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a b s t r a c t

Sketch based 3D shape retrieval has become an important research topic in content based 3D object
retrieval. To foster this research area, two Shape Retrieval Contest (SHREC) tracks on this topic have been
organized by us in 2012 and 2013 based on a small scale and large scale benchmarks, respectively. Six
and five (nine in total) distinct sketch based 3D shape retrieval methods have competed each other in
these two contests, respectively. To measure and compare the performance of the top participating
and other existing promising sketch based 3D shape retrieval methods and solicit the state of the art
approaches, we perform a more comprehensive comparison of fifteen best (four top participating algo
rithms and eleven additional state of the art methods) retrieval methods by completing the evaluation
of each method on both benchmarks. The benchmarks, results, and evaluation tools for the two tracks
are publicly available on our websites [1,2].

1. Introduction

Sketch based 3D model retrieval is focusing on retrieving rele
vant 3D models using sketch(es) as input. This intuitive and conve
nient scheme is easy for users to learn and use to search for 3D
models. It is also popular and important for related applications
such as sketch based modeling and recognition, as well as 3D
animation production via 3D reconstruction of a scene of 2D
storyboard [3].

However, most existing 3D model retrieval algorithms target
the Query by Model framework, that is, using existing 3D models
as queries. In the areas of content based 2D image retrieval and
image synthesis, sketch based methods have been addressed for
some time now. In 3D model retrieval, on the other hand, less
work has to date considered the Query by Sketch framework. In
fact, it is a non trivial task to perform sketch based 3D model re
trieval and also more difficult compared with the Query by Model

case. This is because there exists a semantic gap between the
sketches humans draw and the 3D models in the database, imply
ing that the structure of the query and target objects differ. Specif
ically, target objects are typically given as precisely modeled
objects, while the query sketch may differ drastically in level of de
tail, abstraction, and precision. In addition, until now there is no
comprehensive evaluation or comparison for the large number of
available sketch based retrieval algorithms. Considering this, we
organized the Shape Retrieval Contest (SHREC) 2012 track on
Sketch Based 3D Shape Retrieval [1,4], held in conjunction with
the fifth Eurographics Workshop on 3D Object Retrieval, to foster
this challenging research area by providing a common small scale
sketch based retrieval benchmark and soliciting retrieval results
from current state of the art retrieval methods for comparison.
We also provided corresponding evaluation code for computing a
set of performance metrics similar to those typically used to eval
uate Query by Model techniques. The objective of this track was to
evaluate the performance of different sketch based 3D model re
trieval algorithms using both hand drawn and standard line draw
ings sketch queries on a watertight 3D model dataset. Every
participant performed the queries and sent us their retrieval re
sults. We then did the performance assessment.
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A satisfactory success has been achieved in the SHREC’12 sketch
track [4]. However, the contest has limitations in terms of its eval
uation of different sketch based retrieval algorithms based on a
rather small benchmark and a comparison of a limited number of
methods. Eitz et al. [5] provided us the largest sketch based 3D
shape retrieval benchmark until 2012, based on the Princeton
Shape Benchmark (PSB) [6] with one user sketch for each PSB mod
el. However, until now no comparative evaluation has been done
on a very large scale sketch based 3D shape retrieval benchmark.
Considering this and encouraged by the successful sketch based
3D model retrieval track in SHREC’12 [4], in 2013 we organized an
other track [2,7] with a similar topic in SHREC’13 to further foster
this challenging research area by building a very large scale bench
mark and soliciting retrieval results from current state of the art
retrieval methods for comparison. Similarly, we also provided cor
responding evaluation code for computing the same set of perfor
mance metrics as the SHREC’12 sketch track. For this track, the
objective was evaluating the performance of different sketch
based 3D model retrieval algorithms using a large scale hand
drawn sketch query dataset for querying from a generic 3D model
dataset.

After finishing the above two SHREC contests, we have found
that the participating methods for the two contests are not com
pletely the same, thus a conclusion of the current state of the art
algorithm is still unavailable. In addition, to provide a more com
plete reference for the researchers in this research direction, it is
necessary to perform a more incisive analysis on different partici
pating methods w.r.t their scalability and efficiency performance,
as well as the two benchmarks used in the two contest tracks.
Motivated by the above two findings, we decided to perform a fol
low up study by completing a more comprehensive evaluation of
currently available top sketch based retrieval algorithms on the
two benchmarks such as to perform a more comprehensive com
parison on them and solicit the state of the art approaches. Thus,
we sent invitations to the participants as well as the authors of
recently published related papers (according to our knowledge)
to ask them to contribute to the new comprehensive evaluation.
Totally, 6 groups accepted our invitations and agreed to submit
their results on schedule. Finally, 15 best performing methods (4
top participating algorithms and 11 additional state of the art ap
proaches; totally 17 runs) from 4 groups successfully submitted
their results, including running results (e.g. retrieval lists and tim
ing information) and method description, which are also available
on the SHREC’12 and SHREC’13 sketch track website [1,2]. After
that, we performed a comparative evaluation on them.

In this paper, we first review the related work (w.r.t. techniques
and benchmarks, respectively) in Section 2. Then, in Section 3 we
introduce the two benchmarks (one small scale and one large
scale) used in the two contest tracks. Section 4 gives a brief intro
duction of the contributors of the paper. A short and concise
description for each contributed method is presented in Section 5.
Section 6 describes the evaluation results of the 15 sketch based
3D retrieval algorithms on the SHREC’12 small scale benchmark
and SHREC’13 large scale benchmark, respectively. Section 7
further comments on the benchmarks and analyzes the contrib
uted algorithms w.r.t the performance they achieved. Section 8
concludes the paper and further lists several future research
directions.

2. Related work

2.1. Sketch based 3D model retrieval techniques

Existing sketch based 3D model retrieval techniques can be cat
egorized differently according to dissimilar aspects: Local versus

global 2D features; Bag of Words framework versus direct shape fea
ture matching; Fixed views versus clustered views; With versus with
out view selection. In this section, we will review some typical
recent work in this field.

In 2003, Funkhouser et al. [8] developed a search engine which
supports both 2D and 3D queries based on an extended version of
3D spherical harmonics [9] from 3D to 2D. Yoon et al. [10] and
Saavedra et al. [11] developed their sketch based 3D model retrie
val algorithms based on suggestive contours [12] feature views
sampling and diffusion tensor fields feature representation or
structure based local approach (STELA). Aono and Iwabuchi [13]
proposed an image based 3D model retrieval algorithm based on
the Zernike moments and Histogram of Oriented Gradient (HOG)
features. Eitz et al. [14 16,5,17] implemented their sketch based
2D/3D object retrieval algorithms by utilizing the Bag of Words
framework and local features including HOG and its modified
versions, as well as a feature named Gabor local line based feature
(GALIF). Shao et al. [18] developed an efficient and robust contour
based shape matching algorithm for sketch based 3D model retrie
val. Li and Johan [19] performed ‘‘View Context’’ [20] based 2D
sketch 3D model alignment before 2D 3D matching based on rela
tive shape context matching [21]. Li et al. [22] further developed a
sketch based 3D model retrieval algorithm based on the idea of
performing sketch recognition before sketch model matching.

Recently, 2D line drawings have also been utilized to recon
struct correspondent 3D models, which often involves sketch
based 3D shape retrieval techniques. Several line drawing based
reconstruction algorithms [23 25] have been proposed based on
the idea of 2D parts separation, 3D parts search and combination
to create a 3D model based on its 2D line drawing. On the other
hand, Xie et al. [26] developed a sketching based 3D modification
and variation modeling interface based on the idea of parts assem
bly. Further, Sketch2Scene [27] builds a 3D scene based on a 2D
scene sketch by incorporating an analysis of structural context
information among the objects in the 2D scene.

2.1.1. 2D feature views
Matching 3Dmodels with a 2D sketch requires us to sample and

render appropriate 2D feature views of a 3D model for an as accu
rate as possible feature correspondence between the 2D and 3D
information. In this section, we review typical feature views (some
examples are shown in Fig. 1) that have often been used or are
promising in sketch based 3D retrieval algorithms.

2.1.1.1. Silhouette view. This is to simply render the black and white
image to represent a view of a 3D model. It has been adopted in
several latest sketch based 3D model retrieval algorithms, such
as Kanai [28], Ohbuchi et al. [4], Aono and Iwabuchi [13].

2.1.1.2. Contour or outline feature view. Contours are a serial of
points where the surface blends sharply and becomes invisible to
the viewer [12]. They have been utilized in Tatsuma and Aono
[29], Aono and Iwabuchi [13], and Li and Johan [19].

2.1.1.3. Suggestive contours feature view [12]. Suggestive contours
are contours in the nearby views, that is, they will become con
tours after rotating the model a little bit. They have been used in
the following sketch based 3D model retrieval algorithms: Yoon
et al. [10,30], Saavedra et al. [31] and Eitz et al. [5,4] (using both
occluding contours and suggestive contours).

2.1.1.4. Apparent ridges. Apparent ridges [32] are defined as the loci
of points that maximize a view dependent curvature and they are
extensions beyond ridge and valleys [33]. They have been utilized
by Eitz et al. [14] in their retrieval algorithm.
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2.1.1.5. Other more sophisticated 3D line drawings. Recently, quite a
few new and more sophisticated 3D line drawings have been pro
posed. We regard them as promising in achieving even better re
sults compared with those features mentioned above. They
include photic extremum lines (PEL) [34] and its GPU accelerated
version GPEL [35], demarcating curves [36], perceptual saliency
extremum lines [37], Laplacian lines [38], Difference of Gaussian
(DoG) based 3D line drawing [39], as well as the latest multi scale
curves on 3D surface [40]. For the classification and characteristics
of the above methods, please refer to the survey written by Doug
DeCarlo [41].

2.1.2. 2D shape descriptors
For a sketch based 3D model retrieval algorithm, developing or

selecting an appropriate 2D shape descriptor is an important part
to represent a 2D sketch as well as the 2D feature views of a 3D
model, such as those mentioned in Section 2.1.1. In this section,
we present several typical and promising 2D shape descriptors
for sketch based retrieval.

Fourier descriptor (FD) is an important shape descriptor and has
been successfully applied in many pattern recognition related
applications such as shape analysis, classification and retrieval as
well as character recognition [42]. However, it assumes that we
can get the boundary information of a shape beforehand and it
does not consider the internal information of the shapes. Consider
ing the above limitations, Zhang and Lu [43,44] extended the Fou
rier descriptor and proposed a more robust and accurate shape
descriptor called generic Fourier descriptor (GFD) which applies
Fourier transform on a polar raster sampled shape image.

Zernike moments feature [45] is one typical moment descriptor
that outperforms other moments in terms of performance in differ
ent applications. For example, 3D Zernike moments [46] feature
has been developed to deal with 3D model retrieval. Revaud
et al. [47] proposed an improved Zernike moments [45] compara
tor which considers not only the magnitude of the moments (clas
sic Zernike moments comparator) but also their phase information.
They demonstrated its better performance than the classic one.

Local binary pattern [28,48] divides the surrounding regions of
any pixel in a binary image into eight directions, computes the per
centages of the pixels falling in each bin and regards this distribu
tion information as a local binary pattern (LBP) encoded using an
8 bit binary number, and finally represents the whole image based
on the statistical distribution of all the local binary patterns. It can
be used to measure the similarity between the 2D sketch after a
pre processing and the rendered feature images of a 3D model.

Shape context [21] is a log polar histogram and defines the rel
ative distribution of other sample points with respect to a sample
point. It has been successfully applied in diverse tasks. The default
shape context definition partitions the surrounding area of a sam
ple point of a 2D shape into 5 distance bins and 12 orientation bins.
Thus, the shape context is represented by a 5 � 12 matrix. Differ
ent points have different shape context features in one shape and
similar points in two similar shapes usually have similar shape

context features. Shape context is scale and transformation invari
ant but not rotation invariant. To achieve the property of rotation
invariance, in [21] a relative frame is defined by adopting the local
tangent vector at each point as the reference x axis for angle com
putation and we refer to it as relative shape context. In addition,
Edge histogram [49] can be regarded as an alternative of shape
context for sketch representation.

Scale invariant feature transform (SIFT) [50] feature together
with the Bag of Features (BoF) framework has many applications
in various computer vision research fields. To optimize the search
accuracy, efficiency and memory usage in a large scale image re
trieval scenario which utilizes SIFT features and BoF framework,
Jégou et al. [51] proposed a new compact image representation
to aggregate SIFT local descriptors. It achieves a significantly better
performance than BoF on condition that the feature vectors used
have the same size. In addition, Ohbuchi et al. [52,53] proposed
several extended versions of SIFT feature for 3D retrieval, such as
Dense SIFT (DSIFT), Grid SIFT (GSIFT) and One SIFT (1SIFT) which
also have achieved good retrieval performance.

Histogram of Oriented Gradients (HOG) [54] was first proposed
for human detection based on the local and combinational orienta
tion and magnitude distribution of the gradients in each grid of an
image. According to the characteristics of a sketch, HOG has been
modified and applied in sketch based 2D and 3D object retrieval.
For example, to perform a large scale 3D model retrieval, Eitz
et al. [17] utilized a simplified HOG (SHOG) feature (first proposed
in [16]), which only concerns the orientation information. HOG
was also successfully used in sketch based image retrieval, for in
stance, like [49]. Eitz et al. [16] also performed a comparative eval
uation on several 2D shape descriptors for sketch based image
retrieval, including HOG, SHOG, local shape context and a modified
version of shape context named ‘‘Spark’’ feature.

Other recent 2D shape representations or transforms include
tensor representation, which was used in Yoon et al. [10] and Eitz
et al. [49], as well as the latest feature Gabor local line based fea
ture (GALIF) [5] which has demonstrated outperforming perfor
mance than SIFT [50], Spherical Harmonics [8], and Diffusion
Tensor representation [10]. Motivated by the idea of Curvelet
transform [55], GALIF is a transformation type feature and it
approximates Curvelet by utilizing Gabor filters which only re
spond to some special frequency and orientation.

2.2. Sketch based 3D shape retrieval benchmarks

2.2.1. Snograss and Vanderwart’s standard line drawings (1980)
Snograss and Vanderwart [56] built a dataset of 260 standard

line drawings. These sketches were originally designed for experi
ments in cognitive psychology. They were carefully designed to be
comparable regarding four variables fundamental to memory and
cognitive processing, including name agreement, image agree
ment, familiarity, and visual complexity. Their main target is to ex
plore the correlation among those four cognition factors and this
pioneer work was followed by several research work with respect

Fig. 1. Example feature views: (a) A horse model (in curvature view); (b) Silhouette feature view; (c) Contours (green) and suggestive contours (blue) feature views; (d)
Apparent ridges feature view. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to different languages such as French [57,58], Spanish [59] and Por
tuguese [60].

2.2.2. Cole et al.’s line drawing benchmark (2008)
Cole et al. [61] built a line drawing benchmark (together with

corresponding 3D models) such as to study the relationship be
tween human drawn sketches and computer graphics feature
lines. They created line drawings of 12 models including bones,
mechanical parts, tablecloths and synthetic shapes. However,
either the number of sketches or that of models is very small.

2.2.3. Saavedra and Bustos’s sketch dataset (2010)
Saavedra and Bustos [62] built a small sketch dataset (rotation

variations of 53 sketches) to test the performance of their sketch
based image retrieval algorithm.

2.2.4. Yoon et al.’s sketch based 3D model retrieval benchmark (2010)
To perform sketch based 3D model retrieval and evaluate their

algorithm, Yoon et al. [10] built a benchmark which contains 250
sketches for the 260 models of the Watertight Model Benchmark
(WMB) dataset [63] and the sketches and models are categorized
into 13 classes.

2.2.5. Eitz et al.’s sketch based shape retrieval benchmark
Eitz et al. [5] built a sketch dataset containing one sketch for

each of the 1814 models in the Princeton Shape Benchmark (PSB)
[6] dataset.

2.2.6. Eitz et al.’s sketch recognition benchmark (2012)
Eitz et al. [17] also built a sketch recognition benchmark which

contains 20000 sketches, divided into 250 classes, each with 80
sketches. Currently, it is the most comprehensive sketch dataset.

2.2.7. Comparison with our two benchmarks
The first three datasets or benchmarks cannot be used directly

for our purpose while the fourth also has its limitations, such as
the bias of different number of sketches per class and lacking of
comprehensiveness. Considering these, we have built the
SHREC’13 Sketch Track Benchmark using 7200 sketches selected
from the large sketch collection presented in [17] as query objects,
and the SHREC’12 Sketch Track Benchmark which was extended
from Yoon et al.’s benchmark. These two benchmarks either elim
inate certain bias or add new evaluation datasets, thus are more
comprehensive and objective when used to evaluate existing or
newly developed sketch based 3D model retrieval algorithms.

3. Benchmarks

In the SHREC’12 and SHREC’13 sketch tracks, we have built two
sketch based 3D model retrieval benchmarks, featuring small
scale and large scale benchmarks, and sketches without and with
internal features, respectively. In this section, we also introduce
several evaluation metrics that are generally used to measure the
retrieval performance of a sketch based 3D model retrieval
algorithm.

3.1. Small scale benchmark: SHREC’12 Sketch Track Benchmark

3.1.1. 3D target dataset
The 3D benchmark dataset is built based on the Watertight

Model Benchmark (WMB) dataset [63] which has 400 watertight
models, divided into 20 classes, with 20 models each. The 3D target
dataset contains two versions: Basic and Extended. The Basic ver-
sion comprises 13 selected classes from the WMB dataset with
each 20 models (in summary, 260 models). In the basic version,

all 13 classes are considered relevant for the retrieval challenge.
Fig. 2(a) shows one typical example for each class of the basic
benchmark. The Extended version adds to the basic version all
remaining 7 classes of the WMB dataset (each 20 models). These
additional classes, however, are not considered relevant for the re
trieval challenge but added to increase the retrieval difficulty of the
basic version. Fig. 2(b) illustrates typical examples for these
remaining 7 irrelevant classes. The extended version is utilized to
test the scalability of a sketch based retrieval algorithm.

3.1.2. 2D query set
The 2D query set comprises two subsets, falling into two differ

ent types.

� Hand-drawn sketches. We utilize the hand drawn sketch data
compiled by TU Darmstadt and Fraunhofer IGD [10]. It contains
250 hand drawn sketches, divided into 13 classes. The query
sketches were produced by a number of students asked to draw
objects from the given categories without any further instruc
tions. The sketches represent a spectrum of different sketching
styles and qualities and are used to simulate retrieval by non
expert users. They feature sketches with few internal feature
lines. One typical example for each class is shown in Fig. 2(c).

� Standard line drawings. We also select 12 relevant sketches
from the Snograss and Vanderwart’s standard line drawings
dataset [56]. Note that just one sketch per query class is avail
able in these drawings. Note that these queries are meant as a
preliminary first step in eventually building a benchmark which
controls for sketch standardization. Owing to their professional
design quality the sketches can be considered representing
‘‘ideal’’ queries. Some examples are shown in Fig. 2(d).

In the SHREC’12 sketch track, the two subsets were needed to
be tested separately. However, users can also form a query set by
combining these two to form a query set which contains diverse
types of sketches.

3.2. Large scale benchmark: SHREC’13 Sketch Track Benchmark

3.2.1. Overview
Our large scale sketch based 3D model retrieval benchmark [2]

is built on the latest large collection of human sketches collected
by Eitz et al. [17] and the well known Princeton Shape Benchmark
(PSB) [6]. To explore how humans draw sketches and for the pur
pose of human sketch recognition using a crowdsourcing approach,
they collected 20000 human drawn sketches, categorized into 250
classes, each with 80 sketches. This sketch dataset is regarded as
exhaustive in terms of the number of object categories. Further
more, it represents a basis for a benchmark which can provide an
equal and sufficiently large number of query objects per class,
avoiding query class bias. In addition, the sketch variation within
each class is high. Thus, we believe a new sketch based 3D model
retrieval benchmark built on [17] and the PSB benchmark [6] can
foster the research of sketch based 3D object retrieval methods.
This benchmark presents a natural extension of the benchmark
proposed in [5] for very large scale 3D sketch based retrieval.

PSB is the most well known and frequently used 3D shape
benchmark and it also covers many commonly occurring objects.
It contains two datasets: ‘‘test’’ and ‘‘train’’, each has 907 models,
categorized into 92 and 90 distinct classes, respectively. Most of
the 92 and 90 classes share the same categories with each other.
However, PSB has quite different numbers of models for different
classes, which is a ‘‘target class’’ bias for retrieval performance
evaluation. For example, in the ‘‘test’’ dataset, the ‘‘fighter_jet’’
class has 50 models while the ‘‘ant’’ class only has 5 models. In
[5] the query sketch dataset and the target model dataset share
the same distribution in terms of number of models in each class.
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(a) 13 relevant 3D watertight models classes 

(b) 7 irrelevant 3D watertight models classes 

~u~ ~ ce~6d 
r; ~~~R}( 

(c) Hand-drawn sketches 

M W1 ~ ~ f3~i 
2 ~t ~ ~tf1 

(d) Standard line drawings 

Fig. 2. Typical 30 model and 20 sketch for each class or the SHREC'12 Sketch Track Benchmark. 

Considering the above fact and analysis, we build the bench 
mark (available in [2)) by finding common classes in both the 
sketch [ 17) and the 30 model (6) datasets. We search for the re te 
vant 30 models (or classes) in PSB and the acceptance criterion is 
as follows: for each class in the sketch dataset, if we can find the 
relevant models and classes in PSB, we keep both sketches and 
models, otherwise we ignore both of them. In total, 90 of 250 das 
ses, that is 7200 sketches, in the sketch dataset have 1258 relevant 
models in PSB. The benchmark is therefore composed of 7200 
sketches and 1258 models, divided into 90 classes. Fig. 3 shows 
example sketches and their relevant models of 18 classes in the 
benchmark. We randomly select 50 sketches from each class for 
training and use the remaining 30 sketches per class for testing, 
while the 1258 relevant models as a whole are remained as the 
target dataset. The SHREC'13 sketch track participants need to sub 
mit results on the training and testing datasets, respectively. To 

provide a complete reference for the future users of our bench 
mark, we evaluate the contributed algorithms on both the testing 
dataset (30 sketches per class, totally 2700 sketches) and the com 
plete benchmark (80 sketches per class, 7200 sketches). 

3.22. 2D sketch dataset 
The 20 sketch query set comprises the selected 7200 sketches 

(90 classes, each with 80 sketches), which have relevant models 
in PSB (6), from Eitz et al.'s [17) human sketch recognition dataset. 
These sketches often contain internal feature lines. One example 
indicating the variations within one class is demonstrated in Fig. 4. 

3.23. 3D model dataset 
The 30 model dataset is built on the PSB dataset (6). The target 

30 model dataset comprises 1258 selected models distributed on 
90 classes. 

(a) Example hand-drawn 2D sketches in (b) Example relevant 3D models in PSB bench-

Eitz et al. 's sketch dataset mark 

Fig. 3. Example 20 sketches and their relevant 30 models in the SHREC'13 Sketch Track Benchmark. 



3.3. Evaluation metrics

To have a comprehensive evaluation of a sketch based 3D mod
el retrieval algorithm based on the above two benchmarks, we em
ploy seven commonly adopted performance metrics in Query by
Model retrieval techniques. They are Precision Recall plot (PR),
Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E Measures
(E), Discounted Cumulated Gain (DCG) [6] and Average Precision
(AP) [64]. We also have developed the code [1,2] to compute them
for the two benchmarks. Their meaning and definitions are listed
below.

� Precision-Recall plot (PR): Precision measures the percentage
of the relevant models in the top K (16 K 6 n) retrieval list,
where n is the total number of models in the dataset. Recall cal
culates how much percentage of the relevant class in the data
base has been retrieved in the top K retrieval list.

� Nearest Neighbor (NN): NN is the precision of top 1 retrieval
list.

� First Tier (FT): Assume there are C relevant models in the data
base, FT is the recall of the top C 1 retrieval list.

� Second Tier (ST): Similarly, ST is the recall of the top 2(C 1)
retrieval list.

� E-Measure (E): E Measure is motivated by the fact that people
are more interested in the retrieval results in the first page.
Thus, it is defined [6] to measure the retrieval performance of
the top 32 models in a retrieval list,

E
2

1
P þ 1

R

: ð1Þ

� Discounted Cumulated Gain (DCG): Since relevant models
appear in the front of the retrieval list are more important than
those in the rear of the list, DCG is defined as the normalized
summed weighted value related to the positions of the relevant
models. A retrieval list R is first transformed into a list G, where
Gi 1 if Ri is a relevant model, otherwise Gi 0. DCG is then
defined as follows.

DCGi

G1 i 1
DCGi 1 þ Gi

lg2 i
otherwise

(
ð2Þ

Finally, it is normalized by the optimal DCG,

DCG
DCGn

1þPC
j 2

1
lg2j

ð3Þ

where n is the total number of models in the dataset and C is the
total number of relevant models in the class.
� Average Precision (AP): AP is to measure the overall perfor
mance and it combines precision, recall as well as ranking posi
tions. It can be computed by counting the total area under the
Precision Recall plot curve. A good AP needs both high recall
and precision.

4. Contributors

The first four authors of this paper built the above two bench
marks, and organized the SHREC’12 and SHREC’13 tracks on the to
pic of sketch based 3D retrieval and this follow up study. Totally, 4
groups successfully contributed the following 15 methods (17
runs), including 4 top algorithms in the SHREC’12 and SHREC’13
sketch tracks (performance of other participating methods can be
found in [1,4,2,7]) which are SBR 2D 3D, SBR VC, BF fDSIFT (a
modified version of DSIFT) and FDC, as well as 11 additional
state of the art methods.

� BF-fDSIFT, BF-fGALIF, BF-fGALIF + BF-fDSIFT; CDMR-BF-fDSIFT,
CDMR-BF-fGALIF, CDMR-BF-fGALIF + CDMR-BF-fDSIFT; UMR-
BF-fDSIFT, UMR-BF-fGALIF and UMR-BF-fGALIF + UMR-BF-
fDSIFT submitted by Takahiko Furuya, Takahiro Matsuda, and
Ryutarou Ohbuchi from the University of Yamanashi, Japan
(Section 5.1).

� SBR-2D-3D_NUM_100, SBR-2D-3D_NUM_50, SBR-VC_NUM_100
andSBR-VC_NUM_50 submittedbyBoLiandYijuanLu fromTexas
State University, USA; and Henry Johan from Fraunhofer
IDM@NTU, Singapore (Sections 5.2 and 5.3).

� Hierarchical Topology 3D Descriptor submitted by Pedro B.
Pascoal, Alfredo Ferreira and Manuel J. Fonseca from Instituto
Superior Técnico/ Technical University of Lisbon/ INESC ID, Por
tugal (Section 5.4).

� HELO-SIL, HOG-SIL, and FDC submitted by Jose M. Saavedra
from University of Chile, Chile and ORAND S.A., Chile and Ben
jamin Bustos from University of Chile, Chile (Section 5.5).

Fig. 4. An example of intra-class variations of hand-drawn sketches: 35 sketches of the ‘‘cell phone’’ class.
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5. Methods

5.1. Distance metric learning on Bag of Densely sampled local features
for sketch based 3D shape retrieval [65,4], by T. Furuya, T. Matsuda
and R. Ohbuchi

5.1.1. Method overview
To compare a hand drawn sketch to a 3D model, most of

existing methods compare a human drawn 2D sketch with a
set of multi view rendered images of a 3D model. However, there
is a gap between sketches and rendered images of 3D models.
As human drawn sketches contain stylistic variation, abstraction,
inaccuracy and instability, these sketches are often dissimilar to
rendered images of 3D models. The entries of their methods
employ unsupervised distance metric learning to overcome this
gap.

First approach, called Uniform Manifold Ranking, or UMR, is of
unsupervised kind. It treats a feature extracted from a sketch and
a feature (e.g., BF GALIF [5]) extracted from a view of a 3D model
on the same ground. From a set of features, which include features
of both sketches and 3D models, the UMR learns a graph structure
or a Uniform Manifold (UM) that reflects low dimensional structure
of features. (It is called ‘‘uniform’’ as same feature extraction algo
rithm is used for both sketches and rendered images of 3D models,
and these features are meshed into a single manifold graph.)
Assuming Nm 3D models rendered from Nv viewpoints, and Ns

sketches, total of Ns þ ðNm � Nv Þ features are connected to form
the UM. Then diffusion distance from the feature of the sketch
query to the features of multi view renderings of 3D models are
computed by using Manifold Ranking (MR) algorithm proposed by
Zhou et al. [66].

In the experiments, they use either the BF fGALIF, which is a
modified version of BF GALIF by Eitz et al. [5] (Fig. 5(a)), or the
BF fDSIFT, which is a regressed version of BF DSIFT [4] (Fig.5(b)),
to form the UM.

Second approach, called Cross Domain Manifold Ranking, or
CDMR, may be either unsupervised, semi supervised, or supervised
[65]. For the experiment described in this paper, they used the
CDMR in the unsupervised mode. It is called cross domain since
it tries to bridge the gap between features extracted from two het
erogeneous domains, i.e., hand drawn sketch images and multi
view rendered images of 3D models. Unlike UMR, which forms a
manifold of features by using single feature, CDMR allows for the
use of multiple measures of similarities, both feature based and
semantic label based, to form an integrated Cross Domain Manifold
(CDM) that spans heterogeneous domains (See Fig. 6). A set of
sketch images are formed into manifold of sketch images by using
a feature (e.g., BF GALIF [5]) optimal for sketch to sketch compar
ison. Another manifold that connects 3D models are formed by
using a feature (e.g., BF DSIFT [52]) that is optimal for comparison
among 3D models. These two manifolds are then cross linked by
using a feature that is adept at comparing a sketch image to a view
of 3D model, e.g., [5]. The CDM is a graph containing Ns þ Nm ver
tices. Additionally, if available, class labels may also be used for
cross linking the domains. Semantic labels help significantly if a
sketch (e.g., a stick figure human) is dissimilar to multi view ren
derings of 3D models (e.g., a realistic 3D model of human). Similar
ity from a sketch query to a 3D model is computed by using MR
[66] algorithm, as is the case with the UMR. The diffusion of rele
vance value originates from the query, and spreads via edges of
the CDM to 3D models. The diffusion occurs among 2D sketches,
from 2D sketches to 3D models across the domain, and among
3D models. Note that, if a corpus of sketches is available in the
database, the CDMR automatically performs a form of query
expansion. The relevance is first diffused from the query to its

neighboring sketches. Then, these sketches (expanded query set)
behave as multiple secondary sources of diffusion.

For CDMR, they use two different features fit for the purposes to
form subparts of the CDM. To form a manifold of 2D sketches, they
use BF fGALIF. To form a manifold of 3D models, they use BF DSIFT
[52]. To link sketches with 3D models using feature similarity, they
use either BF fGALIF or BF fDSIFT (Fig.5).

Fig. 5. Image-based feature comparison processes (applicable to fixed distance,
UMR, and CDMR).

Fig. 6. Feature comparison using Unsupervised Cross-Domain Manifold Ranking
(CDMR).
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Descriptions of the BF fGALIF and BF fDSIFT features will be
presented in the next section. For the BF DSIFT, please refer to
the original paper by Furuya et al. [52]. They then briefly describe
the UMR and the CDMR [65] algorithms.

5.1.2. Features used in the experiments
5.1.2.1. BF fGALIF. BF GALIF [5] proposed by Eitz et al. is designed
for sketch based 3D model retrieval. Their variation called
BF fGALIF (Fig.5(a)) is similar but not identical to the original.

For each 3D model, the model is rendered into Suggestive Con
tour (SC) [12] images from multiple viewpoints and a set of fGALIF
features is computed for each view. They use 42 viewpoints spaced
uniformly in solid angle and image resolution of 256 � 256 pixels.
Unlike original GALIF, their fGALIF uses black background for the
SC images (see Fig.5(a)).

Each rendered image is then normalized for rotation. To do so,
they exploit response images produced by Gabor filtering on the
rendered image. Gabor filter captures orientation of lines and
intensity gradient in the image. For each pixel in the response im
age, a response vector is calculated according to the direction of
Gabor filter and response magnitude at the pixel. The response
vectors calculated at all the pixels in the image are voted against
a histogram. The histogram comprises 18 orientation bins and vot
ing is done according to orientation and magnitude of the response
vectors. After voting, the image is rotated to the direction of the
most populated orientation bin.

After normalizing for the rotation, fGALIF features are extracted
densely at regular grid points on the image. They extract 1024 fGA
LIF features per image. Bandwidth and other parameters for the
Gabor filter are determined through preliminary experiments so
that the retrieval accuracy is the highest among the combinations
of parameters they tried.

For each sketch image, fGALIF features are computed after the
image is resized to 256 � 256 pixels. Computation of fGALIF is car
ried out in the same manner as for a sketch image and for a rota
tion normalized SC image of a 3D model.

The set of 1024 fGALIF features extracted from an image is inte
grated into a BF fGALIF feature vector per image by using a stan
dard Bag of Features (BF) approach. This integration reduces cost
of image to image matching significantly compared with directly
comparing a set of features to another set of features. They used
vocabulary size of 2500. They used k means clustering to learn
the vocabulary, and used kd tree to accelerate vector quantization
of fGALIF features into words of the vocabulary.

5.1.2.2. BF fDSIFT. Original Bag of Features Dense SIFT (BF DSIFT)
[52] computes a feature per 3D model for comparison among 3D
models. Here, they use a variant of it, called BF fDSIFT [4] (Fig.5(b))
to compare a sketch image with multiple images rendered from
multiple views of a 3D model.

The BF fDSIFT turns both sketch and 3D model into silhouette
images for comparison. To turn a line drawing sketch with possible
gaps in its circumference into a silhouette, dilation operation to
close the gaps is followed by area filling. Some of the sketches fail
to become silhouettes, but they tolerate them. To turn a 3D model
into a set of silhouette images, it is rendered from 42 viewpoints
into silhouettes of 256 � 256 pixels each.

On each silhouette image, SIFT [50] features are densely and
randomly sampled. They extract 1200 SIFT features per image.
There is no need to normalize images for rotation as SIFT is inher
ently invariant (to some extent) to rotation, translation, and scal
ing. The set of 1200 SIFT features extracted from an image is
integrated into a BF fDSIFT feature vector per image by using the
BF approach. They used vocabulary size of about 10000. They use
ERC Tree [67] algorithm to accelerate both vocabulary learning
(clustering) and vector quantization of SIFT features.

5.1.3. Ranking retrieval results
For the experiments, similarity ranking of retrieval results are

performed by using three different algorithms; fixed distance, the
UMR, and the CDMR.

5.1.3.1. Fixed distance. Symmetric versionofKullback LeiblerDiver
gence (KLD) is used as fixed distancemetric between a pair of BF fea
tures. KLD performs well when comparing a pair of probability
distributions, i.e., histograms. Distance between a sketch and a 3D
model is the minimum of the 42 distances computed from a BF fea
ture of the sketch and a set of 42 BF features of the 3D model.

5.1.3.2. Uniform Manifold Ranking (UMR). Input of the UMR is the
BF fGALIF or the BF fDSIFT features of the sketches and the ren
dered images of 3D models. A graph is represented as a sparse ma
trix W of size ðNs þ Nm NvÞ � ðNs þ Nm NvÞ where Ns and Nm are
the number of sketches and 3D models in a database respectively,
and Nv is the number of views for rendering (i.e., Nv 42). The
similarity between vertices i and j is computed by Eq. (4) where
d (xi;xj) is KLD between feature vectors xi and xj, and kNN (xi) is
a set of k nearest neighbors of xi.

Wij
exp dðxi ;xjÞ2

r

� �
if xj 2 kNNðxiÞ

0 otherwise

8<
: ð4Þ

They normalize W for S,

S D
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where D is a diagonal matrix whose diagonal element is
Dij

P
jWij. They use the following iterative form of the MR to find

relevance values in F given initial value, or ‘‘source’’ matrix Y. A
higher relevance means a smaller distance.

Ftþ1 aSFt þ ð1 aÞY ð6Þ
Y is a diagonal matrix of size ðNs þ Nm NvÞ � ðNs þ Nm NvÞ that de
fines source(s) of relevance value diffusion. If a vertex i is the source
of diffusion Yii 1 and, if not, Yii 0. In their case, the vertex cor
responding to the query sketch becomes the source of diffusion.
Fij is the relevance score of the rendered image j given the sketch
i. Hence Fij is the adaptive distance derived from the MR. Final rel
evance score between the sketch and the 3D model is the maximum
of the 42 scores computed between the sketch and a set of 42 ren
dered images of the 3D model.

They add prefix ‘‘UMR ’’ before the feature extraction method
(e.g., UMR BF fGALIF or UMR BF fDSIFT) to indicate UMR pro
cessed algorithms. Parameters for the UMR (i.e., k;r;a) are deter
mined through preliminary experiments. Table 1 shows
combination of the parameters for the UMR BF fGALIF and the
UMR BF fDSIFT.

To further improve retrieval accuracy, they experimented with
combining the BF fGALIF and BF fDSIFT features via a late fusion
approach, that is, simply adds distances due to BF fGALIF and BF
fDSIFT. Here, each distance may be treated with UMR or not. They
denote the combination of fixed distances by ‘‘BF fGALIF + BF
fDSIFT’’ and the combination of adaptive distances by ‘‘UMR BF
fGALIF + UMR BF fDSIFT’’.

5.1.3.3. Cross Domain Manifold Ranking (CDMR). The CDM graph is
represented as a matrix WCDM whose vertices are the features from
the sketch domain and the 3D model domain. WCDM is size of
ðNs þ NmÞ � ðNs þ NmÞ where Ns and Nm are the number of sketches
and 3D models in a database respectively.

WCDM
WSS WSM

WMS WMM

� �
ð7Þ
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The submatrix WSS having size Ns � Ns is the manifold of sketch
features. Similarity between a pair of sketches is computed by
using the BF fGALIF. For sketch to sketch feature comparison, they
do not normalize for image rotation as most sketches drawn by
human are already aligned to a canonical orientation. The subma
trix WMM having size NM � NM is a manifold of features of 3D
models. Similarity between a pair of 3D models is computed by
using their 3D model to 3D model comparison method BF DSIFT
[52]. The submatrixWSM of size NS � NM couples two submanifolds
WMM and WSS that lie in different domains, that are, sketch feature
domain and 3D model feature domain. Similarity between a pair of
a sketch and a 3D model is computed by using the BF fGALIF or the
BF fDSIFT described in Section 5.1.2. The submatrix WMS of size
NM � NS is a zero matrix as they assume no diffusion of similarity
occurs from 3D models to sketches.

For each submatrix, the similarity between vertices i and j is
computed by Eq. (8) where dðxi;xjÞ is KLD between feature vectors
xi and xj. The parameter r controls diffusion of relevance value
across the CDM. They use different values rSS;rMM , and rSM for
each of the submatrices WSS;WMM , and WSM .

Wij
exp dðxi ;xjÞ

r

� �
if i– j

0 otherwise

(
ð8Þ

After generating the CDM graph WCDM , the MR is applied on
WCDM to diffuse relevance value from the sketch query to the 3D
models over the CDM across the domain boundary.

They normalizeWCDM for SCDM by Eq. (5). They use the following
closed form of the MR to find relevance values in F given source
matrix Y. Fij is the relevance value of the 3D model j given the
sketch i. A higher relevance means a smaller distance.

F ðI aSCDMÞ 1Y ð9Þ
They add prefix ‘‘CDMR ’’ before the feature comparison meth

od used for computing WSM (e.g., CDMR BF fGALIF or CDMR BF
fDSIFT) to indicate CDMR processed algorithms.

Parameters for the CDMR (i.e., rSS;rMM ;rSM and a) are deter
mined through preliminary experiments. Table 2 summarizes com
bination of the parameters for the CDMR BF fGALIF and the CDMR
BF fDSIFT.

They also experimented with combining the CDMR BF fGALIF
and CDMR BF fDSIFT. They employ a simple late fusion approach
identical to the one used for the UMR. They denote the
combination of relevance values derived from the two features as
‘‘CDMR BF fGALIF + CDMR BF fDSIFT’’.

5.2. Sketch based 3D model retrieval based on 2D 3D alignment and
shape context matching (SBR 2D 3D) [19,4,7], by B. Li, Y. Lu and H.
Johan

The main idea of the sketch based retrieval algorithm proposed
in [19] is that they want to maximize the chances that they have
selected the most similar or optimal corresponding views for
computing the distances between a 2D sketch and a set of selected
sample views of a 3D model, while not adding additional online
computation and avoiding the brute force comparison between
the sketch and many sample views of the model. They imple
mented the idea by utilizing a 3D model feature named View
Context [20], which has a capability of differentiating different
sample views of a 3D model. The candidate views selection rule
is as follows: a sample view is replaced with the sketch and if its
new View Context is very similar to the original one, then it is
regarded as a candidate view. During online retrieval, for each
3D model, a set of candidate views are efficiently shortlisted in
the 2D 3D alignment according to their top View Context similar
ities as that of the sketch. Finally, a more accurate shape context
matching [21] algorithm is employed to compute the distances
between the query sketch and the candidate sample views. The
algorithm is composed of precomputation and online retrieval
stages, which are illustrated in Fig. 7. Some important details and
modifications about the algorithm are first given below.

Silhouette and outline feature views are respectively selected
for View Context feature extraction and shape context based
2D 3D matching. Two sets of examples are shown in Fig. 8. For a
query sketch, a silhouette feature view is generated based on the
following six steps: binarization, Canny edge detection, morpho
logical closing (infinite times, which means repeating until the im
age does not change), and filling holes, inversion and resizing into a
256 � 256 image. The corresponding outline feature view is very
easy to obtain based on the silhouette feature view. An integrated
image descriptor, which contains region, contour, and geometrical
information of the silhouette and outline feature views, is utilized
to compute View Context. Considering the large scale retrieval sce
nario, to reduce computational cost, they set the number of sample
points to represent a contour feature view to 50 and only keep the
top 4 candidate views during 2D 3D alignment. On the other hand,
to save the memory needed to load the shape context features dur
ing online retrieval, they use the short integers to code the loca
tions of the 5 � 12 bins and values during the loading of the
precomputed shape context features.

For clarity, the main steps of the algorithm are further described
as follows.

Table 1
Parameters for the UMR.

Benchmark Method k r a

SHREC’12 UMR-BF-fGALIF 30 0.0001 0.9
UMR-BF-fDSIFT 140 0.0050 0.9

SHREC’13 UMR-BF-fGALIF 100 0.0025 0.9
UMR-BF-fDSIFT 160 0.0050 0.9

Table 2
Parameters for the CDMR.

Benchmark Method rSS rMM rSM a

SHREC’12 CDMR-BF-fGALIF 0.010 0.025 0.040 0.9
CDMR-BF-fDSIFT 0.040 0.015 0.030 0.8

SHREC’13 CDMR-BF-fGALIF 0.006 0.010 0.025 0.9
CDMR-BF-fDSIFT 0.005 0.010 0.025 0.9
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Fig. 7. Row chart or the sketch·based 30 model retrieval algorithm based on 20-30 alignment and shape context matt:hing. 

Fig. 8. The feature views of a 30 teddy model and a 20 ant standard line drawing 
sketch. For each row, from left to right model/sketch. silhouette view: oWine view. 

52.1. Feature extraction 
Silhouette and outline feature views are generated for both 20 

sketches and 30 models to effectively and efficiently measure the 
differences among them. 

52.2. Feature distance 
A computationally efficient integrated image descriptor named 

ZFEC is adopted for View Context computation. It contains a re 
gion based Zemike moments feature Z for the silhouette view 
and a contour based Fourier descriptor feature F for the outline 
view. Additionally, eccentricity feature E and circularity feature C 
are also utilized to extract the geometric feature of the outline 
view. To more accurately measure the difference between the 
sketch and each candidate view, the relative shape context match 
ing method 121 I is adopted. 

52.3. Sketch's View Context feature extraction 
The integrated image descriptor distances between the sketch 

and aU the base views of the target model are computed and the 
resulting distance vector Dt (d 1 1 ~~ ••• 1 dm) is named sketch's 
View Context. 

52.4. 2D 3D alignment 
To align the 20 sketch and a 30 model, some candidate views 

are short listed by keeping a certain percentage (e.g. 20% or 16 
sample views for the track) of the sample views with top View 
Context similarit ies as the sketch, in terms of correlation similarity 
S;, 

S; 
o;.d' 

IID11111Dkll t 
(10) 

where o; and ot are the View Contexts of the ith sample view Vf of 
the 30 model and the 20 sketch, respectively. 

5.2.5. Sketch Model distance computation 
Comparing the sketch with every candidate outline view using 

the relative shape context matching and regarding the minimum 
relative shape context distance obtained as the sketch mode.l 
distance. 

52.6. Ranking and output 
Sorting all the sketch model distances between the sketch and 

the models in an ascending order and listing the retrieved models 
accordingly. 

The two runs, SBR 20 30_NUM_100 (for small scale bench 
mar1<, Section 6.1) and SBR VC_NUM_SO (for large scale bench 
mar1<, Section 6.2), are two variations of the original SBR 20 30 
by setting the number of sample points for the contour(s) of each 
sketch, referred to as NUM, to 100 and 50, respectively. 

5.3. Sketch based 3D model retrieval based on view clustering and 
shape context matching (SBR VC) {68,7/, by B. Li, Y. Lu and H. johan 

30 models often diffe r in their visual complexities, thus there is 
no need to sample the same number of views to represent each 
model. Mot ivated by this, a Sketch Based Retrieval algorithm 
based on adaptive View Clustering and Shape Context matching, 
named SBR VC, has been proposed. Based on the viewpoint entro 
py distribution of a set of sample views of a model, they propose a 
30 model visual complexity metric, based on which the number of 
the representative views of the 30 model is adaptively assigned 
Then, a Fuzzy C Means view clustering is performed on the sample 
views based on their viewpoint entropy values and viewpoint loca 
tions. Finally, shape context matching 1211 is utilized during online 
retrieval for the matching between a query sketch and the 
representative views for each target model. The retrieval algorithm 
comprises precomputation and online retrieval stages. An over 
view of the algorithm is shown in Fig. 9. 

The key component of the retrieval algorithm is viewpoint 
entropy based adaptive view clustering, which comprises the 
following three steps. 

5.3.1. Viewpoint entropy distribution 
For each model, they sample a set of viewpoints by setting the 

cameras on the vertices of a subdivided icosahedron Ln obtained by 
n times Loop subdivision on a regular icosahedron Lo. Viewpoint 
entropy distributions of three models utilizing L3 for view sam 
piing are demonstrated in Fig. 1 0. It can be seen that for a 30 mod 
el, the complexity of its entropy distribution pattern is highly 
related to the complexity of its geometry. For instance, the two 
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Fig. 9. An overview of the SBR-VC algorithm. The first row is for precomputalion while the second row is for retrieval stage. 

complex models, horse and Lucy, have a more complicated pattern 
than the relatively simpler model fish. 

5.3.2. Viewpoint entropy based 3D visual complexity 
The visual complexity metric is defined based on a dass level 

entropy distribution analysis on a 30 dataset Mean and standard 
deviation entropy values m and s among all the sample views of 
a 30 model are first computed, followed by an average over all 
the models for each class. 30 visual complexity C is defined as 
c vs2 + m2• where s and m are the normalized s and m by their 
respective maximums over all the classes. The metric is capable 
of reasonably reflecting the semantic distances among different 
classes of models. 

5.33. Viewpoint entropy based adaptive views clustering 
Utilizing the visual complexity value C of a model, the number 

of representative outline feature views Nc is adaptively assigned: 
Nc t N0 (for small scale benchmark, Section 6.1) or Nc t N0 

(for large scale benchmark, Section 62 ), where N0 is the total num 
ber of sample views and it is set to 81 in the algorithm. To speed up 
the retrieval process on the large scale benchmark in Section 6.2, 
they choose the parameter setting of t• compared with the selec 
tion oft in the originally proposed algorithm. Finally, a Fuzzy C 
Means view clustering is performed to obtain the representative 
views. 

(a) fish 

The two runs, SBR VC_NUM_SO and SBR VC_NUM_1 00, are two 
variations of the original SBR VC by setting the number of sample 
points for the contour(s) of each sketch, referred to as NUM, to 50 
and 1 00, respectively. 

5.4. Hierarchical Topology 3D Descriptor (HTD) for sketch based 3D 
shape retrieval /69,70}, by P.B. Pascoal A. Ferreira and MJ. Fonseca 

ln order to compare a 30 object with a 20 sketch, it is required 
to extract 20 views of the object. In the first step, the 30 object is 
rendered using the Cel shading technique so that the object is 
drawn with a black outline and interior contour lines. 

The black outline is drawn slightly larger than the object itself, 
and then using backface culling, back facing triangles are hidden 
due to rendering the object as solid filled. Afterwards, they extract 
20 views of the 30 model from different camera positions. This ap 
proach is based on the method presented by Chen et al. (71), but 
instead of using 10 silhouettes they use all the 20 positions of 
the dodecahedron to get all possible sketches. An overview of the 
Hierarchical Topology 30 Descriptor process is demonstrated in 
Fig. 11. 

For each image, they then use an algorithm proposed by Ferre 
ira et al. [69) that detects polygons defined by a set of line seg 
ments and saves them in a vector format image. The algorithm 
can be summarized in 4 major steps, as illustrated in Fig. 12. 

(b) horse (c) Lucy 

(d) fish (e) horse (f ) Lucy 

Fig. 10. Viewpoint entropy distribution examples: first row shows the models (front views}: Second row demonst rates the viewpoint entropy distribution of each model 
seen from the viewpoint with respect to its front view. Entropy values are mapped as colors on the surface of the spheres based on HSV color model and smooth shading. Red : 
smaU entropy: green: mid-size entropy: blue: large entropy. (for interpretation of the references to color in this figure legend. the reader is referred to the web version of this 
article.} 



First, it detects the line segment intersections using the Bent
ley Ottmann algorithm [72]. Then, creates a graph induced by
the drawing, where vertices represent endpoints or proper inter
section points of line segments and edges represent maximal rela
tively open subsegments that contain no vertices. The third step
finds the Minimum Cycle Basis (MCB) [73] of the graph induced
in the previous step, using the algorithm proposed by Horton
[74]. Last step constructs a set of polygons based on cycles in the
previously found MCB. This is straight forward if we transform
each cycle into a polygon, where each vertex in the cycle repre
sents a vertex in the polygon and each edge in the cycle represents
an edge in the polygon.

Finally, for classification, they used a method proposed by Sousa
and Fonseca [70] which uses a graph based technique to describe
the spatial arrangement of drawing components, combined with
geometric information.

Their process starts by applying a simplification step, to remove
small visual details while retaining dominant shapes in a drawing.
After simplification, they identify visual elements, namely poly
gons and lines, and extract geometric and topological information
from drawings.

The topology is simplified into the eight topological relation
ships defined by Egenhofer and Al Taha [75] (Disjoint, Meet, Over
lap, Contain, Inside, Cover, Covered By and Equal), starting from
their neighborhood graph for topological relationships. This graph
has a well defined structure, with a root node representing the
whole drawing and each next level of the graph describing poly
gons contained in the blocks identified before, adding more draw
ing details. Therefore, by going down in the depth of the graph, we
are ‘‘zooming in’’ in drawing details as illustrated in Fig. 13.

The resulting descriptor is a multidimensional vector, whose
size depends on graph complexity. Very complex drawings will
yield descriptors with higher dimensions, while simple drawings
will result in descriptors with lower sizes. To solve this issue, they
use the graph spectra to convert graphs into feature vectors, solv
ing the problem of isomorphism between topology graphs to the
much simpler computation of distances between descriptors. To
generate the graph spectrum, firstly it creates the adjacency matrix

of the graph; secondly calculates its eigenvalues; and finally sorts
the absolute values to obtain the topology descriptor as shown in
Fig. 14.

As for the geometric information, it uses a general shape recog
nition library called CALI [76]. By applying this method to each
geometric entity in the figure, it provides complete description of
the geometry of a drawing. The geometry and topology descriptors
thus computed are combined and used as the descriptor for the
respective image.

5.5. Sketch feature extractors based on 3D models silhouettes [7], by
J.M. Saavedra and B. Bustos Saavedra

One of the most critical problems when we face the sketch
based 3D model retrieval is trying to obtain a good sketch like rep
resentation from objects that are not sketches by themselves.
Therefore, considering the importance of a good sketch like repre
sentation from 3D models, they propose a minimal strategy based

Fig. 11. Overview of the Hierarchical Topology 3D Descriptor process.

Fig. 12. Polygon detection process [69].

Fig. 13. Drawing and topology graph.
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Fig. 14. Block diagram for topology descriptor computation. 

on computing an external contour (Silhouette) of 3D models from a 
defined number of viewpoints. After this stage, they compute a set 
oflow level features for each contour. Finally, they apply a similar 
ity search to get a ranking under an input sketch. These involved 
processes lead to a framework composed of three stages: {1) Pre 
processing, (2) Feature extraction, and (3) Similarity search. They 
describe each one of these stages as follows. 

5.5.1. Pre processing 
They divide this stage into two sub stages aiming to pre pro 

cess a 30 model and pre process an input sketch. The goal of both 
sub stages is to obtain a simple representation that allows the next 
stage to compute a low level feature in an easier way. 

5.5.1.1. 3D model pre processing. They compute 20 projections 
from each 30 model using six defined viewpoints (top, bottom, 
right, left, back, front). The external contour of each projection is 
then extracted discarding internal holes in the underlying image. 
An example of this representation is shown in Fig. 15. 

5.5. 12. Sketch pre processing. Considering that a sketch is com 
monly drawn roughly, which produces disconnected strokes, their 
first stage is to connect all the strokes using a sequence of morpho 
logical dilation operations. After that, they extract the external 
contour of each sketch. Similar to the 30 model pre processing, 
internal holes of sketches will be discarded. An example oftheirre 
suits in this stage is presented in Fig. 16. 

5.5.2. Feature extraction 
They take the result produced by the previous stage to compute 

low level features. In this stage, they propose to use three feature 
extraction methods: Histogram of Edge Local Orientations (HELO) 
proposed by Saavedra et al. (62), Histogram of Oriented Gradients 
(HOG) proposed by Dalal et al [54), and a Fourier descriptor using 
the approach presented by Zhang et al. [77). 

5.5.2.1. Histogram of Edge Local Orientations based on Silhouettes 
(HELD SIL). HELO, proposed by Saavedra et al. [62), is a method for 
computing a histogram of edge orientations in the context of 
sketch based image retrieval. HELO computes a K bin histogram 
based on local edge orientations. To get the HELD feature vector, 
the sketch is divided into a W x W grid. Then, an edge orientation 
is estimated for each cell in the grid. Compared with other orienta 
tion based approaches, the main difference is that HELO estimates 

Fig. 15. A 30 model and three silhouettes taken from top, front and left viewpoints 
respectively. 

Fig. 16. A sketch and its silhouette representation. 

a representative orientation by computing squared gradients in 
side a cell. 

Let [Gx,Gyr be the corresponding gradient vector for a pixel 
(x,y) in a sketch image. The squared gradient is computed for each 
pixel doubling its gradient angle and squaring its gradient length. 
To this end, the gradient vector is represented in its corresponding 
polar coordinates. The squared gradient [Gsx. GSYt corresponding to 
the gradient [G,,G1f is computed as follows, 

[ ~'"SY] [G
2 

G
2

] 2~ •. ~ . 
(11) 

The estimated orientation for a cell is the orientation of the average 
squared gradient [Gsx, GSY) computed for the cell Finally, a K bin his 
togram is computed using the angles of all average squared gradi 
ents for each cell. 

In order to exploit local information of sketches, they divide the 
sketch image into 6 x 6 blocks, and compute a 36 bin HELD 
descriptor for each block. Then, they concatenate all the local HELD 
descriptors to get the final feature vector. In addition, they set 
w 25. 

5.52.2. Histogram of Oriented Gradients based on Silhouettes (HOG 
SIL). The HOG [54) approach allows us to compute a histogram of 
gradient orientations by concatenating local orientation histo 
grams computed in small regions. This approach divides the sketch 
image into C x C size cells. For each cell a K bin histogram of ori 
entation is computed. In order to increase the robustness of the 
descriptor, each local histogram is then normalized using informa 
tion of neighbor histograms. To this end, blocks of B x B cells are 
formed In this point, it is possible to form blocks with or without 
overlapping. 

In their experimental evaluation, they set C 16, B 3, K 9, 
and they use the non overlapping block approach. In addition, 
since the size of the descriptor depends on the size of the input im 
age, they resize all the silhouette images, obtained from the 20 
projections as well as from input sketches, to 100 x 100 pixels. 

5.52.3. Fourier Descriptors on 3D models Silhouettes (FDC). Let X be 
the set of x coordinates and Y be the set of y coordinates of a 
boundary. The Fourier descriptor is computed over the centroid 
distance C which is obtained as follows, 

C distE(X Xc , Y Yc) , (12) 

where (xc.Yc) is the centroid of the shape and distE is the Euclidean 
distance. To deal with different boundary sizes, they sample 128 



points using the equal arc length sampling as suggested by Zhang
et al. [42].

Next, they apply a Fourier Transform on the sample set. Let F be
the computed Fourier descriptor with 256 entries. To deal with the
rotation invariance issue, they use the magnitude of the Fourier
descriptor. In addition, considering that the sample set is com
posed of real values, they take only half of the Fourier entries. Fi
nally, to deal with different scales, the descriptor is normalized
with respect to F0, so the final descriptor is given by,

FD
jF1j
jF0j ;

jF2j
jF0j ; . . . ;

jF128j
jF0j

� �
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5.5.3. Similarity search
To improve the efficiency of the searching, they use a KD Tree

index together with the Manhattan distance to search all the data
base of 3D models. For indexing and retrieving, they use the FLANN
(Fast Library for Approximate Nearest Neighbors) implementation
provided by Muja et al. [78].

6. Results

6.1. Small scale benchmark: SHREC’12 Sketch Track Benchmark

In this section, we perform a comparative evaluation of the re
sults of the 14 runs submitted by 3 of the 4 groups on SHREC’12
Sketch Track Benchmark (Pascoal’s results are not available on this
benchmark; Li’s SBR VC and SBR 2D 3D select NUM = 100 only).
We measure retrieval performance based on the 7 metrics men
tioned in Section 3.3: PR;NN; FT; ST; E;DCG and AP. In addition,
we also compare their scalability and efficiency.

As described in Section 3.1, there are two versions of target
dataset (Basic and Extended) as well as two types of sketch data
sets (hand drawn sketches and standard line drawings). This re
sults in four combinations: (1) Hand drawn sketch queries and
Basic version of target dataset; (2) Standard line drawing queries
and Basic version of target dataset; (3) Hand drawn sketch queries
and Extended version of target dataset; and (4) Standard line draw
ing queries and Extended version of target dataset. Comparisons of
the 14 contributed methods for the above four cases are shown in
Fig. 17 and Tables 3 6.

First, we start with the overall performance evaluation. As
shown in the aforementioned figures and tables, Furuya’s CDMR
BF fGALIF + CDMR BF fDSIFT performs best, closely followed by
CDMR BF fGALIF. Then, CDMR BF fDSIFT, UMR BF fGALIF + UMR
BF fDSIFT, UMR BF fGALIF, SBR VC_NUM_100 and SBR 2D
3D_NUM_100 succeed. Performance of the remaining three meth
ods is comparable and the disparity among them is relatively
small. In a word, these runs can be ranked in several groups
according to the overall performance and we also provide this
ranking information (‘‘R’’) in the following Tables 3 12. If we con
sider non machine learning approaches, Li’s SBR VC and SBR 2D
3D perform best and they outperform either the GALIF or the DSIFT
feature based methods and we can expect better performance if
we apply ‘‘CDMR’’ on them.

Second, we look into different types of queries. Compared with
hand drawn sketch queries, standard line drawing queries usually
achieve superior performance. One possible explanation for this is
that this dataset only contains a single line drawing per class,
which has been carefully created to convey shape as well as salient
features of that class.

Third, we asked contributors to also provide timing informa
tion, together with their hardware and software configurations,
to compare runtime requirements of their methods, based on the
second case (hand drawn sketch queries and extended target

dataset). Table 8 lists the timing information in seconds and com
parison results. In this distributed evaluation, it was not possible to
control for the hardware platform (roughly comparable for all
groups, though) or implementation efficiency of the setups. How
ever, we believe that the timing information is useful for an
approximate comparison of the runtime requirements of the
algorithms.

Last but not least, we evaluate the scalability of the different
methods to irrelevant models (Section 3.1.1) in the dataset. Table 7
lists the percentage of performance decreases when using the ex
tended target dataset instead of the basic one (using hand drawn
sketch queries). Similarly, we also list the ranking information in
terms of scalability. Furuya’s CDMR BF fGALIF has best scalability,
closely followed by CDMR BF fGALIF + CDMR BF fDSIFT. In the
Rank 2, UMR BF fGALIF, SBR 2D 3D_NUM_100, UMR BF fGA
LIF + UMR BF fDSIFT and SBR VC_NUM_100 share similar scalabil
ity. Compared with the above six approaches, the other three
methods exhibit a stronger decrease in retrieval performance
when adding 140 irrelevant models to the target dataset. Please
also note that compared with fGALIF, fDSIFT often has more de
creases in retrieval performance.

6.2. Large scale benchmark: SHREC’13 Sketch Track Benchmark

Similarly, a comparative evaluation of 16 runs (Li’s SBR 2D 3D
selects NUM = 50 only) of all the 15 contributed methods has been
performed on the latest large scale benchmark of SHREC’13 Sketch
Track Benchmark. As described in Section 3.2, the complete query
sketch dataset is divided into ‘‘Training’’ and ‘‘Testing’’ datasets,
which is to accustom to machine learning based retrieval algo
rithms. To provide complete reference performance data for both
non learning based and learning based approaches, such as the
contributed ‘‘CDMR ’’ and ‘‘UMR ’’ methods, we evaluate the sub
mitted results on both ‘‘Training’’ and ‘‘Testing’’ datasets, as well
as the complete sketch dataset. Fig. 18 and Tables 9 11 compare
the contributed methods in terms of the 7 performance metrics
on the above three datasets, respectively.

Similar as the results on the small scale SHREC’12 Sketch Track
Benchmark, the aforementioned figure and table show that Fur
uya’s CDMR BF fGALIF + CDMR BF fDSIFT performs best, closely
followed by their CDMR BF fGALIF and CDMR BF fDSIFT. Then,
UMR BF fGALIF + UMR BF fDSIFT, BF fGALIF + BF fDSIFT, UMR
BF fDSIFT and UMR BF fGALIF succeed, followed by the four meth
ods of BF fDSIFT, BF fGALIF, SBR VC and SBR 2D 3D. HOG SIL,
HELO SIL and FDC have comparatively inferior performance, but
they outperform HTD. We also can find that ‘‘CDMR ’’ based ap
proaches often consistently (either in small scale or large scale re
trieval scenarios) achieve better performance than their ‘‘UMR ’’
based counterparts. Similarly, if we only compare non machine
learning approaches, Li’s SBR VC_NUM_100 is comparable to BF
fGALIF and BF fDSIFT, which are outperformed by their combina
tional one. SBR 2D 3D_NUM_50 is also comparable to SBR
VC_NUM_50.

However, when compared with the performance obtained on
the SHREC’12 Sketch Track Benchmark which employed a much
smaller benchmark, the performance of all the methods is much
less successful. For example, even for the best performing ap
proach of CDMR BF fGALIF + CDMR BF fDSIFT, the decreases
(comparing the performance on the ‘‘Complete’’ benchmark of
SHREC’13 Sketch Track Benchmark and the ‘‘Hand drawn and Ba
sic’’ benchmark of SHREC’12 Sketch Track Benchmark) are 61.2%,
68.2%, 62.9%, 71.3%, 44.9% and 63.7% in NN, FT, ST, E, DCG and
AP, respectively. This finding is worth noting because it evidently
raises the issue of the scalability in the case of large scale
sketch based model retrieval.
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Fig. 17. Predsion-Recall plot per-formance comparisons of the four cases of SHREC12 Sketch Track Benchmark: (a} Hand-drawn sketch queries and Basic version of target 
dataset. (b) Hand-drawn sketch queries and Extended version of target dataset. (c) Standard line drawing queries and Basic version of target dataset. (d) Standard line 
drawings queries and Extended version of target dataset 

We noticed that all the retrieval performance metrics values are 
not high, which is mainly due to the challenges of the benchmark. 
Firstly, the 80 sketches in a quefY class represent many variations 
of an object, which adds the difficulty for accurate retrieval and de 
serves a higher standard on the scalability of retrieval algorithms. 
Secondly, as mentioned in Section 3.2.1, the quefY class bias has al 
ready been solved by making each quefY class contain the same 
number of sketches, while the bias in the target class still exists. 
There is a large variation in the number of models in different 

classes. For example, the "airplane" class contains 184 target mod 
els while the "ant" class only has 5 models. Thus, to accurately re 
trieve these classes of models in the First Tier and Second Tier is 
difficult. Therefore, their perfonnance metrics values, especially 
on NN, FT and ST, are relatively much lower and this happens to 
all the 15 running methods. One demonstrating example is shown 
in Fig. 19. More details about the variations in the performance 
with respect to different classes for each contributed method can 
be found in the SHREC'13 sketch track homepage [2). The 



remaining bias deserves our further improvement, such as making
each class contain the same number of 3D models by adding more
models from other 3D model benchmarks.

Finally, we have a similar approximate efficiency performance
comparison on this benchmark, as shown in Table 12. Obviously,
Saavedra’s three methods are still the most efficient, followed by
Furuya’s BF fGALIF and BF fDSIFT. Li’s two methods still have the
same ranks. However, Furuya’s two ‘‘CDMR ’’ approaches drop
from rank 2 to rank 4 while their two ‘‘UMR ’’ methods also drop
1 or 2 places. We compare the changes in timing information be
tween the large scale SHREC’13 Sketch Track Benchmark (1258
models) and the small scale SHREC’12 Sketch Track Benchmark
(400 models) in Fig. 20. From the numbers, we also can find that

the response time of ‘‘CDMR ’’ and ‘‘UMR ’’ approaches increase a
lot with the increase of number of target 3D models. With the scale
of the target database is increased by 3.2 times from 400 to 1258
models, the response time of CDMR BF fDSIFT, CDMR BF fGALIF,
UMR BF fDSIFT and UMR BF fGALIF is correspondingly increased
by about 730.3, 1230.9, 173.2, and 247.0 times; while it is 1.0
and 0.8 for BF fDSIFT, BF fGALIF, and 3.5 times for HOG SIL,
HELO SIL and FDC, respectively. While, for SBR VC and SBR 2D
3D, the response time has been reduced 10.7% and 75.4% respec
tively by selecting fewer representative views or sample points.
In a word, the above best performing approaches CDMR BF fGALIF
and CDMR BF fDSIFT have inferior performance on efficiency, thus
have much room for further improvement in this regard.

Table 3
Other Performance metrics for the performance comparison on the Hand-drawn sketch queries and Basic version of target dataset. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.364 0.295 0.454 0.312 0.610 0.321 3
BF-fGALIF 0.600 0.367 0.513 0.357 0.689 0.393 3
BF-fGALIF + BF-fDSIFT 0.596 0.369 0.529 0.365 0.689 0.399 3
CDMR-BF-fDSIFT 0.504 0.428 0.604 0.418 0.701 0.491 2
CDMR-BF-fGALIF 0.688 0.617 0.767 0.556 0.813 0.661 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.708 0.641 0.806 0.582 0.833 0.681 1
UMR-BF-fDSIFT 0.396 0.303 0.493 0.333 0.617 0.345 3
UMR-BF-fGALIF 0.612 0.443 0.576 0.411 0.718 0.478 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.572 0.458 0.619 0.434 0.728 0.486 2

Li SBR-VC_NUM_100 0.664 0.427 0.587 0.413 0.730 0.461 2
SBR-2D-3D_NUM_100 0.688 0.415 0.581 0.411 0.731 0.459 2

Saavedra HELO-SIL 0.228 0.168 0.307 0.196 0.522 0.201 4
HOG-SIL 0.256 0.183 0.312 0.203 0.529 0.210 4
FDC 0.164 0.147 0.250 0.164 0.490 0.168 4

Table 4
Other performance metrics for the performance comparison on the Hand-drawn sketch queries and Extended version of target dataset. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.280 0.225 0.370 0.244 0.552 0.246 3
BF-fGALIF 0.516 0.317 0.446 0.307 0.646 0.332 3
BF-fGALIF + BF-fDSIFT 0.508 0.317 0.461 0.316 0.648 0.338 3
CDMR-BF-fDSIFT 0.340 0.349 0.531 0.362 0.631 0.399 2
CDMR-BF-fGALIF 0.648 0.566 0.741 0.535 0.787 0.616 1
CDMR-BF-fGALIF + DMR-BF-fDSIFT 0.668 0.585 0.770 0.554 0.801 0.625 1
UMR-BF-fDSIFT 0.296 0.235 0.406 0.269 0.560 0.274 3
UMR-BF-fGALIF 0.572 0.387 0.530 0.375 0.684 0.426 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.492 0.392 0.554 0.387 0.684 0.418 2

Li SBR-VC_NUM_100 0.576 0.372 0.519 0.360 0.682 0.392 2
SBR-2D-3D_NUM_100 0.628 0.371 0.520 0.364 0.692 0.400 2

Saavedra HELO-SIL 0.116 0.097 0.183 0.115 0.443 0.122 4
HOG-SIL 0.188 0.123 0.223 0.139 0.466 0.143 4
FDC 0.108 0.087 0.170 0.108 0.426 0.104 4

Table 5
Other performance metrics for the performance comparison on the Standard line drawing queries and Basic version of target dataset. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.667 0.442 0.658 0.436 0.747 0.477 3
BF-fGALIF 0.500 0.421 0.612 0.410 0.722 0.443 3
BF-fGALIF + BF-fDSIFT 0.667 0.471 0.717 0.510 0.765 0.498 3
CDMR-BF-fDSIFT 0.667 0.583 0.833 0.580 0.800 0.633 1
CDMR-BF-fGALIF 0.750 0.629 0.792 0.567 0.842 0.694 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.750 0.679 0.871 0.619 0.866 0.727 1
UMR-BF-fDSIFT 0.750 0.525 0.733 0.529 0.779 0.563 2
UMR-BF-fGALIF 0.500 0.487 0.617 0.442 0.752 0.517 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.750 0.546 0.692 0.494 0.796 0.568 2

Li SBR-VC_NUM_100 0.667 0.521 0.713 0.503 0.799 0.570 2
SBR-2D-3D_NUM_100 0.750 0.542 0.700 0.516 0.807 0.580 2

Saavedra HELO-SIL 0.167 0.221 0.379 0.256 0.550 0.254 4
HOG-SIL 0.583 0.233 0.413 0.263 0.606 0.289 4
FDC 0.250 0.208 0.329 0.237 0.549 0.226 4
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A brief analysis on the computational efficiency of the ‘‘CDMR ’’
and ‘‘UMR ’’ approaches is as follows. Both approaches are used to
improve accuracy of inter feature distance and employ so called
‘‘manifold ranking’’ [66] as its inter feature distancemetric learning.
Manifold ranking comprises two steps: manifold graph formation
and diffusion, which respectively have a upper bound of computa
tional complexity of O (N2) and O (N3), where N is the total number
of feature vectors. For the UMR, the matrix representing the mani
fold graph is sparse, thus its actual cost is much less than O (N3),
but still much more than O (N). The UMR forms a graph connecting
all the features from all the views (42 views per 3D model) of all

the 3D models. Therefore, if there are 1000 models in a database,
N = 42 � 1000 = 42000. It is true that this big size, e.g. N = 42000,
pushes the limit of computational cost, both in terms of space and
time. For the CDMR, the matrix representing the manifold graph is
not sparse, but amuch smallernumberof feature vectors (thus smal
ler graph) leads to less computational cost than the UMR. A CDMR
graph is smaller because it uses only one feature vector for each
3Dmodel. BothUMRandCDMRproducebetter accuracy thansimple
distance computation among a pair of features. However, they are
computationally expensive, and thus are not scalable for large
benchmarks and deserve further study.

Table 6
Other performance metrics for the performance comparison on the Standard line drawing queries and Extended version of target dataset. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.583 0.337 0.512 0.356 0.684 0.376 3
BF-fGALIF 0.417 0.337 0.496 0.346 0.656 0.336 3
BF-fGALIF + BF-fDSIFT 0.417 0.388 0.613 0.394 0.697 0.394 3
CDMR-BF-fDSIFT 0.500 0.467 0.717 0.494 0.724 0.523 1
CDMR-BF-fGALIF 0.583 0.542 0.717 0.519 0.781 0.590 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.500 0.533 0.783 0.551 0.778 0.589 1
UMR-BF-fDSIFT 0.667 0.442 0.671 0.455 0.733 0.490 2
UMR-BF-fGALIF 0.500 0.371 0.550 0.388 0.701 0.427 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.667 0.433 0.642 0.455 0.739 0.479 2

Li SBR-VC_NUM_100 0.750 0.442 0.629 0.439 0.747 0.477 2
SBR-2D-3D_NUM_100 0.750 0.454 0.625 0.442 0.750 0.476 2

Saavedra HELO-SIL 0.083 0.121 0.246 0.151 0.454 0.157 4
HOG-SIL 0.417 0.163 0.271 0.167 0.541 0.214 4
FDC 0.167 0.100 0.221 0.138 0.455 0.127 4

Table 7
Scalability comparison in terms of performance decrease (%, in terms of percentage of the performance results on the Basic version of target dataset) on the Hand-drawn sketch
queries. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT �23.1 �23.7 �18.5 �21.8 �9.5 �23.4 4
BF-fGALIF �14.0 �13.6 �13.1 �14.0 �6.2 �15.5 3
BF-fGALIF + BF-fDSIFT �14.8 �14.1 �12.9 �13.4 �6.0 �15.3 3
CDMR-BF-fDSIFT �32.5 �18.5 �12.1 �13.4 �10.0 �18.7 3
CDMR-BF-fGALIF �5.8 �8.3 �3.4 �3.8 �3.2 �6.8 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT �5.6 �8.7 �4.5 �4.8 �3.8 �8.2 1
UMR-BF-fDSIFT �25.3 �22.4 �17.6 �19.2 �9.2 �20.6 4
UMR-BF-fGALIF �6.5 �12.6 �8.0 �8.8 �4.7 �10.9 2
UMR-BF-fGALIF + UMR-BF-fDSIFT �14.0 �14.4 �10.5 �10.8 �6.0 �14.0 2

Li SBR-VC_NUM_100 �13.3 �12.9 �11.6 �12.8 �6.6 �15.0 2
SBR-2D-3D_NUM_100 �8.7 �10.6 �10.5 �11.4 �5.3 �12.9 2

Saavedra HELO-SIL �49.1 �42.3 �40.4 �41.3 �15.1 �39.3 5
HOG-SIL �26.6 �32.8 �28.5 �31.5 �11.9 �31.9 5
FDC �34.2 �40.8 �32.0 �34.2 �13.1 �38.1 5

Table 8
Timing information comparison on the ‘‘hand-drawn and extended’’ dataset of SHREC’12 Sketch Track Benchmark: t is the average response time (in seconds) per query. ‘‘R’’
denotes the ranking group number.

Contributor (with computer configuration) Method Language t R

Furuya (CPU: Intel Core i7 3930 K @ 3.20 Hz; GPU: NVIDIA GeForce GTX 670; Memory: 64 GB; OS: Ubuntu 12.04) BF-fDSIFT C++, CUDA 0.62 2
BF-fGALIF C++ 0.27 2
CDMR-BF-fDSIFT C++ 0.83 2
CDMR-BF-fGALIF C++ 0.50 2
UMR-BF-fDSIFT Matlab 314.82 4
UMR-BF-fGALIF Matlab 109.77 3

Li (CPU: Intel Core 2 Duo E7500 @ 2.93 GHz; Memory: 16 GB; OS: Windows 7 64-bit) SBR-VC_NUM_100 C/C++ 233.77 4
SBR-2D-
3D_NUM_100

C/C++ 178.56 3

Saavedra (CPU: Intel Core i7-3770 CPU @ 3.40 GHz; Memory: 8 GB; OS: Ubuntu 11.10) HOG-SIL C++ 0.02 1
HELO-SIL C++ 0.02 1
FDC C++ 0.02 1
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7. Discussions

7.1. Methods

We classify all contributed 15 methods with respect to the dif
ferent classification methods mentioned in the first paragraph of

Section 2.1. Most methods employ local features, except that
SBR VC, SBR 2D 3D, FDC and HTD perform global feature match
ing. Only SBR VC and SBR 2D 3D perform view selection while
all the other methods adopt the approach of fixed view sampling.
All the 9 methods of the Furuya’s group adopt a Bag of Words
framework and among them 6 ‘‘CDMR ’’ and ‘‘UMR ’’ based

Table 9
Performance metrics for the performance comparison on the training dataset of the SHREC’13 Sketch Track Benchmark. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.153 0.099 0.158 0.095 0.354 0.119 3
BF-fGALIF 0.183 0.101 0.154 0.089 0.355 0.118 3
BF-fGALIF + BF-fDSIFT 0.210 0.123 0.185 0.106 0.381 0.142 2
CDMR-BF-fDSIFT 0.217 0.158 0.231 0.136 0.413 0.196 1
CDMR-BF-fGALIF 0.238 0.175 0.267 0.149 0.428 0.215 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.273 0.205 0.301 0.167 0.459 0.247 1
UMR-BF-fDSIFT 0.160 0.115 0.182 0.107 0.369 0.136 2
UMR-BF-fGALIF 0.170 0.120 0.185 0.104 0.371 0.135 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.208 0.131 0.201 0.115 0.387 0.152 2

Li SBR-VC_NUM_100 0.160 0.097 0.149 0.085 0.349 0.113 3
SBR-VC_NUM_50 0.131 0.082 0.130 0.076 0.333 0.098 3
SBR-2D-3D_NUM_50 0.133 0.080 0.126 0.075 0.330 0.097 3

Pascoal HTD 0.019 0.017 0.033 0.018 0.241 0.025 5

Saavedra HOG-SIL 0.104 0.066 0.104 0.059 0.304 0.082 4
HELO-SIL 0.104 0.061 0.092 0.052 0.300 0.076 4
FDC 0.062 0.049 0.085 0.051 0.295 0.062 4

Table 10
Performance metrics for the performance comparison on the testing dataset of the SHREC’13 Sketch Track Benchmark. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.145 0.099 0.154 0.093 0.351 0.115 3
BF-fGALIF 0.176 0.101 0.156 0.091 0.354 0.119 3
BF-fGALIF + BF-fDSIFT 0.213 0.123 0.186 0.107 0.379 0.143 2
CDMR-BF-fDSIFT 0.217 0.156 0.231 0.135 0.411 0.193 1
CDMR-BF-fGALIF 0.242 0.174 0.263 0.146 0.427 0.215 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.279 0.203 0.296 0.166 0.458 0.246 1
UMR-BF-fDSIFT 0.154 0.113 0.178 0.104 0.366 0.133 2
UMR-BF-fGALIF 0.159 0.119 0.179 0.102 0.367 0.131 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.209 0.131 0.195 0.113 0.386 0.152 2

Li SBR-VC_NUM_100 0.164 0.097 0.149 0.085 0.348 0.114 3
SBR-VC_NUM_50 0.132 0.082 0.131 0.075 0.331 0.098 3
SBR-2D-3D_NUM_50 0.132 0.077 0.124 0.074 0.327 0.095 3

Pascoal HTD 0.017 0.016 0.031 0.018 0.240 0.024 5

Saavedra HOG-SIL 0.110 0.069 0.107 0.061 0.307 0.084 4
HELO-SIL 0.110 0.064 0.096 0.054 0.302 0.079 4
FDC 0.069 0.048 0.085 0.051 0.296 0.051 4

Table 11
Performance metrics for the performance comparison on the complete SHREC’13 Sketch Track Benchmark. ‘‘R’’ denotes the ranking group number.

Contributor Method NN FT ST E DCG AP R

Furuya BF-fDSIFT 0.150 0.099 0.157 0.094 0.353 0.118 3
BF-fGALIF 0.180 0.101 0.154 0.090 0.354 0.119 3
BF-fGALIF + BF-fDSIFT 0.211 0.123 0.186 0.106 0.380 0.142 2
CDMR-BF-fDSIFT 0.217 0.157 0.231 0.135 0.412 0.195 1
CDMR-BF-fGALIF 0.239 0.175 0.265 0.148 0.428 0.215 1
CDMR-BF-fGALIF + CDMR-BF-fDSIFT 0.275 0.204 0.299 0.167 0.459 0.247 1
UMR-BF-fDSIFT 0.158 0.114 0.180 0.106 0.368 0.135 2
UMR-BF-fGALIF 0.166 0.119 0.182 0.103 0.370 0.134 2
UMR-BF-fGALIF + UMR-BF-fDSIFT 0.209 0.131 0.199 0.114 0.387 0.152 2

Li SBR-VC_NUM_100 0.161 0.097 0.149 0.085 0.349 0.113 3
SBR-VC_NUM_50 0.131 0.082 0.130 0.076 0.332 0.098 3
SBR-2D-3D_NUM_50 0.133 0.079 0.125 0.074 0.329 0.096 3

Pascoal HTD 0.018 0.017 0.032 0.018 0.241 0.024 5

Saavedra HOG-SIL 0.106 0.067 0.105 0.060 0.305 0.083 4
HELO-SIL 0.106 0.062 0.094 0.053 0.301 0.077 4
FDC 0.065 0.048 0.085 0.051 0.296 0.062 4
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methods utilize a distance metric learning approach [66] (one type
of machine learning techniques) to significantly improve the per
formance of their methods; while the remaining 6 methods con
tributed by the other 3 groups directly compare global features
and do not adopt any machine learning approach.

Based on the fact that all the top algorithms on the two bench
marks are machine learning technique based ones and it contrib
utes much to the best performance obtained, we regard it as a
promising approach to advance the performance of existing
retrieval algorithms. This can be also found in our performance
evaluation results: though SBR VC and SBR 2D 3D are at least
comparable to BF fGALIF and BF fDSIFT, CDMR BF fGALIF
evidently outperforms either of them after employing the
‘‘CDMR ’’ distance learning approach. However, though utilizing a
machine learning approach can obviously improve the retrieval
performance of a sketch based retrieval algorithm, it may also
significantly increase its retrieval time. Therefore, more research
and improvements are deserved to solve this contradictory issue
in order to apply machine learning techniques into sketch based
3D model retrieval in a scalable manner.

In terms of 2D shape descriptors, shape context, GALIF, DSIFT and
HOG (refer to [4,14 16,5,17]) features are relativelymore promising
in achieving top performance if compared with Fourier descriptors,
and structure or topology based ones.We also have found that com
pared with global shape descriptors based on direct feature match
ing, it is much easier for local shape descriptors to achieve real
time efficiency while combined with a Bag of Words framework.

7.2. Benchmarks

The SHREC’12 Sketch Track Benchmark could be extended by
sketch data as currently being compiled by other researchers,making
it more representative. Also, controlling the level of standardization
with respect to sketch parameters such as sketching quality, style,
and level of detail is deemed interesting. The standard query sketches
[56] included in this benchmark are a starting point to this direction.
While, the SHREC’13 Sketch Track Benchmark could be extended by
addingmoremodels to the target3Dmodeldataset tomakeeachclass
contain thesamenumberofmodels,whichwill removethe remaining
bias andmake the benchmarkmore representative.

8. Conclusions and future work

8.1. Overall performance evaluation

(1) On the small scale benchmark, we performed a comprehen
sively comparative evaluation of 14 state of the art sketch based

retrieval methods in terms of accuracy, scalability and efficiency.
Overall, Furuya’s CDMR BF fGALIF + CDMR BF fDSIFT and CDMR
BF fGALIF methods perform best, followed by the five comparable
methods of Furuya’s CDMR BF fDSIFT, UMR BF fGALIF + UMR BF
fDSIFT and UMR BF fGALIF, as well as Li’s SBR VC_NUM_100 and
SBR 2D 3D_NUM_100; (2) On the large scale benchmark, we can
draw a similar conclusion: Furuya’s three CDMR based algorithms
(CDMR BF fGALIF + CDMR BF fDSIFT, CDMR BF fGALIF and CDMR
BF fGALIF) have the best performance, followed by their three
UMR based algorithms (UMR BF fGALIF + UMR BF fDSIFT, UMR
BF fDSIFT and UMR BF fGALIF) and their hybrid approach BF fGA
LIF + BF fDSIFT. Furuya’s BF fDSIFT, BF fGALIF and Li’s SBR VC and
SBR 2D 3D succeed them and they outperform Saavedra’s three
approaches (HOG SIL, HELO SIL and FDC) which are again better
than HTD. However, compared with the case of small scale bench
mark, all the performance drops drastically, which indicates both
the challenge of the large scale benchmark and the new issues of
scalability of existing sketch based retrieval algorithms. This will
also be helpful to guide our research on developing new sketch
based 3D retrieval algorithms or extending current methods to
accustom to the large scale retrieval scenarios.

8.2. Efficiency comparison

(1) On the small scale benchmark, in terms of retrieval speed,
we observe large differences between all methods: from 0.02 s
(Saavedra’s three methods) to 314.82 s (Furuya’s UMR BF fDSIFT).
In this case, the best performing ‘‘CDMR ’’ based methods, to
gether with BF fDSIFT and BF fGALIF are interactive, while other
remaining approaches need improvement in this regard. (2) On
the large scale benchmark, the difference in the retrieval speed is
even larger: from 0.09 s (Saavedra’s three methods) to 54853.77 s
(Furuya’s UMR BF fDSIFT). What is more, we observe that the
speed of the top ‘‘CDMR ’’ based methods drops drastically
(730�1230 times slower) when scaled to a less than 2.5 times big
ger benchmark, thus they can be further improved in this aspect.
Saavedra’s three methods are still the fastest, followed by Pascoal’s
HTD; while Li’s SBR VC and SBR 2D 3D methods extend their re
trieval time proportionally according to the scale of the
benchmark.

8.3. Concluding remark

In conclusion, the small scale sketch based retrieval track is the
first attempt to include this topic in SHREC in order to foster this
challenging and interesting research direction. Even though it is
the first time, we already have 5 groups who have successfully

Table 12
Timing information comparison on the ‘‘Testing’’ dataset of SHREC’13 Sketch Track Benchmark: t is the average response time (in seconds) per query. ‘‘R’’ denotes the ranking
group number. Note that for SBR-VC, the number of representative views Nc

C
6 � N0.

Contributor (with computer configuration) Method Language t R

Furuya (CPU: Intel Core i7 3930 K @ 3.20 Hz; GPU: NVIDIA GeForce GTX 670; Memory: 64 GB; OS: Ubuntu 12.04) BF-fDSIFT C++, CUDA 1.26 2
BF-fGALIF C++ 0.49 2
CDMR-BF-fDSIFT C++ 606.96 4
CDMR-BF-fGALIF C++ 615.95 4
UMR-BF-fDSIFT Matlab 54853.77 5
UMR-BF-fGALIF Matlab 27219.49 5

Li (CPU: Intel Core 2 Duo E7500 @ 2.93 GHz; Memory: 16 GB; OS: Windows 7 64-bit) SBR-VC_NUM_100 C/C++ 208.85 4
SBR-VC_NUM_50 C/C++ 68.92 3
SBR-2D-
3D_NUM_50

C/C++ 43.93 3

Pascoal (CPU: Intel Core i7-2760QM CPU @ 2.40 GHz (8CPU); Memory: 16 GB; OS: Windows 8) HTD Java 0.32 2

Saavedra (CPU: Intel Core i7-3770 CPU @ 3.40 GHz; Memory: 8 GB; OS: Ubuntu 11.10) HOG-SIL C++ 0.09 1
HELO-SIL C++ 0.09 1
FDC C++ 0.09 1
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Fig. 18. Precision-Recall diolgfam performance comparisons on different datasets of the SHREC13 Sketch Track Benchmark for the 16 runs of the 15 contributed methods. 

participated On the other hand, the large scale sketch based re 
trieval track is an attempt to further foster this challenging and 
interesting research direction encouraged by the success of 
SHREC'12 Sketch based 30 shape retrieval track. Though the 
benchmark is very challenging, we still have 3 groups who have 
successfully participated in the track and they have contributed 5 
runs of 4 methods. Through these two tracks, we provided two 
common platforms (the two benchmarks) to solicit current 
sketch based 30 model retrieval approaches in terms of both 
small scale and large scale retrieval scenarios. This helps us iden 
tify state of the art methods as well as future research directions 

for this research area. We also hope that the small scale and 
large scale sketch retrieval benchmarks together with the evalua 
tion code will become useful references for researchers in this 
community. 

To comprehensively evaluate the participating methods in the 
two tracks and other sketch based 30 model retrieval algorithms, 
solicit the state of the art approaches, and provide a more com 
plete reference for the researchers in this community, we invite re 
lated authors to run their methods on both benchmarks. Finally, a 
detailed comparative evaluation has been accomplished based on 
17 contributed runs of 15 (4 top partidpating algorithms and 11 
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Fig. 19. Precision-Recall diagram performance comparisons of the "'airplane·· and 
'"ant'" dasses on the complete SHREC13 Sketch Track Benchmark for the 15 
contributed methods. 

additional state of the art approaches) best retrieval methods on 
the two benchmarks. This evaluation work helps us to identify 
the state of the art approaches in terms of accuracy, scalability 
and effidency, existing problems and current challenges, as well 
as promising research topics and techniques. 

8.4. Future work 

This evaluation work helps us to identify the state of the art 
approaches in terms of accuracy, scalability and efficiency, 
existing problems and current challenges, as well as promising 
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research topics and techniques. Therefore, we identify the fu 
ture direction of this research area is developing efficient algo 
rithms which are scalable to different sizes and types of sketch 
queries and models. It can be achieved in the following eight as 
pects. 

• Scalable and interactive retrieval algorithms. In our evalua 
tion, compared with the case of the small scale benchmark, 
the performance of all the methods drops drastically on the 
large scale benchmark, which evidently raises the issue of sea 
lability of existing sketch based retrieval algorithms. On the 
other hand, for some best performing approaches their retrieval 
time increases too fast on a larger dataset, which creates a hur 
die for their applications. It is well known that highly interac 
tive response times are a key requirement for interactive 
sketch based retrieval applications such as shadow drawing 
for interactive retrieval (79), or modeling by sketched example. 
Scalability of query processing time with respect to large target 
database and descriptor sizes is an important issue yet to be 
addressed. One possibility is to take advantage of already devel 
oped high dimensional or metric index structures (80,81), 
which can accelerate the typically many nearest neighbor com 
putations required. However, this implies restricting the 
descriptors to vector spaces and metric distance functions. In 
case that more complex descriptors or distance functions are 
required for the retrieval task, developing ad hoc index struc 
tures may be required to efficiently fulfill this task. Also, we 
see bag of words approaches in conjunction with inverted indi 
ces as promising to provide scalable answer times. 

• Building large-scale benchmarks. Since scalability is so impor 
tant an issue, we should create a large scale sketch based 30 
retrieval benchmark, in terms of both 20 sketches and 30 mod 
els, to evaluate the scalability property of sketch based retrieval 
methods. 

• Interdisciplinary research directions. We notice that generally 
the retrieval performance, either in terms of accuracy or effi 
ciency, is far from satisfactory and the performance of existing 
sketch based retrieval algorithms drops apparently when 
scaled to a large collection To improve the retrieval accuracy, 
we recommend utilizing knowledge and techniques from other 
related disciplines, such as pattern recognition, machine Jearn 
ing, and computer vision. For example, to increase the accuracy 
and efficiency in sketch based retrieval, we can perform sketch 
recognition first and use the result to prioritize the comparison 
between a query sketch and 30 models in the database. During 
the evaluation, we have found that all the top algorithms on the 
two benchmarks utilize machine learning technique, which 
contributes much to the best performance obtained. Therefore, 
machine learning is another promising interdisciplinary 
approach to further improve the performance of existing retrie 
val algorithms. However, we need to pay more attention to the 
scalability properties of the machine learning techniques 
employed and make sure they or their variations can meet the 
real time requirements of the retrieval applications. 

• Query adaptive sketch-based retrieval algorithms. On the 
effectiveness side, another promising direction for future work 
is to consider adaptive sketch based retrieval algorithms. Given 
that different types (or modes) of user sketches can occur (such 
as perspective, orthogonal, and abstract versus realistic), differ 
ent descriptor types may be best suited for the search, depend 
ing on the sketch type. Adaptive retrieval systems could 
improve the search by deciding an appropriate descriptor which 
best supports the type of sketch query. Sketch type dependent 
evaluation benchmarking is needed to understand the possible 
relationships between sketch types and method performance. 
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Fig. 20. Timing information comparison of the contributed algorithms based on the small-scale SHREC'12 Sketch Track Benchmark {"Hand-drawn and Extended'' dataset 400 
models ) and the large-scale SHREC'13 Sketch Track Benchmark {"Testing" dataset 1258 models} logarithmic scaling is applied on the Time axis. Methods IDSIFT. fGALIF, C­
IDSIFT. C-fGAUF, U-IDSIFT. and U-fGALIF denote BF-fDSlFT, BF-fGALIF. CDMR-BF-fDSlFT, CDMR-BF-fGAUF, UMR-BF-fDSlFT. and UMR-BF-fGAUF, respectively. Note that for 
SBR-VC. NUM is set to 100 for both SHREC'12 and SHREC'13 Tracks, while different number of representative views have been adopted {Nc ~ · No and Nc t · No for 
SHREC'12 Sketch Track and SHREC'13 Sketch Track. respectively. see Section 53). Also note that different NUM values are used for SBR-20-30 {NUM • 1 00 for SHREC'12 
Sketch Track and NUM - 50 for SHREC'13 Sketch Track} 

• Semantics-driven sketch-based retrieval and search inten­
tion study. To bridge the semantic gap between 2D sketches 
and 3D models, a promising research direction is to develop 
algorithms and benchmarks that deal more directly with 
semantics (e.g., semantic categories) and search intention 
(e.g., per session specification user intention, specifically, for 
example, by relevance feedback). 

• Developing new local shape descriptors. According to the 
evaluation, we have found that most efficient retrieval algo 
rithms adopt local shape descriptors. On the other hand, the 
retrieval algorithms based on HOG, GAUF, and DSIFT local shape 
descriptors. or the shape context global shape descriptor, out 
perform those based on Fourier descriptors, or structure or 
topology based descriptors, in terms of retrieval accuracy. 
Therefore, developing novel local shape descriptors is a rela 
tively more promising research direction to meet the require 
ments of future applications, which require high efficiency 
and accuracy. 

• Domain specific sketch based retrieval algorithms and their 
evaluation methods. We can extend sketch based retrieval 
for retrieving objects in images such as photographs and paint 
ings; or special 3D objects like clothes and protein molecules. As 
such, it is necessary to build an appropriate image and 3D 
model database for benchmarking. New evaluation metrics 
may be also needed for the specific domains. 

• Scene sketch and partial sketch-based 3D retrieval Generally, 
existing sketch based 3D model retrieval algorithms assume 
there is only one object in the queJY sketch, and do not consider 
the case of a 2D scene sketch queJY containing several objects, 
which may overlap each other and also have their spatial con 
text information. Therefore. sketch based 3D model retrieval 
in the context of a 2D scene sketch deserves our further explo 

rat ion. Finally, we note that our benchmarks address, in spirit, 
the global retrieval model. Future benchmarking for sketch 
based retrieval may in particular address partial sketch based 
3D retrieval algorithms which target interactively establishing 
correspondence between a partial sketch of an object and 3D 
model parts. 
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