of affine parameters for which the NCC
is maximized. This is a crucial step, since the working hypothesis is that the NCC will be
maximized if and only if the MLA is properly aligned with the new image, and hence the
reconstruction will properly capture the desired segmentations. A global optimization is first
performed, followed by a local optimization to properly hone in on the maximum NCC. To
perform the global optimization, an initialization-biased particle swarm optimizer [36] is
used, in which 100 random affine parameters (100 particles) are each allowed to converge
independently on the maximum NCC, and the particle with the maximum NCC overall is
chosen. Then, a local Powell optimization [37] is performed, in which each of the 12 affine
parameters is optimized independently. This process of optimizing each parameter
independently is repeated until convergence, thus driving the transformations to the
maximum NCC value.

Step 5. Calculate Segmentations—Given the optimal transform parameters T*, the

reconstructions of all levelsets are calculated as  using Equation (4). A

segmentation result for object m, denoted as  is defined as the set of pixels for which the
levelset is negative. However, the reconstructed levelsets have been transformed, and to
bring them into the coordinate frame of the image Cθ, the transformation must be inverted
prior to thresholding.

(7)

where . A graphical representation of the segmentation steps is
shown in Figure 2.

3. Experimental Design
3.1. Data Description

Our data consists of 40 prostate endorectal MR images, acquired using T2-weighting
protocol and a 3.0 Tesla coil. Each image was 512 × 512 pixels in the x, y directions with a
variable number of slices. The prostate capsule, PZ, and CG boundaries were manually
segmented in 3D by an expert radiologist using the 3D Slicer software [38, 39, 40]. The raw
data for each study was preprocessed to normalize the intensities and remove the bias field
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[41]. In addition, the variance of each levelset and each intensity image was normalized to a
value of 1. Due to the fact that MR imagery of the prostate is used for staging of prostate
cancer in the US, and not for screening, all 40 studies have biopsy-confirmed prostate cancer
present. A full description of our dataset and associated parameters is shown in Table 2.

3.2. Implementation Details
The MLA was implemented in C++ using the ITK framework [42]. The MLA was run on a
machine with 8 cores (each 2.67 GHz) and 32 GB of memory running Debian Linux,
compiled using GCC (version 4.7.1). The segmentation process was performed in a multi-
resolution fashion, with P ≈ 106 at the coarsest resolution and P ≈ 107 in the finest
resolution. Segmenting the prostate, CG, and PZ on a 140 mm ×140 mm ×140 mm image
took approximately 200 seconds. For all experiments, α = 0.95 was used, similar to [7].

3.3. Hierarchical Prostate Segmentation
Two specific categories of experiments were performed: non-hierarchical experiments (E1,
E3, E5) and hierarchical experiments (E2, E4, E6). The non-hierarchical experiments used
only the imaging information to simultaneously segment the prostate, CG, and PZ.
Therefore, for K = ∅, as only the intensities were used to segment the objects. The
hierarchical experiments used the imaging information, as well as the known segmentation
of the prostate, to segment the CG and PZ, and thus K = {Prostate}. Due to the fact that CG
and PZ are embedded within the prostate itself, using a segmentation of the prostate
boundary forces the MLA to only consider the desired region of interest. This is also similar
to the approach taken in [33], which assumed the prostate was already segmented prior to
segmenting the PZ and CG.

3.4. Cross Validation Experiments
For both the hierarchical experiments and the non-hierarchical experiments, both a leave-
one-out cross validation, and a 30-run, 5-fold cross validation were performed. For the leave
one out experiments (E1, E2), for each image Cn, the MLA was trained using the other 39
studies. For each run of 5-fold cross validation experiments (E3–E6), the dataset was
randomly split into 5 groups of 8 studies per group. Each study in a given group was
segmented using an MLA trained from the 32 studies in the other 4 groups, resulting in a
segmentation for each study. This was repeated 30 times, resulting in 30 segmentations for
each study. The goal of the cross validation experiment is to determine the generalizability
of the MLA to different training sets, by determining how well each study was segmented
given different training sets, and the variance of the results over the various training sets.

The segmentation result  was compared to the ground truth segmentation  using the
Dice similarity coefficient (DSC).

(8)

In addition, the Mean Absolute Distance (MAD) between the surfaces was reported,
calculated as,

(9)
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where C(on) represents pixels on the surface of the object, and the MAD values are reported
in mm.

The results from the prostate, PZ, and CG segmentations from the non-hierarchical
experiments (E1, E3, E5) are presented, in addition to the PZ, and CG segmentation results
from the hierarchical experiments (E2, E4, E6) The segmentation results in the midgland of
the prostate are presented separately for the area-based DSC values (the boundary-based
MAD is not easily defined for separate regions). This was done due to poor boundary
contrast in the base and apex of the prostate, preventing accurate segmentations in these
regions.

The cross validation experiments resulted in 30 values for each of the 40 studies (1200 total
values). Experiments E3 and E4 present the results over all 1200 values for the non-
hierarchical and hierarchical experiments respectively. To determine the generalizability
over different training sets, the median value was computed over the 40 values for each run.
The results over the 30 different median values (1 for each run) are presented as E5 and E6.
Table 3 summarizes the different experiments performed.

4. Results
The quantitative results for the prostate, CG, and PZ for experiments E1 through E6 are
shown in Figure 6. The segmentation of the capsule boundary resulted in a mean DSC
accuracy of 0.81, and a mean MAD value of 1.8 mm. When only considering the midgland
of the prostate, the mean DSC value for the prostate increased to 0.89, reflecting the tapering
off of the gland towards the base and apex.

The hierarchical segmentation results E2, in which it is assumed that the prostate
segmentation already exists, as in [33], resulted in a mean DSC value of 0.79 for the CG,
and 0.68 for the PZ, with mean MAD values of 1.4 mm and 1.0 mm for the CG, and PZ,
respectively. When only considering the midgland, the mean DSC values were 0.84, and
0.76 for the CG and PZ, respectively. However, when only using the imaging information
(non-hierarchical experiment E1), the mean DSC values for the CG and PZ were 0.72 and
0.60 respectively.

Qualitative results from two studies are shown in Figures 7 and 8. The region in green
represents the ground truth segmentations and red represents the segmentation results. The
DSC values for the prostate, CG, and PZ, were .88, .86, and .76 respectively in Figure 7.
The DSC values for the prostate, CG, and PZ, were .90, .71, and .73 respectively in Figure

8. In addition, the reconstruction  is shown in Figures 7c and 8c, which demonstrates
that the intensities in a previously unseen study can be reasonably well reconstructed.

5. Discussion
The closest related work is [33], which reported mean DSC values of 0.89 and 0.80 for the
CG and PZ segmentations respectively on multi-spectral (T2-weighted and dynamic contrast
enhanced), 1.5 Tesla prostate MRI. When using the ground truth prostate segmentations to
drive the CG and PZ segmentations, similar to [33], resulted in DSC accuracies of 0.79 and
0.68 for the CG and PZ for the MLA. However, it should be noted that those reported DSC
values in [33] were from a combined STAPLE segmentation of three expert ground truths.
When considering only one of the ground truths in [33], the mean DSC values decreased to
0.82 and 0.71 respectively. This is a more appropriate and fairer comparison to the results
presented in this work, and also reflects the difficulty of getting accurate expert
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segmentations for the CG and PZ from prostate MRI. In addition, the data used in [33]
contained 31 studies (as compared to the 40 we employed in this study).

Moreover, the algorithm in [33] was specifically designed to intelligently take into account
data from multiple modalities such as T1 contrast enhanced and diffusion weighted images,
to complement the T2-weighted MR imagery. This allowed the algorithm to extract more
accurate CG and PZ boundaries by leveraging additional information that may not be
present in T2-weighted MRI. It is not clear how well the algorithm in [33] would perform if
only T2-weighted MRI images were available (as in the current dataset). In addition, it is
also unclear how well the MLA would perform if other MRI protocols were used in addition
to, or instead of, T2-weighted intensities, so a direct comparison is difficult. However, it is
important to note that while T2-weighted MRI is routinely performed at all sites where
prostate MRI is performed, multi-parametric MRI is only done in a subset of those imaging
facilities. Hence our algorithm could be employed on data from a larger number of centers.

To the best of our knowledge, this is the first work exploring a fully automated CG and PZ
segmentation algorithm, as [33] only reported results using the ground truth prostate
segmentations as the inputs to the algorithm.

In all the cases, the 5-fold cross validation experiments performed worse than the leave-one-
out experiments, mainly due to the 20% fewer studies used to train the MLA (32 versus 39
training studies), suggesting the need for a large training cohort. However, the median DSC
and MAD values between cross validation runs were remarkably consistent, suggesting very
little variance between different training sets.

6. Concluding Remarks
In this work we present a Multi-Levelset AAM (MLA), which offers several unique
improvements over the traditional AAM algorithm. The use of anatomical landmarks, which
can be prone to errors, is completely eliminated by casting the MLA shape model in a
levelset framework. The MLA is able to couple multiple levelsets with image intensities
efficiently and intelligently, to offer a coupled model resulting in simultaneous
segmentations of multiple objects. The MLA presented uses the image intensities, as well as
existing segmentations, to drive the simultaneous segmentations of multiple objects. This is
accomplished using knowledge of the shapes of various objects, and how those shapes
correlate with intensities.

The algorithm was tested on 40 T2-weighted, 3D, endorectal, 3.0 Tesla, prostate MRI
images containing ground truth segmentations of the prostate, central gland (CG), and
peripheral zone (PZ). Most existing prostate segmentation algorithms only segment the
prostate boundary, and yet CG and PZ segmentations are critical for cancer detection and
treatment planning. Future work will entail determining quantitatively how the presence and
extent of disease affects the MLA.

When using the intensities and known prostate segmentations, mean DSC values of 0.79 and
0.68 were reported for the CG and PZ, respectively. We believe that with more training
instances, and with inclusion of multi-parametric data, the segmentation results could be
further refined. Overall, the MLA framework is a generalized extension to the AAM
segmentation algorithm, and can be used to accurately and automatically segment multiple
objects.
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- Landmark free Active Appearance Model can segment multiple objects
simultaneously

- Prostate, Central Gland, Peripheral Zone segmented with Dice = .81, .79, .68

- Hierarchical sytem uses existing segmentations to drive other segmentations
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Figure 1.
Two different 3D views of the prostate (yellow) with the central gland (CG) (red) and
peripheral zone (PZ) (purple) segmented.
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Figure 2.
The segmentation process begins with an intensity image Fθ, and input levelsets Lk,θ. The
inputs are transformed as FT , Lk,T . The coupled MLA is used to reconstruct the

transformed inputs, as  . When the normalized cross correlation (NCC)
between the reconstructions and transformed inputs is maximized, the MLA is used to
reconstruct all levelsets. The levelsets are transformed back into the image’s original
coordinate frame, and thresholded to yield a final set of segmentations.
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Figure 3.
(a) Traditional AAMs [7] perform PCA on a set of intensities, and couple the intensity
projections with the shape by performing a second PCA. (b) Traditional coupled levelsets
[12] concatenate the high dimensional levelsets, and couple the shapes by performing PCA
on the result. However, performing PCA can be computationally infeasible with either a
large number of levelsets, high dimensionality of the levelsets, or with a large number of
training images. (c) The MLA projects each levelset to a low dimensional space prior to
coupling. In addition, the levelsets are coupled with intensities, similar to a traditional AAM.
Each step (PCA and concatenation) in the case of each of the 3 models is reversible, where
training involves generating the final coupled model, and segmentation step involves
reconstructing the original high dimensional data from the coupled model.
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Figure 4.
Coupling intensities with mulitple levelsets for the MLA training. First, PCA is used to
project each intensity Fn and levelset Lm,n down into a lower dimensional space, denoted as

. Then, a second PCA is performed, creating a coupled matrix ΨΩ, where each row
corresponds to a specific projection value, and each column represents a single eigenvector.
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Figure 5.
(a) The projections from the input intensities and levelsets are calculated using Equation (2).
(b) The rows from the coupled matrix ΨΩ corresponding to the given inputs are extracted as

. The projections are used to estimate a set of coupled projections . (c) The

coupled projections  are used to reconstruct the entire set of projections .

Finally, a set of reconstructions  are calculated using Equation
(4).
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Figure 6.
Quantitative segmentation results from experiments E1 through E6 for 40 studies segmenting
the prostate, CG, and PZ. The mean is given by a solid gray line, the 25th – 75th percentiles
are shown as a shaded gray rectangle, and the 10th – 90th percentiles are shown as error bars.
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Figure 7.
(a) illustrates the intensities Fθ of a midgland prostate slice from a 3D, T2-w, endorectal MR

image. (b) represents the reconstruction  resulting from the MLA. (c) illustrates a 3D
rendering of the the prostate in light yellow, CG in red, and PZ in dark purple. In (d), (e),
and (f), the MLA segmentations are shown in red while the ground truth segmentations are
shown in green. (d) illustrates the prostate, with DSC = 0.878. (e) represents the CG, with
DSC = 0.861. (f) illustrates the PZ, with DSC = 0.764.
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Figure 8.
a) illustrates the intensities Fθ of a midgland prostate slice from a 3D, T2-w, endorectal MR

image. (b) illustrates the reconstruction  resulting from the MLA. (c) illustrates a 3D
rendering of the the prostate in light yellow, CG in red, and PZ in dark purple. In (d), (e),
and (f), the MLA segmentations are shown in red while the ground truth segmentations are
shown in green. (d) illustrates the prostate, with DSC = 0.90. (e) illustrates the CG, with
DSC = 0.81. (f) illustrates the PZ, with DSC = 0.73.
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Table 1

List of commonly used notations and symbols in this paper

Symbol Description Symbol Description

M Number of objects in an
image.

N Number of training im-
ages.

C Set of spatial locations,
where c = (x, y, z) for
each c ∈ C

C(in) Set of spatial locations
inside an object, where
C(in) ⊂ C.

F Set of intensities, where
f(c) is the intensity at lo-
cation c.

F̂ Low dimensional projec-
tion of intensities, where
∣ F̂ ∣ ≪ ∣ F ∣ .

L Levelset of an object,
where L = 0 represents
the object surface.

L̂ Low dimensional projec-
tion of a levelset, where
∣ L̂ ∣ ≪ ∣ L ∣ .

Sm Set of N levelsets for ob-
ject m ∈ {1, …, M} in
the training set.

SF Set of N intensities in
the training set.

Ω Concatenation of multi-
ple projections.

Ψ Matrix of eigenvectors,
where each column is an
eigenvector.

T A±ne transformation. R High dimensional re-
construction, calculated
from a low dimensional
projection.
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Table 2

Detailed description of the data used to test the MLA

# of Studies Protocol MRI Acquisition

40 Studies 3.0 Tesla,
T2-weighted

Fast Spin Echo,
Endorectal Coil

Image Size
(pixels)

Field of View
(mm)

Resolution (mm)

512x512xZ,
20 < Z < 50

140 x 140 x Z,
60 < Z < 150

0:27 x 0:27 x 3:0
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Table 3

Description of the leave-one-out and cross validation experiments performed to quantitatively test the MLA.
The difference between E3/E4 and E5/E6 is that with E3/E4 we calculate the results over all 1200 trials (30 runs
x 40 studies), while with E5/E6 we calculate the median value for each of 30 runs and calculate the results over
all 30 runs to determine the generalizability of the MLA over different training sets

Experiment Hierarchical Runs Folds Total # of Trials

E 1 No 1 40 40

E 2 Yes 1 40 40

E 3 No 30 5 1200

E 4 Yes 30 5 1200

E 5 No 30 5 30

E 6 Yes 30 5 30
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