Accepted Manuscript i
Calibration of mirror position and extrinsic parameters in axial non-central cat-
dioptri t
ACIOpHHC systems Computer Vision
and Image
Luis Perdigoto, Helder Araujo Understanding
PIL: S1077-3142(13)00063-5
DOI: http://dx.doi.org/10.1016/j.cviu.2013.04.001
Reference: YCVIU 1975
To appear in: Computer Vision and Image Understanding

Please cite this article as: L. Perdigoto, H. Araujo, Calibration of mirror position and extrinsic parameters in axial
non-central catadioptric systems, Computer Vision and Image Understanding (2013), doi: http://dx.doi.org/10.1016/
j.cviu.2013.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.cviu.2013.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2013.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2013.04.001

Calibration of mirror position and extrinsic parameters
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Abstract

We propose a novel calibration method for catadioptric systems made up of
an axial symmetrical mirror and a pinhole camera withts optical center located
at the mirror axis. The calibration estimates the relative camera/mirror position
and the extrinsic rotation and translation w.r.t. the world frame. The proce-
dure requires a single image of a (possibly planar) calibration object. We show
how most of the calibration parameters can be estimated using linear methods
(Direct-Linear-Transformation algorithm) and cross-ratio. Two remaining para-
meters are obtained by using non-linear optimization. We present experimental
results on simulated and real images.

Keywords: Non-central catadioptric vision systems, Calibration

1. Introduction

Catadioptric vision systems use a combination of cameras and mirrors to ac-
quire images. They can provide some advantages over more traditional camera
systems, namely in terms of increased field-of-view (usually through reflection off
curved mirrors) and/or single image multi-view geometry (with the use of multi-
ple mirrors). Several configurations have been proposed and studied, alongside

with tailor-made or more generic calibration methods.
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1.1. Previous work on catadioptric calibration

Central catadioptric systems [1] allow for a single-viewpoint projection model,
by the use of particular mirror shapes restrictively aligned with an orthographic
or perspective camera. Calibration methods for these systems include using the
image of lines in the scene [2, 3, 4], self-calibration using tracked point on sev-
eral images [5, 6] or using a calibration pattern [3, 7, 8, 9]. A recent review and
comparison of calibration techniques focusing on central systems can be found
in [10].

Some calibration methods propose a general, un-parameterized, camera [11,
12, 13]. These can model central and non-central catadioptric systems, as well
as more unconventional camera designs. The intrinsic calibration of the camera
consists on associating a 3D direction with each pixel in image.

Most non-central catadioptric systems are modeled as a perspective camera
and an axial symmetric mirror of conical section (sphere, paraboloid, ellipsoid
and hyperboloid). The geometry of image formation is dependent on the in-
trinsic parameters of the camera, on the particular shape and relative position
of the mirror. Some calibration methods assume an independent calibration
of the perspective camera [14, 15, 16], which can be robustly achieved using
well-established techniques for conventional cameras. Many consider the mirror
shape to be accurately known from the manufacturing process [17, 18, 19, 20].
The mirror pose w.r.t. the camera is often estimated by identifying the mirror
boundaries in the image (usually a conic) [17, 14, 21, 6, 20].

Self-calibration approaches use point correspondences on several (at least
two) dmages [22, 17, 23]. Caglioti et al. [24] used the reflected image of lines
on.axial-symmetric mirrors as the calibration object. Sagawa et al. [25] applied
projected parallel light to estimate mirror location. Grossberg and Nayar [26]
and Tardif and Sturm [27] used a computer screen and a projector to generate
coded structured-light calibration patterns and achieve a dense mapping of the
image pixels. Morel and Fofi [28] used polarized light.

A comprehensive survey of camera models used in panoramic image acqui-
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sition devices, as well as calibration approaches, is presented in [29].

1.2. Proposed method

Our paper presents a novel calibration method for axial catadioptric systems.
By “axial catadioptric” [21] we mean a vision system made up of a pinhole

camera and a mirror, such that
e The mirror is rotationally symmetric around an axis;
e The camera’s optical center is placed on the mirror’s axis.

There are no additional constraints on the relative position of the'camera and
mirror. The camera’s principal axis is not necessarily aligned with the axis of
the mirror.

The constraint of placing the projective camera’s optical center on the mir-
ror axis is acceptable for most systems. When wusing spherical mirrors, this
constraint becomes irrelevant, as a symmetry axis passing through the camera
always exists. We note that, although we focus on non-central systems, this
model also includes central cameras. Our calibration technique can be easily
applied to dioptric systems of similar characteristics, like fisheye lenses.

Our method is capable of calibrating
e The mirror position w.r.t. the pinhole camera;
e Theextrinsic parameters of the camera, i.e., pose w.r.t. world coordinates.

It uses a single image of a known point pattern, i.e., a calibration object. This
calibration object can be planar, although, as we will show, additional processing
is required in that case.

The method is divided in 3 steps, executed in sequence. The first step esti-
mates the intersection point between the mirror axis and the image plane, which
we will call the vertex point. In systems where the camera is aligned with the
mirror, this point coincides with the image center. The calibration is achieved

by using the cross-ratio as an invariant in our axial-symmetric projection model.
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This property was first noted by Wu and Hu in [30]. Although their paper was
focused on central systems, the underlying principle is the same. We provide,
however, proof of its applicability to our model, geometrical insight about the
procedure (the solution is derived from the intersection of conical loci in the
image) and additional techniques to deal we noise.

The second step estimates the extrinsic rotation and translation of the cam-
era coordinate frame w.r.t. the world reference frame. The rotation matrix
is completely determined while the translation vector is estimated up to one
unknown component (the Z-component).

The method relies on establishing a linear projection from 3D world points
to a 1D image feature, which is possible given the axial catadioptric geometry.
A similar 3D-1D linear mapping was used by Thirthala and Pollefeys [31] in a
self-calibration framework. Although it does not rely on knowledge of the scene
structure, their method requires at least 15 point correspondences in 4 views
(for non-central cameras).

We show how the Direct-Linear-Transformation (DLT) algorithm [32] can
be used to recover the extrinsic parameters from a set of world-to-image point
correspondences. No knowledge of the mirror shape (besides the axial symme-
try) is needed at this stage. We assume, however, that the pinhole camera is
internally calibrated (a common assumption, e.g. [33, 14, 18, 34]).

The third and final step estimates the remaining calibration parameters:
the distance from camera to mirror along the symmetry axis and the undeter-
mined: component of the extrinsic translation. It takes into account the com-
pléete (non-linear) projection geometry of the system and depends on the mirror
shape, which is assumed to be known a priori. The procedure relies on non-
linear optimization methods (e.g. Levenberg-Marquardt algorithm). Non-linear
optimization and bundle-adjustment are recurring techniques in these types of
systems (e.g. [23, 22, 17, 21]), but we perform the optimization in a single pa-

rameter and show that a precise initial estimate is not required for convergence.
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1.8. Notation

Some background concepts regarding cross-ratio and vector representation of
conic curves are briefly reviewed in Appendix A. The notation used throughout
the paper is now introduced.

Vectors are denoted by bold symbols. Homogeneous coordinates of points
in P3 are represented in upper-case bold symbols (e.g. X), points in P? are in
lower-case (e.g. x) and points in P! are represent in lower-case with an overbar
(e.g. ). A tilded symbol denotes an inhomogeneous vector (e.g. X).

Matrices are represented by symbols in sans serif font (e.g<R). The super-
script “"*” denotes the i-th row of a matrix, as in R™.

Equality of matrices or vectors up to a scalar factor is written as “~”.

1.4. Paper structure

The following sections are organized as follows. Section 2 discusses the
system geometry assumed by our method and deduces the linear projection
equation that can be established from 3D world points to 1D image features.
Section 3 describes the estimation of the wverter point (the intersection point
between the image plane and the the mirror axis), which is the first calibra-
tion parameter to be obtained. Section 4 shows how to estimate the extrinsic
parameters, up to one unknown translation component, using a linear method
based on the DLT algorithm. The estimation of the two remaining parameters,
the distance between camera and mirror and the unknown translation compo-
nent, is addressed in section 5. Experimental results are presented in section 6.

Finally, section 7 presents the conclusions.

2. System geometry

We will now discuss the axial catadioptric geometry, and show how a linear

projection equation can be established.
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Figure 1: The axial catadioptric geometry. Fig.(a): The pencil of projection planes has the
mirror axis as the common intersection line. C is the camera’s optical center. X is a world
point. S is the reflection point on the surface of the mirror. Fig.(b): The pencil of projection
planes is imaged as a pencil of lines, with o, the image of the mirror axis, as the common
point. For a given world point X;, there is a line in the image passing through its reflected
image s;, its direct image x;, and the image of the axis o. Note that the direct image of a
point, x;, may not be available in practice. As shown for point x3, if the world point is behind
the camera (i.e., negative coordinate on the camera’s principal axis), its direct and reflected

images have opposite directions w.r.t. the central point o.

2.1. The pencil of projection planes and its image

Consider Fig. 1(a). Let C be the camera’s optical center and X a point in
the world. An incident ray from X intersects the mirror’s surface at point S
and is reflected to the camera, forming the reflected image of the world point,
denoted by s.

From the laws of reflection, we know that the incident ray, the reflected ray
and the surface’s normal at point S must belong to the same plane. Also in
this plane is the direct projection ray, i.e., the projective line, from X to C,
that forms the real (not reflected) image of X, denoted by x. We refer to this
plane as a projection plane, in the sense that it contains the direct and reflected
projection rays of a given point in space.

As a consequence of the previous assumptions made on system geometry,

every projection plane is part of a pencil of planes, with the mirror axis as the
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common intersection line. Furthermore, this pencil of planes is projected in the
image plane as a pencil of lines, where the common point, o, is the image of
the axis (see Fig. 1(b)). For every world point X, there is a line in the image
passing through its reflected image s, its direct image x, and the image of the
axis o (the vertex point).

Changes in camera orientation (i.e., rotation around the optical center). in-
duce homographic transformations in the image (c.f. [32]) and, of course, do
not affect the collinearity between s, x and o. Thus, the pencil of projection
planes are always imaged as a pencil of lines, as long as the center of the camera
is placed on the mirror axis. In the particular configuration where the camera’s
principal axis is coincident with the mirror axis (which is of great practical in-
terest, e.g., in central catadioptric systems), point o becomes the principal point
of the image.

It should be noted that the direct image of a point, x, is in most practical
situations not visible in the image, because it is out of the field-of-view or behind
the camera. This fact does not change, obviously, the validity of the discussion.
In the algorithms we present in this paper, the position of x is always assumed

to be unknown.

2.2. Parameterizing the line pencil

T T
Now, let x ~ [x Y 1} and s ~ [sw Sy 1} be the direct and reflected

-
image of X; respectively, and o ~ |:0m 0y 1} be the vertex of pencil. Each
line on the pencil can be specified by a single parameter, that we will define to

be the line slope. Thus, the line containing point x and passing through the

T—o
Y—0y

vertex o, is specified by the slope

We define the 1D homogenous vector

x — o0 L 0g
X ~ z ~ | Y70y
Y — 0y 1

as the reduced coordinates of point x. Vector X uniquely specifies the line in the
pencil that x belongs to. Note that, because X is an homogenous vector, infinite

slopes can be handled seamlessly.
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Since s and x belong to the same line of the pencil, we have

X~S~ | . (1)

2.3. Linear mapping between X and §

The direct image of world point X is given by the projection equation
x ~ K [R T} X,

where K is the intrinsic parameter matrix, and R and T are the extrinsic rotation
and translation relating the world reference frame with the camera frame.

Using equation 1 we can rewrite the projection equation as

1 0 —o,

5 ~ K[r Tx. 2)
0 1 —oy
~P

The 2 x 4 matrix P establishes ainear mapping between points in the world
reference frame and a 1D image parameter computed from the image position
of the reflected points.

Given enough known. correspondences between X and s, matrix P can be
obtained up to seale, from equation 2, by using the DLT algorithm (Direct
Linear Transform) [32]. We note that in the case that all world points X lie
in a single plane, the size of the recovered matrix P is reduced to 2 x 3. This

particular case will be addressed in Section 4.4.

3. Finding the vertex point

In this section we show how the cross-ratio can be used as an invariant under
the axial catadioptric geometry to obtain the image of the mirror axis, the vertex
point o. By determining its location, the axis direction w.r.t. the camera frame

is immediately defined (assuming an internally calibrated camera).
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Figure 2: The cross-ratio as an invariant under the axial catadioptric geometry. Fig.(a): A,
B, C and D are four collinear 3D points. a, b, ¢ and d are their images after reflection from
the mirror. X4, Xp, Xc and X4 are their direct images, i.e., the direct projection in image.
Fig.(b): The cross-ratio relation between image points. Point o is the image of the mirror

axis.

3.1. Cross-ratio as an invariant

Consider Fig. 2(a). Let A, B, C and D be four collinear 3D points. Consider
a, b, ¢ and d to be their reflected images and x,, x;, X. and x4 their direct
images (i.e., the direct projection in image, not reflected through the mirror).

Fig. 2(b) showspoints.in the image plane. Being the projection of collinear
3D points, x,, Xp; X and x4 are also collinear. Since the cross-ratio is invariant

under a projective transformation,
{xaxpxcx4} = {ABCD} .

Each pair of reflected and direct images of a point (e.g., a and x,) is on a line

that passes through the image of the mirror axis, o, so we can write
{o;abcd} = {x,xpx.x4} = {ABCD} . (3)

We see, thus, that the cross-ratio of four collinear space points is the same as
the cross-ratio of the lines through their reflected images and the common point

0, which is the image of the mirror axis.
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Figure 3: The conic locus of possible solutions for point o. Fig.(a): The conic Q/is completely
defined by four image points (a, b, ¢, d) and the value of the cross-ratio, k: Chasles’ theorem
states that {o;abcd} = {o’;abed} = k. Fig.(b): The degenerate conics Wi and Vs are
defined by line-pairs passing through the image points a, b, ¢ and d. The solid blue lines
define W1, while the dashed red lines define Wa. The conic locus Q is a function of Wy, Wy
and k.

8.2. Conic locus for point o

Assume that the cross-ratio of a 4-tuple of collinear world points is known,
= {ABCD}. Given the reflected images of these points, a, b, ¢ and d, the

location of point o is restricted by (review equation 3):
{o;abcd} =k . 4)

We can see that, as a direct application of Chasles’ theorem [35], equation 4
defines a conic¢ locus of possible solutions for o (see Fig. 3(a)). It should be
noted that the conic is completely defined by the four points, a, b, ¢ and d
(belonging to the conic), and the value of the cross-ratio, k.

We now show how to obtain the expression of the conic. Consider Fig. 3(b).
Let. W7 and W5 be degenerate conics, defined by the line pairs (1;,m;) and

(12, m5), respectively, where
I, =axc¢c, m=dxb, lb=axb, my=cxd
and with the conics given (in matrix form) by

\Ui = lil’l’liT + l’l’liliT, 7= 1, 2

10
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It can be verified that the conic locus of point o can be obtained from these

degenerate conics and the cross-ratio by the expression’:

Q~ kY — Wy (5)

As an additional insight, the conic £ in equation 5 can be viewed as a 1-
parameter family of conics (passing through 4 fixed points, a, b, ¢ and d), with

that parameter being k, the desired value for the cross-ratio.

3.3. Obtaining a solution

Given enough 4-tuples of points in the scene with known cross-ratio, a unique
solution for o can be found, corresponding to the common intersection point of
all the conic loci. The minimum number of sets of points required to obtain
a single solution depends on their location and on the number of intersection
points between the conics (as two conics can/intersect in up to 4 points). Assum-
ing general position, three sets of points will normally be sufficient to produce
a single solution.

In the presence of noise, however, a common intersection point for the conics
may not exist. We can, thus, obtain an estimate for o using the following
procedure: Let w; be the vector representation (review equation A.2) of conic
Q;, corresponding to the i-th 4-tuple of image points with known cross-ratio.

Construct a matrix Q by stacking the conics w; for all N sets of tuples:

wlT

Without noise, the right null space of Q is the solution for o, i.e., Q6 = 0. The

estimate for o can, thus, be obtained by picking the eigenvector corresponding

1This expression is valid for a cross-ratio calculated using the formula in A.1. Alternative
formulas for the cross-ratio produce different combinations of points in the expressions of [;

and m;

11
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Figure 4: Finding the vertez point o. Fig. (a) and (b) show test images of grid patterns
reflected on a spherical mirror. Several 4-tuples of image points and' their corresponding
conics w are marked in the images. The tuples of image points correspond to equally-spaced
collinear world points (cross-ratio=1/4). The intersection point of all conics is the vertex
point o, indicated by with a red arrow. Note that point o corresponds to the reflection of the

camera’s optical center because its projection ray coincides with the mirror axis.

to the smallest singular value associated with matrix Q. At least N = 6 tuples
are required for building Q.
Fig. 4 shows examples, using real images, of conics generated from 4-tuples

of image points and how the common intersection point is the vertex point o.

3.4. Refining the estimate

If an intersection point does not exist due to noise, the estimate for vector
6 will not belong to the subspace of lifted coordinates (equation A.3) and the
extracted vertex o will be only an approximation. Furthermore, we have found
that the cross-ratio conics w show a relatively high sensitivity to noise, which
degrades the accuracy of the estimate of the vertez point. Fig. 5 quantifies this
sensitivity. It plots the distance between the cross-ratio conic w, obtained from
image points corrupted with noise, and the ground truth point o. Since point
o should belong to the conic, the distance provides an error measurement.

To improve the accuracy of the estimation of the vertex point, we propose an
additional refinement procedure using a non-linear optimization method. The

computation of the reduced coordinates s of a given image point is a function of

12
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Figure 5: Sensitivity to noise of the cross-ratio conics w. Plot of the distance between the
conic curve w and the ground truth point o, as a function of noise level o (o is the standard
deviation of the gaussian noise added to the position of image points). Point o should belong
to the conic, so the distance to the conic curve provides an error measurement. The figure
was obtained by simulation (we used the same simulation setups that are described in detail
in subsection 6.1). The results were obtained by averaging repeated simulations, using sets of
points in different positions. In total, the result for each noise level was obtained from 2000

simulations.

point o, i.e., §(0). Let {§;(0); X;}, i = 1,.4;4V, denote the set of N world-to-
image point correspondences. As stated in the previous section (review equa-
tion 2), a linear mapping can be estimated from the set of correspondences using
the DLT algorithm.

Consider a function SSVprr ({Ei(o) : XZ}) that returns the smallest singu-
lar value obtained during the Singular-Value-Decomposition factorization of the
DLT procedure. The closer to zero the value is, the better the linear mapping
fits the set of points. Thus, function SSV . can be used to evaluate a candi-
date point .o, quantifying how the estimates for the coordinates of that point fit
into the linear projection model.

Starting at the initial solution obtain in the previous subsection, we can

refine the estimate for point o by apply non-linear optimization to
min SSVpu7 ({s,(0); X.}) - (6)

In our implementation we used the Levenberg-Marquardt method. Addi-
tionally, we used the RANSAC algorithm [32] to handle outliers on the set of
point correspondences {s;(0); X;}.

Fig. 6 shows an example, with a real image, of the output of function

13
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Figure 6: The function SSVprp. Fig. (a) shows the output of function SSV p 1 evaluated
at every pixel of the test image shown in Fig. 4(a). Fig. (b) shows the same surface but in a
3D perspective. A blue hue represents lower values on the surface, while a red hue represents
higher values. Point o is located at the global minimum of the surface, indicated by the red

arrow.

SSVprr.

4. Estimating the extrinsic parameters using linear methods

In this section we show how the extrinsic parameters can be obtained, up to
one undetermined component of the translation vector, from a linear method
and using a single image of a calibration object. We first consider a generic 3D
calibration object, but then adapt the algorithm to handle the case, of practical
interest, when all the calibration points belong to a single plane.

We assume that the position of the vertex point o (discussed in the last
section) has-already been determined, and that the pinhole camera is internally
calibrated. In most cases, the camera can be previously calibrated (internally),

without the mirror, using standard methods [36, 37].

4.1. Pre-alignment of the camera frame

To derive the method to estimate the extrinsic parameters we assume that
the camera is aligned with the mirror, i.e., the camera’s principal axis coincides
with the symmetry axis of the mirror, with the camera pointing towards the
mirror. This assumption does not imply a loss of generality since a pre-rotation

can always be performed to align the camera axis.

14
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Given an internally calibrated camera, the knowledge of point o provides,
implicitly, the direction of the mirror axis in the camera reference frame. A
rotation can then be calculated that would align the principal axis with that
direction.

The alignment rotation is implemented by an homographic transformation
in the image. This homography is called a conjugate rotation (c.f. [32], section

8 and appendix A7) and is given by
H=KRK™,

where K is the intrinsic parameters matrix and R is the rotation matrix. All im-
age points are transformed from their original positions-into the aligned camera
frame using the homography H. It should be noted that after the alignment the
vertex point o is moved to the image center, i.e., 0 ~ {0 0 1} T. In subsequent
sections, any reference to an image point (s) assumes an aligned camera.

In many applications (e.g., central systems) the camera is in fact aligned

with the mirror, and this initial step is unnecessary.

4.2. The projection matriz P

Please recall that a point in the world reference frame is denoted by X.
Point X has known pesition (belongs to the calibration object). Its projection
in the image after reflection from the mirror is denoted by point s. Consider
T = [tm 5 tz} ' to be the extrinsic translation vector and let R™ denote the
i-th row of the extrinsic rotation matrix R.

Assuming that the camera is internally calibrated (K = 1) and that the
camera frame is aligned with the mirror axis (o ~ [0 0 1}T)7 the 2 x 4

projection matrix of equation 2 is simplified to

R™ 1,
S~ X . (7)
R™ t,
~P

15
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4.8. Retrieving R, t, and t,

As previously discussed, given enough known correspondences between X
and s, matrix P can be obtain up to scale, from equation 7, by using the DLT
algorithm. It should be noted that, for the moment, we are considering a gen-
eral non-planar calibration object. The case of a planar calibration pattern is
analyzed in the next subsection.

Let p;; denote the element of P at row i and column j. Noting that P
is determined only up to a scale factor A, the extrinsic parameters, with the

exception of t,, can be recovered from
R™ = A [Pn P12 p13} (8)
R™= =2 [P21 P22 p23}
R™ = R"™ x R™
ty = Ap14
ty = Apas

As R™ and R™ are normal vectors, the value of A is subjected to the con-

straint
||)‘ {pu P12 plg} || = ||)‘ {le Db22 p23} || =1,
which yields
1 1
A=+ =+ : (9)
|| {pu P12 p13} H H {pm Db22 p23} H

The signal ambiguity of A can be solved by means of a simple procedure,
taking into consideration the geometric properties of image formation. Consider

(X., Y., Z.) as the coordinates of X in the camera frame. We have that

X
X, R t,| |Y
= , (10)
Y, R t,| |2
1

16
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where point (X, Y,) can be seen as the orthogonal projection of (X, Y., Z.) in
the image plane.

Since we are considering an aligned camera frame, the image plane is per-
pendicular to the projection planes, and point (X.,Y.) and the corresponding
reflected image point (s,,s,) are on a line that passes through the image ori-
gin (see section 2). More so, in the presence of a convex mirror?, (X.,Y,.) and
(82, 8y) have the same direction w.r.t. the image origin. In other words, vectors
(X, Y,) and (sg, 5y) must have the same orientation and direction.

The correct value for A can, thus, be obtained using the following procedure:

1. Choose one known pair of correspondences X and s;

2. For both solutions of equation 9, +A and —A\:
e Compute R, t, and t, using (8);
e Compute (X, Y.) using (10);

3. From the two opposing vectors resulting from step 2, (£X,., £Y.), choose
the one pointing in the same direction as (s, sy) (in the presence of noise,
choose the closest direction).  The value of A that corresponds to the

correct vector is the solution.

It should be noted that, in the presence of noise, the recovered matrix R may
not be a true rotation matrix. Using Singular-Value-Decomposition, R = UZVT,
R can be projected to a matrix R’ in orthonormal space by substituting all the
singular values by 1, i.e., R" = UVT. Matrix R’ is the closest orthonormal matrix

to R.in the sense that it minimizes the Frobenius norm ||R — R||f.

4.4. Planar calibration pattern
We now show how the algorithm can be changed in order to allow for a

planar calibration object.

2In the axial geometry we are considering, when the camera is pointing at a convex mirror,
the reflection is seen on the same direction (or “side”) as the object is in the world. For a
concave mirror, the opposite is true. In this algorithm we assume the convex case because of

its far greater practical interest.
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We will assume, without loss of generality, that the calibration points be-
long to plane Z = 0 w.r.t. the world frame (in a similar manner as in [36]).

Equation 7 becomes

r rig t
s | 1y . (11)
ro1 T2ty

~

where 7;; denotes the element of matrix R at row ¢ and column j. With some
abuse of notation, let us redefine P to be the 2 x 3 matrix mapping the planar
world points to the 1D image feature.

Matrix P is, again, obtained up to a scale factor A using the DLT algorithm.

Similarly to equation 8, we have that

er :)\ |:p11 P12 a:| (12)
R™ =X [pm D22 b}
with A, a and b to be determined.
Since R™ and R™ are orthonormal we can write
T
{Pn P12 a} {pn P12 a] =
T
{pm D22 b} {pm D22 b}

and
T
[Pn P12 a} {pm D22 b} =0.

It can be shown that these constraints generate 2 real solutions for a and b. The

solutions are symmetric and will be denoted as {a; b4} and {a_; b_}, where

_ (ka—kv) /ka+k7. _ /ka+k7
ai—:I: Qk'g B 3 bi—:ﬁ: B

_ 2 2 2 2
ko =riy + iy =731 — 13

with

kg =ri1ro1 + T12722
ky =/ K2 + 4k3
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The unknown scale factor A is determined using equation 9, where variables
p13 and pog are substituted, respectively, by ay and by (or by a— and b_,
yielding the same result). The signal ambiguity of A can, again, be solved with
the procedure described in the previous subsection. It should be noted that in
equation 10 we now have Z = 0, which causes the equation to be independent
of the values of a and b, and so A is still uniquely determined.

Two solutions are, thus, possible for the extrinsic rotation matrix R, obtained
by substituting the values {\; ay; b1} and {); a—; b_} in equation 12 (the
procedure to determine the correct solution is discussed in the next subsection).
The 3rd row of R is given by R™ = R™ x R"2.

The first two components of the extrinsic translation are determined without

ambiguity and can be obtained from

te =Ap13

ty :)\pgg X

4.5. Discussion and summary

Using a 3D (non-planar) calibration object produces an unique solution for
the extrinsic rotation matrix R. Regarding the minimum number of world-to-
image point correspondences required to apply the DLT algorithm to equation 7,
it can be seen that each s <> X pair establishes two equations up to scale.
Eliminating the unknown scale factor between them results in one constraint on
the variables of P for every point correspondence. Since the 2 x 4 matrix P is
recovered-only up to scale, 7 independent variables need to be determined, which
means that at least 7 world-to-image correspondences are required. The world
points can not be located on a single plane (i.e. the calibration object must be
non-planar), or else one column of matrix P is left undetermined (equation 11).
Furthermore, to determine that column of P, at least two off-plane world points
are needed to constrain the two variables in the column.

For a simpler experimental setup, the use of a planar calibration pattern

is possible. A minimum of 5 point correspondences is needed in this case (a
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similar reasoning as in the previous case, now with a 2 X 3 matrix P). In this
situation, two possible solutions are obtained for matrix R. This ambiguity can,
however, be solved by carrying both solutions to the next step in the calibration
procedure and performing a complete reprojection of the world object into the
image. The correct solution is the one that produces the image closest to the
original.

The ¢, and t, components of the extrinsic translation are unambiguously
recovered, regardless of the use of a non-planar or planar calibration object.
The t, component is undetermined at this stage. The value of the translation

vector T is, thus, restricted to a line space.

5. Estimating remaining parameters using non-linear optimization

methods

The previous sections described how to obtain most of the parameters related
to the mirror position and to the extrinsic calibration: Section 3 showed how
to determine the mirror axis direction w.r.t. the camera while section 4 showed
how to calculate the complete extrinsic rotation, and the extrinsic translation
up to one component.

In this section we estimate the remaining parameters: the distance d between
camera and mirror along the symmetry axis, and the last component of the
extrinsic translation, ¢,.

Previously, we have taken advantage of the axial geometry of the system and
avoided the use of the non-linear reflections associated with a (possibly) non-
central catadioptric system. From now on, we take into consideration mirror
shape and reflection geometry in order to estimate d and ¢, using non-linear
optimization methods. We show, given the previously calculated parameters,
that the optimization is performed on a single variable.

Our method requires the computation of back-projection rays from the cam-
era and mirror geometry. In Appendix B we briefly outline the procedure for

a mirror with a conic section. The derivation is based on [21]. We note, how-
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ever, that any mirror profile is admissible as long as it is known a priori so that

back-projection rays can be calculated.

5.1. 3D reconstruction from back-projection and partial extrinsics

- T
Let X¢ = [ X, Y. ZC} be the inhomogeneous coordinates, in the aligned
camera frame, of a known world point X belonging to the calibration object:

Point X, is obtained from the extrinsic parameters R and T by

X, < R X +t,

Y, :[R T} = |[R2X +t,| - (13)
1 -

Z. R3X +t,

Since the parameter ¢, is not yet determined, the position of point X, is
defined only up to a linear locus in space, which-we denote as line L,. The
line is orthogonal to the image plane and intersects this plane at coordinates
(X, Vo).

On the other hand, point X, must also belong to the back-projected ray
obtained from its reflected image s. We denote that back-projected ray, after
reflection on the mirror surface, as space line Lpp.

Consequently, space point XC can be reconstructed by intersecting both 3D
lines, L, and Lpp. While line L, is fully defined (it is a function of the already
estimated R, t; and ty), line Lgp depends on the yet undetermined distance
d (see Appendix B). It should be noted, however, that despite the fact that
different values of d produce distinct back-projection rays, an intersection point
between L, and Lpp always exists, as both lines belong to the same projection

plane (see section 2).

5.2. Estimating distance to mirror d and the extrinsic translation parameter t,

Let {X;} and {s;}, with ¢ = 1..N, denote the set of points from the calibra-
tion object, expressed in the world frame, and their reflected images. Consider,
also, {Xc;} to be the set of points from the calibration object expressed in the

camera frame coordinates. The problem of determining d can be stated in the
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following manner: Given a set of correspondences between world points {X;}
and image points {s;}, and the knowledge of the extrinsic parameters R and T,
with the exception of t,, find the value of d that reconstructs the set of points
{Xe¢;i} in such a way that they “fit” the original pattern {X;} from the cali-
bration object. The evaluation function is, in general, a measure of how “well”
{X;} and {X¢;} can be related by a rigid transformation, as both sets should
represent the same object. Alternatively, other metric characteristics regarding
shape, distances, angles, etc., can be used, depending on the specific geometric
properties of the calibration object.

The well known Iterative Closest Point (ICP) [38] algorithm can be used to
obtain the rotation and translation that registers the calibration object {X;}
to its reconstruction {X¢;}. The values of this rotation and translation will, of
course, dependent on d, and we denote them as'R; and T, respectively.

The distance d can be obtained by minimizing
] X J— X . 2
min 3 [ Xe: ~ (RaX; + Ta)l* (14)

Once the value of d that achieves the minimization is found, the last unknown
parameter ¢, is obtained from the z-component of Ty.

Since the estimation of Ry and T relies on the ICP procedure, a closed-form
solution for equation 14 can not be easily obtained. However, standard non-
linear optimization methods can be used (e.g. Levenberg-Marquardt algorithm).
We have found that, even in the presence of noise, the minimization achieves
convergence to the global minimum without an accurate initial estimate of d. In
our experiments we considered d = focal length (camera touching the mirror)
as the initial estimate.

To provide intuition, Fig. 7 illustrates the idea behind the procedure by
showing the effect that errors in d have on the shape of a reconstructed planar

calibration pattern.
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Figure 7: Estimating of the distance to mirror, d. The goal is to find the value of d that
reconstructs the original calibration object that, in this example, consists on a planar grid.
The figure, obtained from simulation, exemplifies how a reconstructed object deviates from

the original shape as an error € is added to the true value of d.

6. Experimental Results

We now present experimental results obtained with the proposed method.
First we show tests with simulated data and then results from real images. We
also include a comparison with methods designed for central systems.

To provide an intuitive representation to the reader, rotation matrices are
presented as a 3 element vector containing the corresponding Euler angles,
in degrees. Rotation matrix R =R, (6,)R,(0,)R;(0;) is represented by r =
(91’ 6y, QZ), where R, (6) denotes a rotation of angle 6 along axis a = z, y, 2.

We refer to the rotation error in the following terms: given a ground truth
rotation matrix Rgr and the corresponding noise affected estimate R, the
rotation error matrix R, ds defined as: Rt = RerrRaT-

Translation errors are quantified in two distinct values: an angle error, cor-
responding to the angle between the estimated and ground truth vectors, and as
a length percentage error, given by the ratio ||Test — Tarll/|TaTll, where Tegt
and Tgr are the estimated and ground truth translation vectors, respectively,

and ||+ || denotes the L2-norm.

0.1. Simulated data

The simulations were run on three distinct setups. Each setup had different
parameters regarding the mirror shape, mirror position, and pose of the cali-
bration object. Table 1 summarizes the values of the parameters in each setup.

The image size of the simulated camera was 1500 x 1500 pixels, with a focal
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length of 1200 pixels. The calibration pattern consisted of a planar square grid,
with 8x8 points. The distance between adjacent points on the grid was 2 world

metric units.

mirror (A,B,C) d o R T
Setup [w.m.u] [w.m.u] [pixels] [Euler angs.] [w.m.u]
#1 spherical (1,0, 4) 3 (100,150) | (40°,100°,45°) | (—4,5,—6)
#2 parabolic (0,1, 1) 4 (100,150) | (30°,100°,0°) | (4,—5;—2)
#3 hyperbolic (—1,4, —1) 5 (100, 150) (0°,60°,0°) (6,—5,2)

Table 1: Simulation setups. The proposed methods were simulated in different setups, each
with distinct mirror shape, mirror position (d and o), and pose of the calibration object (R
and T). Mirror parameters are defined in equation B.1 of Appendix B. “w:m.u” stands for

“world metric units”.

Gaussian noise of zero mean and o standard deviation was added to the
position of the image points before running the calibration procedure. For a
given o value, each of the setups was repeated 100 times and the data compiled
from the 3 setups, to provide a statistical analysis on the estimation error.
Fig. 8(a)-(d) shows the root mean square (RMS) error, as a function of the noise
level o, in the extrinsic parameters R and T, and in mirror position parameters
d and o.

Fig. 8(e) plots the reprojection error as a function of the noise level. Since
our method does not rely on direct minimization of the reprojection error (like
bundle adjustment techniques), this error can be considered as a measure of
the overall quality of the calibration. Also shown in Fig. 8(e) is the result from
repeating -the simulations assuming that point o is known a priori (without
noise), and estimating only the remaining parameters. This situation is relevant
in'systems where the camera is aligned with the mirror axis, and o corresponds
to (or approximates) the image center. When using spherical mirrors, the vertez
point can be estimated from the reflected image of the camera itself (if visible)
as point o corresponds to the reflection of the optical center.

In additional simulations we studied the effect of using more than one image

in the calibration procedure. For each simulation setup, the calibration pattern
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Figure 8: Simulation results: Fig.(a) to (d) show the root mean square (RMS) error in the
estimation of the calibration parameters, as a function of noise level o (o is the standard
deviation of the gaussian noise added to the position of image points). o is the vertex point; d
is the distance between camera and mirror; R and T are the extrinsic rotation and translation,
respectively. Fig.(e) shows the RMS error in image position obtained from reprojecting the

calibration points using the estimated calibration parameters.
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was rotated around the mirror axis, producing images with different extrinsic
parameters, but with the camera/mirror relative position kept constant. The
estimates for the vertex point o and for the mirror distance d were computed by
the minimization of expression 6 (for o) and 14 (for d) taking into account all
images simultaneously. Fig. 9 shows the estimation error as a function of the
number of images used, for a fixed noise level of ¢ = 4 pixels. It is seen that
the using multiple images (with different positions of the calibration pattern)
can help reduce the effect of noise and increase the accuracy in the estimation

of the mirror relative position.
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12
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Figure 9: Reduction of the estimation error of the vertex point o and mirror distance d by
using more that one image of the calibration pattern. The extrinsic parameters change from
image to image, but the camera/mirror relative position (o and d) was kept constant. The
results were compiled from repeated simulations with different mirror types, as before. The

image noise standard deviation was fixed at ¢ = 4 pixels.

6.2. Comparison with methods designed for central systems

As previously stated, although we focus on non-central catadioptric systems,
our method can be applied to central systems. Using a simulated setup, we
applied our technique to a central system and compared its performance with
two widely used methods from Sacaramuzza et al. [8, 39], and Mei and Rives [9],
both available as OpenSource toolboxes [40, 41]. The two methods use images
of a planar calibration object.

We simulated a central system with an hyperbolic mirror (parameters [mm]:

A =-0.76; B =0;C = —600) and a pinhole camera (resolution of 1000 x 1000
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Figure 10: Comparison with methods for central systems. Performance comparison between
our method (full calibration and partial calibration assuming known vertez point o) and the
methods of Sacaramuzza et al., and Mei and Rives, designed for central systems. Fig.(a) and
(b) show the error in the estimation of the extrinsic rotation and translation, respectively.
Note that 6, 6, and 6. are the euler angles of the rotation error (please review the beginning
of the section for details). Fig.(c) shows the reprojection error. Results obtained from a
simulated setup of a central hypercatadioptric system with 10 calibration images (with added

noise). The error values shown were computed from all the images.

pixels) placed at the focus of the hyperbola. A 9 x 10 point grid was placed
in 10 positions around the mirror, generating 10 different calibration images.
Gaussian noise of zero mean and 2 pixels standard deviation was added to
the image position of each point. The toolboxes were modified to bypass any
imaging processing and to use the simulated image points instead.

We applied our method in two distinct conditions. First with a complete
calibration, and then assuming that the vertex point o was known a priori, and
only estimating the remaining parameters. In a central system the camera is
aligned with the mirror and point o corresponds to the image center.

The results are presented in Fig. 10. Since our methods assumes a calibrated
pinhole camera, we only compare the estimation of the extrinsic parameters, R
and T, and the reprojection error. The values presented are the RMS errors

obtained from the set of the 10 images.

6.3. Experiments with real images

We now present results obtained with real images. The experiments were
setup as follows. The projective camera was previously (internally) calibrated

using standard methods [37]. Two different mirrors were used, one spherical and
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Figure 11: Test images obtained with a spherical and an hyperbolic mirror, shown in Fig.(a)
and Fig.(b), respectively. Two separate planar calibration grids are seen reflected in each
mirror. The calibration points used in the experiments are highlighted in the images: points
in grid 1 are marked with a red “©®”; points in grid 2 are marked with a green “@”. In Fig.(a)
(spherical mirror), 8 X 8 points were used in each grid. In Fig.(b) (hyperbolic mirror), 15 x 8

points were used in grid 1 and 9 x 10 points were used in grid 2. The vertez point o is marked

in each image with a cyan “x”.

one hyperbolic. An image containing two distinct planar calibration patterns
was acquired for each mirror. We applied our method to each pattern separately,
obtaining two independent results for each setup. Fig. 11 shows the test images
acquired with both mirrors, and the calibration points used in each grid pattern.
Each image has a resolution of 1600 x 1200 pixels.

To compare and evaluate the output of our algorithm, reference values for the
calibration_parameters were obtained independently, from direct measurement
and from image analysis, using Bouguet’s camera calibration toolbox [37]. Each
mirror was aligned with a third, auxiliary, grid pattern. The relative pose
between the auxiliary patterns and the mirrors was calculated from the grid
alignment and by direct measurement. Then, from an external projective image
(capturing all the grids) the transformations between the mirror frame and the
calibration grids were extracted using the toolbox.

In the spherical mirror setup, the camera was placed so that the auxiliary
mirror grid was directly visible in the test image (alongside the mirror itself),

and the camera/mirror pose was computed, again using [37]. In the hyperbolic
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w5 mirror setup, due to the small mirror size and camera alignment, the auxil-
ws iary mirror grid was not directly visible in the image. In this case, we relied
w7 on careful camera placement and measurement to estimate the camera/mirror
w8 transformation.

499 Combining the camera/mirror relative pose with the information from the
s external image, the geometry of the scene was fully reconstructed for each setup,
sn and reference values for the extrinsic parameters (R and T) and mirror position
s parameters (d and o) were obtained.

503 Table 2 summarizes the reference values and the estimation-error (with re-

s« spect to the reference values) obtained for each experiment.

mirror reference values estimation error
(A,B,C) calib. d ° R T d ° R T reproj.
Setup [mm] grid [mm] [pix] [Euler ang)] [mm] [%) [pix] [Euler ang] norm[%); ang RMS [pix]
51° —502 2.3°
571 —4.9 o
#1 sphere: #1 1164 71° 84 0.8 —1.9° 1.3;1.9 0.7
386 3.0
109° 936 —0.2°
1 —56° —680 —1.2°
—-3.3 °
#2 0 #2 5° —11 3.0 —3.6° 1.4;0.5 1.1
5 1.0
300 —73° 871 0.4°
90° 620 1.9°
401 —4.4 °
#3 hyperb.: #1 45 0° —398 0.8 —3.6° 0.4;2.9 0.4
296 —2.7
—90° —24 —0.5°
—0.76 178° 438 66 —3.2°
#4 0 #2 —1.4° 536 8.4 { : } 1.6° 16.0;9.6° 1.5
7.3
—600 —90° 8 —3.3°

Table 2: Experimental results with real images. For each mirror type two independent calibration grids were used. Mirror
parameters are defined in equation B.1 of Appendix B. The reference values for the calibration parameters were obtained
using direct measurement and Bouguet’s camera calibration toolbox (see text for details). o is the vertexr point; d is the

distance between camera and mirror; R and T are the extrinsic rotation and translation, respectively.

sos 6.4. Discussion

506 The simulation results show that the method described in this paper allows
sov the estimation of the calibration parameters with good accuracy. The values
ss  of the estimated parameters remain stable even in the presence of considerable
s0  noise (i.e., when o = 5 pixels). At first sight, the value of the coordinates of

s image point o appears to be the most affected parameter, but the error loses
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relevance when compared to the full image resolution (for ¢ = 5, the position
error in o is less than 2% of the image dimension).

Regarding the comparison with methods designed for central systems, we
focused the analysis on the estimation of the extrinsic parameters as the re-
maining parameters differ from our model. Besides the extrinsic parameters,
we aim at the reconstruction of the mirror/camera position while the method
of Mei and Rives uses the spherical camera model [42, 43] and the method of
Scaramuzza et. al uses a distortion model for the image. Our method had a
performance similar to the other techniques, especially when assuming that the
vertexr point was given a priori. The reprojection error was also presented to
provide an overall evaluation, and all methods provided very similar results.

The experiments with real images demonstrate’ how a good estimation of
the calibration parameters can be achieved from a very simple and practical
setup, even with the highly non-linear image formation geometry of non-central
catadioptric systems. We note, however; that in setup #4 (hyperbolic mirror,
grid pattern 2) the estimation of d-and T presented larger errors, which can be
explained by the fact that the reflection of the grid pattern occupied a relatively
small area of the mirror surface (see topmost pattern in Fig. 11(b)), making the

calibration points more sensitive to noise.

7. Conclusions

We presented a method for the estimation of the mirror position and extrinsic
parameters in axial non-central catadioptric systems, i.e., systems made up
of an axial symmetric mirror and a projective camera with its optical center
located along the symmetry axis (but not necessarily orientated with the axis).
We assume an internally calibrated pinhole camera and require the use of a
calibration object, that can be planar. A single image is sufficient to perform
the calibration procedure.

The camera/mirror relative position is determined with two parameters: the

image position of the intersection of the symmetry axis with the image plane
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and the distance from the camera center to the mirror. The extrinsic parameters
are fully determined through a rotation matrix and a translation vector.

A linear projection equation is established between 3D points and 1D image
features, which enables the use of the DLT algorithm in the estimation of the
extrinsic rotation and translation, the latter up to one undetermined component.
The cross-ratio is used as an invariant under the axial-symmetric geometry to
determine the image of the axis. Non-linear optimization methods are applied
in the estimation of the remaining parameters.

Regarding the estimation of mirror/camera relative position; our approach
provides a significant alternative to methods that require the identification of
the mirror boundary in the image (e.g. [17, 14, 21, 6, 34]).. The calibration
procedure is accurate and much easier to automate. Since the calibration object
can be planar, the setup is easy to implement.

The estimation of the extrinsic parameters, up to one translation parameter,
is achieved with a simple and linear procedure, even in the presence of a highly
non-linear image formation geometry. In applications that do not require the
z-component of the extrinsic translation to be determined, the extrinsic para-
meters are obtained without full knowledge of the vision system characteristics
(unknown mirror shape and distance to mirror). As an example of one such
application, consider a robot navigating on a plane, equipped with an omnidi-
rectional vision system. If known landmarks (calibration points) are visible in
the image; the robot’s pose (extrinsic parameters) can be fully retrieved using
the method of section 4, as the z-component of the translation is constrained

by the plane on which the robot moves.

Appendix A. Notation and Background

This appendix briefly reviews some background concepts used in the paper.
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Appendiz A.1. Cross-ratio
Consider four collinear points A, B, C and D. Their cross-ratio {ABCD}

is defined as

|AB||CD|

|AC||BD|’

where |XY| denotes the (signed) distance between points X and Y.

{ABCD} = (A.1)

Let O be the intersection point of four concurrent lines, with each line passing
through A, B, C and D, respectively. The cross-ratio of the four lines is given

by

sin(AOB) sin(COD)
;ABCD} =

{O:ABCD} sin(AOC) sin(BOD) ’

i
and we have that (c.f. [35], chapter 2)
{ABCD} = {O; ABCD}
Appendiz A.2. Vector representation of conic curves
Consider a 2D point, with homogeneous coordinates
T
X = I:ZU Yy Zi| )

and a conic curve represented by the symmetric matrix

a b/2 dJ2
Q~ b2 c e/2
d/2 e/2 f
Point x is on<the conic curve iff
x' Qx = 0.

This second order polynomial can be re-written in the following form
w'x =0, (A.2)
with x being the lifted point coordinates of x
. T
X = [wz xy y? xz yz ZQ} , (A.3)
and w a vector representation of the conic curve

w:{a b ¢ d e f}T-

32



569

570

571

572

573

574

575

576

577

578

579

580

Appendix B. Back-projection with conic section mirror

In this appendix we show how to obtain the back-projection ray described
in section 5.1. The derivation is based on the work of Agrawal, Taguchi and
Ramalingam in [21]. That paper addressed the forward projection equations
in axial catadiotric systems with conic section mirrors, but concerning back-
projection, only the case with a spherical mirror was explicitly derived.. We

present the back-projection equations for a generic conic section mirror.

»
Vi
n .
v mirror
Yy M
PN
N Vi » S x
X | .\ m
\: I yJ mirror
camera z 7 | S Zm frame
frame k |
. ~
image s, |
plane N Ym

Figure B.12: Back-projection of an image point after reflection on a conic section mirror. See

text for details.

Consider Fig. B.12. The camera principal axis (z.) is aligned with the mirror
symmetry axis (zm,). The distance between the camera frame origin and the
mirror frame origin is given by d. Vector v; is the incident ray and v, is the
reflected ray. /S is the reflection point on the surface of the mirror. n is the
surface normal vector at point S.

The mirror is specified by three parameters, A, B and C, that define its

conicsection in the x,,z2,, plane:
AzZ + 22 4+ Bz, =C. (B.1)

The incident ray direction for a image point q (in pixels) is given, in the

camera reference frame, by s = K~1q, where K is the camera intrinsic calibra-
T

tion matrix. Let s = [51 S 53} . The inhomogeneous coordinates of the

reflection point are given, in the camera reference frame, by S = s, with 3
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obtained from

ﬁ _ 33(B+2Ad):t\/4(3%—"-53)(—Bd—Ad2+C’)+s§(B2+4AC) (B 2)
- 2(sf+sg+As§) ’

As can be seen from equation B.2, § has, in general, two solutions, cor-
responding to two intersection points between the incident ray and the mirror
surface. The smallest value of 3 that verifies #s3 > 0 is the one that corresponds
to the reflection point closest to, and in front of, the camera.

Finally, using the laws of reflection, the direction of the reflected ray is

obtained from

2nn'

Vy =V — Vi,

n'n
with the incident ray given by v; = S and the normal vector at point S =

5, s, 5. svenbyn=[s, 5, 45.—Ad_ B2 .
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We propose a novel calibration method for non-central catadioptric systems.

We assume an axial symmetrical mirror and a pinhole camera placed on the mirror axis.
The calibration estimates the camera/mirror position and the extrinsic parameters.

The procedure requires a single image of a (possibly planar) calibration object.

The Direct-Linear-Transformation algorithm and cross-ratio are used.



