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Estimating Scene Flow using an Interconnected Patch
Surface Model with Belief-Propagation Inference

Thomas Popham, Abhir Bhalerao, Roland Wilson
Department of Computer Science, University of Warwick, Coventry, CV4 7TAL.

Abstract

This article presents a novel method for estimating the dense three-dimensional
motion of a scene from multiple cameras. Our method employs an intercon-
nected patch model of the scene surfaces. The interconnected nature of the
model means that we can incorporate prior knowledge about neighbouring
scene motions through the use of a Markov Random Field, whilst the patch-
based nature of the model allows the use of efficient techniques for estimating
the local motion at each patch. An important aspect of our work is that the
method takes account of the fact that local surface texture strongly dictates
the accuracy of the motion that can be estimated at each patch. Even with
simple squared-error cost functions, it produces results that are either equiv-
alent to or better than results from a method based upon a state-of-the-art
optical flow technique, which uses well-developed robust cost functions and
energy minimisation techniques.

Keywords: Motion, Tracking, Markov random fields, Stereo, Scene-Flow.

1. Introduction

Scene flow is the dense non-rigid three-dimensional motion field of a scene,
and is analogous to the concept of optical flow for describing the motions be-
tween a pair of 2D images [I]. Estimating scene flow is difficult because some
scene surfaces may contain little texture and may move in a nonlinear way.
This leads to an under-constrained problem unless some prior knowledge
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about the form of the solution is introduced. The scene flow problem there-
fore has many similarities to the optical flow problem: the difference is that
multiple cameras are required in order to estimate scene flow since a single
camera does not provide sufficient information. Current approaches to esti-
mating scene flow involve two methods of regularisation: either a local prior
is introduced or a global prior is introduced. Algorithms that commonly use
surface patches or surfels [2] and employ a local prior have their roots in the
Lucas-Kanade method for estimating optical flow [3]. Techniques employing
a global prior use either image or surface-based regularisation [I], and have
similarities to the Horn and Schunck optical flow method [4].

This article presents a method that combines both local and global con-
straints for estimating scene flow. This is achieved by the use of an intercon-
nected surface patch model: the local prior is provided by the surface patch,
whilst the interconnected nature of the model provides the global prior. Since
the interconnected patch model forms an undirected graph, Markov Random
Field inference techniques can be used to find the most likely patch motions
given a local motion observation at each patch.

An important aspect of the presented method is the combination of both
local and global energy minimisation into a single framework. Local mo-
tion estimates at each patch are provided by a Gauss-Newton minimisation,
whereas Markov Random Field inferences are made using Loopy Belief Prop-
agation.

For optical flow, it has been shown that local approaches are more robust
against noise, whilst global approaches recover a dense motion field [15].
The combination of local and global approaches for optical flow estimation
has therefore already been proposed [I5], but, to our knowledge, such an
approach for estimating scene flow has not yet been investigated. The method
presented here can be seen as an extension of the method of Bruhn, Weickert
and Schnoerr [I5] to the scene flow problem.

We show that by using a combination of local and global approaches, it
is possible to estimate the scene flow for multiple frames of a scene, even
if it contains many surfaces with little texture. In order to achieve this, a
method for estimating the scene flow confidence at each patch is introduced
so that patches with the most information constrain neighbouring patches
with less texture. Since our confidence measure is a covariance matrix at each
patch, Belief Propagation messages can be encoded using simple Gaussian
distributions, leading to a straightforward implementation of the algorithm.

Obtaining measures of confidence for optical flow is well known and used
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@ For optical flow estimates only.
b For mesh deformation only.

Table 1: Analysis of scene flow algorithms from a Bayesian perspective.

as the criteria for the KLT feature detector, which selects the optimal textures
for 2D template tracking [16] [I7]. Using such a confidence measure has been
shown to improve the performance of other computer vision tasks, especially




when the image textures are randomly selected [18]. This insight applies
also to the scene flow problem, since we are interested in finding a confidence
measure for an arbitrary patch from the scene surface, rather than for a set
of sparse patches selected by a feature detector.

The proposed technique calculates the image gradients on each surface
patch with respect to its rigid-body motions. We extend existing 2D meth-
ods for evaluating motion estimation confidence, by using the inverse of the
Hessian matrix of image gradients with respect to its rigid-body motions.
This yields a covariance matrix for each patch, which may be visualised by
overlaying ellipsoids at each patch (see ﬁgure to demonstrate its effective-
ness.

Figure 1: Ellipsoids representing the uncertainty in position for a set of
example patches from the Katy sequence. The covariances are estimated
using equation ( [20). Note that the patches with little texture tend to have
large ellipsoids whereas the patches with lots of texture tend to have smaller
ellipsoids.

Earlier versions of this work appear in two conference papers [19,20]. This
article adds a more rigorous Bayesian framework for the presented scene flow
method and also provides comparative results against a method based upon
state-of-the-art optical flow techniques. The rest of the article is organised as
follows. Section 2 provides a brief survey of existing approaches to scene flow
estimation. Section 3 describes how both local and global priors can be used
to accurately estimate scene flow. Section 4 shows experimental results for



our proposed method, and demonstrates effective motion tracking through
multiple applications of the scene flow algorithm. Finally, section 5 draws
conclusions and provides suggestions for future work. We believe that our
scene flow certainty estimates could also be used for 3D feature detection in
a similar manner to the 2D KLT feature detector [16].

2. Related Work

For some applications, it is possible to use a low dimensional model (e.g.
a skeleton) of the scene in order to constrain the motion parameters that
need to be estimated. However, for scenes that cannot be described by such
a motion model, a more general approach is required and instead the weak
assumption is made that we expect neighbouring points in a scene to move
smoothly with respect to one another. This assumption may be applied in
two ways: either neighbouring pixels in each image are expected to move
smoothly with respect to one another (image regularisation approaches); or
the local surface of the scene is expected to move rigidly (e.g piecewise surface
/ mesh based approaches). Each of these is now reviewed in detail in the
following.

2.1. Image Regularization Approaches

In their seminal paper on scene flow, Vedula et al. [I] estimate the
3D motion at each point on a surface model by combining the optical flow
information from several cameras. An advantage of this approach is that
state-of-the-art optical flow techniques can easily be applied, and the algo-
rithm is ideal for parallel implementation. However, for three reasons, this
is a suboptimal approach: first, without the knowledge of depths, motion
smoothing across object boundaries becomes unavoidable unless robust cost
functions are applied; secondly, a uniform regularisation in the image space is
likely to result in a non-uniform regularisation in the scene, because objects
lie at different depths from each camera; and thirdly, the fact that optical
flows should be consistent with each other is ignored.

Several methods ensure that the optical flow estimates are consistent with
one another, by jointly estimating the optical flow in both a left image and
a right image [10], 111, 12} 21]. This leads to a 2.5D framework, in which the
motion of a 3D point is parameterised by a change in image co-ordinates
plus a change in depth. The scene flow is estimated using an energy model
consisting of a data term and a smoothness term. The data term consists of



three componentsﬂ : (1) the brightness consistency in the left image; (2) the
brightness consistency in the right image; and (3) the brightness consistency
between left and right images for the moved point. The smoothness term
penalises differences in neighbouring image motions. Note that robust cost
functions are required for both the data and smoothness terms to prevent
smoothing across object boundaries. This is necessary since the same level
of motion smoothing is applied between two pixels, even if they have totally
different disparities. There are two main approaches to minimising the energy
for these image-based approaches: a continuous variational approach [10} 11]
and a discrete Markov Random Field [12].

2.2. Surface Regularization Approaches

Several methods estimate the scene motion using a surface model, which
can be represented using either: a piecewise model [2], §]; a mesh model [0,
22, 23], [7]; or a level-set framework [9]. The major difference between these
methods is the notion of connectivity: with a piecewise description, there
is no knowledge of which elements are connected to each other, but for a
mesh model this knowledge is made explicit. Therefore, the piecewise surface
approaches regularise the motion locally, whereas the surface models tend to
regularise the solution globally.

Carceroni and Kutulakos [2] use a set of surface elements or surfels to
form a piecewise description of the surface. Once a surfel has been fitted
to the surface, the motion across a single frame is estimated. Nine motion
components are estimated for each surfel: three for translation; three for
rotation and three for shearing and scaling effects. Since the reflectance
properties of each surfel are estimated, it is possible to consider the effect of
changing surface normal upon the change of illumination of the patch surface.

Mullins et al. also use a set of planar patches to describe the scene
surfaces [24], but instead of tracking individual patches, they first cluster
the patches and then estimate the motion for each clustered component,
assuming that the clustered components are rigid. Applying a local rigid-
body motion model to a scene is potentially a powerful way of constraining
the range of possible motions, however finding a motion model is a ‘chicken-
and-egg’ problem: the scene motions are required to build the rigid-body

! Isard and MacCormick [12] use three slightly different data terms, but the principle
remains the same.



model, but the rigid-body model is required to estimate the scene motions.
Since the clustered patch components do not necessarily reflect the rigid
components within the scene, their Gaussian mixture model must be re-
initialised at regular time intervals.

Pons et al. estimate the scene flow using a variational approach to ‘evolve’
a surface model to its position at the next frame [9]. This is achieved using
an image-based matching score, which is summed over all cameras. Many
surface-based methods estimate the motion at each surface point, but Pons et
al. take a different approach by directly estimating the dense scene flow
field. This is an interesting approach, since a surface model is used with
an image-based matching to score when estimating a dense motion field. In
order to regularise the solution, the Laplace-Beltrami operator is used on the
surface. As with many other scene flow papers, only a single frame of motion
is estimated. The use of a discrete Laplacian operator for ensuring motion
smoothness is typical for mesh-based algorithms since it preserves the fine
mesh details [7], 23] 25, 26], 27].

The major question is how the predicted mesh positions should be ob-
tained. Furukawa and Ponce [6, 22] use texture-based constraints to estimate
the motions at each node of a mesh model. Aguiar et al. presented a set of
methods that did not estimate the motions directly from the image textures,
but instead used optical flow [7], SIFT features [5, 28], silhouettes [23], and
stereo [23] constraints. These constraints may be divided into two groups:
motion constraints and position constraints. The latter are the mesh forces
used to pull the mesh from the previous frame toward that of the current
frame. Although the silhouette and stereo positional constraints obviously
help to determine the mesh positions at each step, it is questionable whether
they lead to accurate motion estimation because they may not represent the
true motion. For example, a rotating sphere or cylinder (rotating around its
centre axis) will be considered to be stationary by sterco and silhouette al-
gorithms. For this reason it is more likely that these methods are producing
time-consistent meshes rather than accurate motion estimates. Here, we do
not seek to apply any new constraints on the positions at each frame but
only use the estimated motions.

Our work is probably closest to the works of Furukawa and Ponce [6], 22],
Vogel et al. [14] and Basha et al. [I3]. The algorithm of Furukawa and
Ponce [0}, 22] estimates the scene motion in two steps. In the first step the lo-
cal rigid motions at each mesh mode are estimated using a conjugate gradient
technique and in the second step, a global mesh deformation is performed
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using the motions calculations from the first step. With this approach, a
sequence of high-quality meshes is generated for sequences of around 100
frames. However since the global smoothness prior is only introduced after
the individual motions have been estimated, the problem is ill-posed un-
less the scene is well-textured. The major difference with our work is that
our method iteratively updates the motion estimates at each patch using in-
formation from both the patch surface texture and the neighbouring patch
motions. The result is that motions can be estimated for portions of the
scene that contain little texture.

Vogel et al. [14] also use a locally rigid motion model with similarities to
the one proposed in our earlier conference paper [19]. The major difference
with our work is that we also incorporate a motion estimation confidence for
each surface patch which allows highly textured patches to have a stronger
influence on neighbouring patches with less texture when estimating motion.
Our work also has similarities to Basha et al. [I3] who also penalise the
first-order derivatives of the flow field, whereas our method goes one step
further and also penalises different rotations at neighbouring surface points.

3. Probabilistic model and energy minimisation

3.1. Overview

We estimate the motion directly on the model surface, through the use
of a surface patch model. The planar patches are fitted to the scene surfaces
at the first frame using a multi-view stereo technique [29, B30], before being
tracked through subsequent frames.

The scene flow problem is therefore posed as one of estimating the lo-
cal motion at each patch. Each planar patch is described by six compo-
nents: three parameters z, vy, z locating the patch centre and three parameters
0z, 0y, 0. describing the patch orientation. The vector s, is used to represent
the complete description of a patch at time t: s, = (z,v, 2,6, 60,,0.) (see
figure [2)).

A key part of the problem is that it is ill-posed as some patches contain
little texture and some patches may only be visible from a single camera. We
therefore use a Markov Random Field (MRF) to impose a smooth motion
prior on the solution. Rather than assuming uniform uncertainty at each
patch, a measurement covariance is associated with each surface motion es-
timate so that the regularisation can be carried out in a probabilistic sense.
This means that surface patches with accurate motion estimates (due to to

9
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Figure 2: The notation expressing the state s of patch in terms of its position
(z,y, z) and orientation (6,,6,,0.).

high texture content) are used to constrain neighbouring patches with less
texture.

Two energy minimisation techniques are combined into a single algo-
rithm: Belief Propagation (BP) is used to make inferences about the MRF
and Gauss-Newton iterations are used for refining the observed motions at
each patch. Belief propagation is often implemented by passing messages
as discrete distributions between neighbouring nodes, however this becomes
impractical as the number of parameters increases at each node [31, [32].
Furthermore, since our uncertainty at each patch is already descibed by a
covariance matrix, the use of Gaussian distributions as messages is a natural
step. In the context of surface reconstruction and stereo algorithms, several
other computer vision algorithms also use Gaussian belief propagation for
making efficient MRF inferences [33], 31}, 132].

Figure [3]lists the algorithm that is applied at each frame. Once the mea-
surement covariance matrix has been recovered for each patch, the algorithm
iterates over two major steps: updating the local motion observation at each
patch (using Gauss-Newton iteration) followed by updating the beliefs at
each node using the Belief Propagation algorithm.

3.2. Graph representation

An undirected graph is constructed with the nodes representing the patches
and the edges representing the expected motion smoothness between neigh-
bouring patches (see figure . If Y represents the motion observations and
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e FOR i = 1:Npgiches

— Obtain measurement covariance matrix M; at each patch
e END FOR
e FOR k = 1: Ny

— FOR 7 = 1:Npatches

x Update motion estimate at patch ¢ using Gauss-Newton iter-
ation

— END FOR
— Pass messages between neighbouring nodes

— Calculate marginal distribution at each node

e END FOR

Figure 3: Algorithm to estimate motion at each patch ¢ at time t. Ny is the
number of iterations.

Figure 4: The graph structure with the white circles representing observa-
tions and the grey circles representing hidden nodes.

X is the set of (hidden) patch parameters to be estimated, then by Bayes’s

11



Law the probability of Y given X is:

p(X]Y) o< p(Y]X)p(X) (1)

The conditional probability of the observations given the patch motions
p(Y]X) is:

p(YX) = Hp vilxi) (2)

where y; is the 6 X 1 motion estimate at node 7 and x; is the 6 x 1 motion at
hidden node ¢. The prior expressing our expectation of the smooth motion
between neighbouring nodes is:

H H pXZ,X] (3>

i JEN(3)

An essential aspect of our method is that it does not assume that the
motion estimation accuracy at each patch is equal, and instead a novel tech-
nique is applied to obtain a covariance matrix for the motion estimate at
each patch (see section [3.4). We therefore choose to model the observation
uncertainty at each patch using a Gaussian distribution, with the covariance
matrix M; depending upon the local patch texture. The probability of an
observation given a patch motion is therefore:

oty o cap =5~ %) M - ) (@)

The relationship between the motion at node ¢ and neighbouring node
7 strongly depends upon the distance between the two nodes, with small
distances leading to the expectation of similar motions. We express this
relationship as:

p(xi|x;) o exp (—%(Xi —x;) Pt (% — Xj)) (5)

where Pj; is calculated as: P;; = 1 ad?j with d;; being the distance between
nodes 7 and j and « controlling the strength of the prior.

The problem is now to find the values of X that maximise the poste-
rior probability p(X|Y). There are several methods of doing this, including

12



MCMC, graph-cuts and belief propagation [34]. In order to use belief propa-
gation, messages are passed between neighbouring nodes expressing the cur-
rent belief about each other. The message from node i to node j is:

mig(x;) = / i x)pxye) [ mws(xi)dx (6)

keN (3)

where 1(x;, X;) is the motion prior and p(x;, y;) is the observation probability.
The marginal distribution at each node is then calculated using:

p(x;) o /p(xi7Yi) H mii(Xi)dX;. (7)
keN (i)
Since we have chosen to model the uncertainty at each node using a
Gaussian distribution, we parameterise the message from node ¢ to j using a
mean and covariance matrix, in a fashion similar to [35] 32, [36], 33]:

2

The covariance matrix S;; is calculated as:

mii(x;) = exp (—E(Xj — pig) S5t (% — Mij)) : (8)

-1

Sy=Pi+Si=Py+ M '+ Y S| . (9)
keN (i)

Equation @ may be understood as follows: the addition of P;; to S; has
the effect of spreading 5;, and this is necessary since S;; is the uncertainty at
node j given the belief at node 7, and this requires S;; to be more spread than
the uncertainty at S;. S; is calculated by taking the product of the messages
from neighbouring nodes (see equation @ Since these messages are also in
the form of Gaussian distributions, the general formula Q7' = Q;' + Q5"
can be applied, where () is the covariance matrix obtained from the product
of normal distributions with covariance matrices )1 and @)s.

The mean p;; is calculated by:

pij = Sy | M 'y + Z 1S | (10)
keN (i)

where y; is the observed motion of the patch at node i. Efficiently obtaining
the estimate y; and its associated covariance matrix M; is considered next.

13



3.8. Local patch motion estimation using Gauss-Newton iteration

The previous section described the overall framework for how the local
motion estimates from each patch can be used in a belief propagation algo-
rithm to incorporate prior motion constraints. A key part of this algorithm
(see figure |3)) is that at each iteration, the motion estimates at each patch
are refined.

Each patch is assigned a texture 7 (p), which is a function of the pixel co-
ordinates on the patch surface. An image Z. from camera ¢ may be projected
onto the patch by using the projection function H.(s, p), which maps a point
p on the patch surface into the image plane of camera ¢, according to the
state s of the patch. The projected image from camera ¢ onto the patch is
therefore: Z.(H.(s,p)). The motion of the patch between ¢t — 1 and ¢ is:

Y: =St — S¢—1. (11)

where the state of the patch at time ¢t — 1 is s;_.

At the initial iteration, the best estimate of the patch position at time ¢
is the position at the previous frame s;_;, however for subsequent iterations,
a better estimate is available from the marginal distributions at each node
of the MRF. We choose to use the notation z; for the current best estimate
of the patch position at time ¢, and this is equal to s;_; at the first iteration
but for other iterations is:

Z = X + S¢—1- (12)

The problem is to now refine z by finding an increment Az to be added to
z by using a Gauss-Newton iteration (see [37] for variations on this approach).
The reason for using the output of the MRF as an initial motion estimate is
that the Gauss-Newton procedure may fail at the first step (especially if s;_;
is too far away from s, or there is a poorly defined minimum), but this can
be corrected by using results from neighbouring patches.
Once Az is found, then the motion estimate for the observation node of
the MRF is:
y = x; + Az. (13)

When estimating the motion of a patch across a single frame, one would
expect that the patch texture 7 (p) to remain consistent with the input
images. A suitable cost function for the motion z is the sum-of-squared

14



differences between the patch texture and input images projected onto the
patch:

E=>"Y (T H.(z + Az)p))?, (14)

ceC peWwW

where C is the set of cameras that can ‘see’ the patch and W is the set
of pixels on the patch. It should be noted here that the sum-of-squared
differences implies that the errors between the texture model and images are
independently drawn from a normal distribution, namely:

T.(H.(si—1 + Az)p) ~ N(T (p), o?). (15)

In order to minimise the cost function in equation ( , a first order
Taylor-series expansion of the projected image is taken, allowing the patch
motion to be predicted using a set of motion templates. In this context, a
motion template is simply an image that shows how the patch texture changes
as the patch moves in a particular direction. In other words, the motion
templates for a patch are the image gradients with respect to the motions:
%IZC. Figure |5 shows both the original texture and motion templates of an
example patch. Note that the translation in the y-direction is a change in
depth, and the effect of this motion is smaller than the other two translations.
It is also possible to see that the translations have a much larger effect on
the patch texture than the rotations.

The first-order Taylor expansion of the projection function yields:

P=X Y (1) Tin) - Tesn) (10

ceC peW

Differentiating with respect to the displacement then gives:

=) D &l(T — g.Az), (17)

ceC peWwW
where g. is the Jacobian %. Now setting %—f = 0 and dropping the time
subscripts,
YD elgdn=> "% gl(T-1.). (18)
ceC peWwW ceC peW

We are now in a position to solve for the estimated motion at patch i:

15



L1

(a) Patch Texture

W=

l -
(b

) Motion Templates

Figure 5: The patch texture and motion templates for an example patch
from the Katy sequence, (a). In (b), the top row of motion templates are for
x, 1, z translations and the bottom row of motion templates are for rotations
around the x, y, z axes. The motion templates are calculated using the image
from a single camera (camera 16).

Ao = (z 5 gzgc) S Y el(T-1) (19)

ceC pew ceC peWwW
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3.4. Estimation of measurement uncertainty at each patch

A remaining question to be addressed is how the measurement noise M,
(equation 4) should be estimated. Intuitively, one would expect the patch
image gradients (with respect to the motions) to be inversely proportional
to the measurement noise, since a small gradient is more likely to originate
from noise rather than a true image gradient, i.e.

-1
M <ngg0> - (20)
ceC

It should be noted that estimating the covariance by taking the inverse
of the Hessian has been used in several image feature detectors [106], 138
39]. The question of whether these estimated covariance matrices actually
represent the uncertainty was confirmed experimentally by Kanazawa and
Kanatani [I§]. In particular, they found the use of these estimated covari-
ances improved the performance of some basic computer vision applications,
if the features were randomly selected in the image. In this article, the
patches do not originate from feature points but are densely fitted to the
scene surfaces, so the experimental findings of Kanazawa and Kanatani are
likely to apply here.

Using some example patches from the Katy sequence, figure [1| shows the
estimated measurement covariances for the three translation components.
Three patches have much larger uncertainties than the other patches, and it
is clear that they contain much less texture. It is also noticeable that the
ellipsoids on the arms are aligned with the arm, indicating that these patches
are likely to slide up and down the arm, unless some form of regularisation
is introduced. Many patches on the upper body have texture constraints
in all three directions, although some patches have flat ellipsoids that are
parallel to the surface, showing that their texture components are sufficient
to constrain them to the surface but do not provide much information about
their position on the surface.

3.5. Motion Field Estimation

Obtaining the motion field at any arbitrary point a in the scene is possible
by interpolating between neighbouring patches. A simple solution would be
to use linear interpolation, however the message passing mechanism from
section |3.2] can be used, by treating a as a node to which messages can be
passed, and when marginalised is:
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P(Xa) oc/ H Mia(Xe)dX, (21)

keN (a)

4. Experimental Results and Discussion

(a) Frame 0 (b) Frame 30 (¢) Frame 60 (d) Frame 90

(e) Frame 60 (f) Frame 70 (g) Frame 80 (h) Frame 90

Figure 6: (a)-(d) Input images at frames {0, 30,60,90} of ‘Katy’ sequence
(e)-(h) Input images at frames {60, 70, 80,90} of ‘Skirt’ sequence.

4.1. Implementation Details

The algorithm for the motion estimator is given in figure [3} As noted
by Vedula et al. [1], it is important to ensure that cameras which do not
‘see’ a particular surface point, are removed from the motion estimates. In
fact, it is fairly unusual for a patch not be seen by any cameras, although
this can happen in certain situations such as when it moves physically out
of the scene. OpenGL depth buffering was therefore used to maintain a list
C of visible cameras at each frame for each patch. For the case when the list
of visible cameras was empty for a particular patch, tracking was terminated
for that patch. There is an argument for keeping all the patches, regardless
whether they are visible or not, on the basis that neighbouring estimates
could estimate their positions. One danger of this is that if they disappear
from the observed volume of the scene, being invalid, then they would add
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Figure 7: Magnitude of the motion field for the first frame of Katy sequence.
The colour represents the magnitude of the scene flow vector at each point
on the model surface, with red being the slowest surface motions, green the
fastest motions and yellow the motions in between. Katy’s left arm is moving
as she twists her body from her left to her right.

noise unnecessarily ‘drag’ visible scene patches to bad positions. The ‘Katy’
sequence did not contain any significant occlusions, no visibility calculations
were required and instead a fixed set of cameras was used.

Since the patches may move quite quickly with respect to their size, using
the patch parameters at the previous frame as an initial value might result
in a tracking error. A common solution is to use a multiresolution approach,
but this is problematic, since using bigger patches could lead to false motion
estimates. Therefore a simple constant velocity model was assumed so that
the motion estimate from the previous frame was used as an initial starting
value for the current frame.

There are several choices for the patch texture model 7 (p). Since the
energy minimisation technique here requires a well-defined minimum, the
texture from the image at the previous frame was used as the texture model.
This ensured that with the correct displacement y, the texture model would
be very close to the actual texture Z.(H.(x;, p)). It was found that it was
sufficient to evaluate the Jacobians in equation at every iteration using
finite differences, with texture models of 15 x 15 pixels.

For patches with poor texture, the first Gauss-Newton iteration nearly
always provides an incorrect location, but after estimates from the better
neighbouring patches are incorporated (via GBP), this is quickly corrected.
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Figure 8: Surface motion estimation results for the Katy and Skirt sequences.
The colour coding shows the temporal aspect of tracks, with red representing
the earlier frames, and green representing the later frames. The visual hull
at the end of each sequence is shown for reference. Note that the motion is
smooth and coherent, even in textureless regions, such as the arms on the
Katy sequence.

We empirically selected the number of iterations to be 10 (at each frame)
by monitoring the convergence rate with the stopping condition being a tol-
erance on the estimated displacement. Without GBP, the convergence be-
haviour would be similar to a 2D KLT, which requires at least two iterations
to obtain good results. With GBP, the theory suggests that it will take a
little longer for better estimates to propagate throughout the patch network.

At first, it may seem that care should be taken when dealing with an-
gle wrap-around issues between neighbouring patches, however since it is
only the rotation motions that are being propagated between neighbouring
patches, these angles are typically small and in the range of approximately
-5 to +5 degrees with zero mean.

4.2. Qualitative FEvaluation

The results of the proposed method are demonstrated on two sequences
from different performance capture studios. The ‘Katy’ sequence is 90 frames
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(b) Skirt

Figure 9: Results of the Vedula et al. [I] scene flow algorithm on the Skirt
sequence (up to frame 90). The colour coding shows the temporal aspect
of tracks, with red representing the earlier frames, and green representing
the later frames. Note the number of tracked surface points is much smaller
than for the method presented in this article (see figure , since at least
two cameras are required to estimate the motion of a surface point in the
Vedula et al. [I] method. Also note that some points are left behind (e.g.
on the subject’s right arm in Skirt sequence) and the motion is less smooth
(see tracks near subject’s right hand in Katy sequence).

long and was captured at 30 frames per second using 32 cameras. The ‘Skirt’
sequence is 30 frames long and was captured at 40 frames per second using
8 cameras, and is part of a publicly available dataset [40]. Example images
from both sequences are shown in figure [ Each sequence presents different
challenges to scene flow estimation: the ‘Katy’ sequence contains surfaces
with no texture but strong changes in lighting conditions, whereas the ‘Skirt’
sequence was captured with fewer cameras but contains faster motions than
the ‘Katy’ sequence.

Figure [§shows the trajectories of the patch centres for both sequences. As
can be seen, the tracked motion is smooth and coherent over both sequences.
Note that even in large untextured regions (such as the arms in the Katy
sequence), the motion of the surface is accurately tracked over the sequence.
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Where scene flow results are demonstrated over several frames, highly tex-
tured scenes are used commonly [0, 22] 2]. As our technique incorporates an
effective global prior, we are able to demonstrate accurate motion estimation
over several frames for texture-poor surfaces. It is also interesting to note
that the feature matching approaches [41], 42] would also tend to fail for this
kind of sequence, as no features would be detected in the textureless regions.

4.3. Quantitative evaluation using sparse ground truth

In order to assess the performance of the proposed method, a small num-
ber of ground truth 3D tracks were obtained manually, by entering the 2D
tracks of each feature from two different views. The set of 2D tracks from
each view were then triangulated in order to recover the 3D ground truth
tracks. This was achieved by using a simple GUI tool, which checked that
the triangulation error between the different 2D tracks was never greater
than 5mm. This level of acceptable error was found experimentally, and is a
result of the camera resolution and calibration accuracy. The ground truth
points were manually identified by finding strong features which could be seen
throughout the whole sequence, and were not occluded at any stage. The
markers were also selected to provide an even coverage of each subject. Since
the motion field was inherently smooth, using a large number of markers was
not necessary, and therefore six markers were used for the Katy sequence
and eight markers for the Skirt sequence. The motion field from Section 3.5
was used to ‘animate’ ground truth points from their initial positions at the
first frame to their predicted positions in subsequent frames. The endpoint
error at each frame was then measured by calculating the average Euclidean
distance between the ‘animated’ markers and the real ground truth markers:

error = % Z Vu—v)T(u—v), (22)

where u is the ground truth position and v is the position estimated by the
scene flow algorithm.

It is important to understand the limitations of this ground truth method.
Since a human operator must accurately identify features from two different
views for the duration of the sequence, it is almost impossible to obtain
a dense ground truth. For areas that were textureless or only contained
texture information in one direction, estimating the ground truth motion
was practically impossible. This means that any errors on the arms or the
legs in the Katy sequence do not contribute to the ground truth error plots.
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Figure 10: The end point motion estimation errors for the ‘Katy’ and ‘Skirt’
sequences. The red lines show the errors for the MRF-BP method of this
article, and the blue lines show the errors for the scene flow algorithm of
Vedula et al.

Figure [10[ shows the average error between the estimated motion and the
ground truth motion for the Katy sequence. The final average error after 90
frames is around 40mm, and this error is steadily accumulated throughout
the sequence. There are many reasons for this error accumulation, and these
may be directly related to the data and prior terms of the model in equation
16l Errors in the data term are a result of approximating the underlying
surface. The patch model is inaccurate if the surface is non-planar or if
it is inaccurately fitted to the surface. In addition, lighting changes are
unaccounted for between frames. Even with the visibility model though,
cameras which have an occluded view of the patch surface can still contribute
to the motion estimation process.

4.4. Comparison with the Scene Flow Algorithm of Vedula et al.

The method presented in this article was compared with the original scene
flow algorithm of Vedula et al. [I], which combines several optical flows in
order to estimate three-dimensional motion. In order to provide the optical
flow estimates for the scene flow computation, a publicly available state-of-
the-art MATLAB implementation was used [43]. It should be noted that even
with the robust cost functions employed, there was still significant motion
blurring at the object boundaries. To ensure fair comparisons with the earlier
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experiments in this article, the patch centres from the experiments in section
[4.2] were used as the surface model and the same visibility calculations were
used. Table [2| shows the parameters that were used to for the optical flow
algorithm.

’ Parameter \ Value ‘
A 70
0 0.25
€ 0.1
Use edges yes
Number of TV-L; iterations 10
Number of warps per level 5

Table 2: Parameters used for computation of optical flow

Figure [9) shows the tracked surface points using the scene flow algorithm
of Vedula et al. between frames 60 and 90. The estimated scene flow is
accurate for the first 15 frames, but towards the end of the sequence some
of the estimates on the arms are inaccurate, as the surface points appear to
be left behind. There are two likely explanations for this. The first reason
is that the optical flow estimates are blurred at boundaries, causing lower
motion estimates at the corresponding surface points. The second reason is
that the scene flow method is less robust to inaccuracy in the surface models.
If a point projects to the background, then it will be assigned a zero motion
by the scene flow algorithm. However, the method presented in this article
ensures smooth 3D motions, so that patches on the surface pull inaccurately
fitted patches along. Since the patches which project to the foreground tend
to have strong texture, and the patches which project to the background
tend to be textureless, the forces on the correctly fitted patch are stronger
than the forces on the background patch.

It is also noticeable that the number of surface points decreases rapidly
throughout the sequence. Although this was a problem with the patch-based
tracker, it is even worse for the scene flow algorithm, due to the fact that at
least two cameras are required to estimate the motion of a surface point. The
patch-based tracker is not as vulnerable to this problem, since the surface
motion regularisation means that only one camera was required for each
patch.

24



(c) Frame 90 (d) Frame 90

Figure 11: Evaluation of tracking using a reference image. The coloured
dots indicate the tracked surface model points that have been projected into
camera 18. The left column shows the results using the scene flow algorithm
of Vedula et al. [I], and the right column shows the results using our method.
The surface points from the optic-flow based method drift towards the top of
the arm, whereas the surface points tracked with our method remain much
closer to the original positions.

Figure [10[ shows the end point motion estimation error for the ‘Katy” and
‘Skirt’ sequences. Note that since ground truth distance measurements for
the ‘Skirt” dataset were not available, the values in the figure are obtained
by assuming that the height of the subject is 1.634 metres E|

For the skirt sequence, the performance of both algorithms is similar until
about frame 76, although for frames from this point onwards the performance
of the scene flow algorithm becomes significantly worse, due to the inaccurate
estimates on the arms. The final endpoint average motion estimation error is
therefore 44mm for the patch-based estimator, and 96mm for the scene flow
estimator.

For the Katy sequence, the ground truth errors are very similar through-
out the sequence, which seems to slightly contradict figure [11, which shows a
clear performance benefit for the method proposed here. This is explained by
the limitations of the sparse ground truth method, as it is practically impos-

2the average height of a UK female adult.
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sible for a human operator to estimate the motions for textureless regions,
which are exactly the regions where the proposed method performs better.
This means that these regions are unaccounted for the in ground truth plot
in figure

A direct comparison with other scene flow algorithms is difficult, but
it is apparent the proposed method is able to estimate the scene flow over
multiple frames rather than a single frame [2] [10} [1l 9]. Since the new method
imposes the motion prior on the scene surfaces rather than in the images, it
does not suffer from the common optical flow problem of smoothing across
object boundaries. It is also worth noting that the new method has been
demonstrated on a sequence containing regions with very little texture, whilst
most scene flow sequences tend to be highly textured. Obviously the method
does not generate temporally consistent meshes over long sequences, but
it is worth noting that many of these techniques are only able to achieve
visually superior results with a multi-view reconstruction at every frame [23,
44, 9). The proposed method does not need a reconstruction at every frame,
and is able to provide surface point tracks across time providing full motion
information.

A comparison with feature-based mesh-matching techniques is also help-
ful. Most feature-based methods usually produce less than 100 correspon-
dences across 20 frames [41] [42], however the proposed approach provides
more than 1000 correspondences over a longer time period. The advantage
of the new method is that it incorporates information from all surface re-
gions, even if they do not contain features but still contain some information
to constrain the motion of the scene (see figure [1).

4.5. Effect of number of cameras upon confidence measurement

An important aspect of the new algorithm is that non-uniform measure-
ment uncertainties at each patch are accounted for. The mechanism for
estimating the measurement uncertainties at each patch was provided by
equation [20, which relates the measurement covariance to the patch im-
age gradients. An example of some of these measurement uncertainties was
shown in figure [T, which plotted ellipsoids for the translation motion compo-
nents of each patch.

It is also useful to see how the cameras determine the motions that can
be estimated at each patch. Ideally, only a single camera would be used,
such as the algorithms in [45, 46| [47, [48], but for smaller patches (such as
the ones in this article), multiple cameras are required. Figure [12| shows the
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(a) camera 0 (b) camera 28

Figure 12: Translation uncertainty using a single camera

(a) camera 0 and 28 (b) camera 0 and 28

Figure 13: Translation uncertainty using two cameras.

translation uncertainties for a set of patches, using only individual cameras
(such as the case with traditional optical flow). The ellipsoids show that
there is very little information about the motion towards the camera, and
this explains why all the ellipsoids point to either camera 0 or 28. One might
expect that two cameras can sufficiently constrain the patch motions, but
figure shows this may not always be the case. Most patches are indeed
sufficiently constrained by two cameras but some, such as those, on the arms
are only constrained in one direction, leaving two directions with very weak
constraints. It is expected that motions along the arm would be difficult to
estimate, but it is surprising that estimating motions towards or away from
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the cameras is also difficult. However, on closer inspection, there is a reason
for this: since the cameras are aligned horizontally with the arm, an error in
patch depth means that both cameras see a very similar texture from another
part of the arm. This suggests that in certain situations, at least 3 cameras
are necessary for robustly estimating scene motion.

4.6. Effect of using confidence measure

It is possible to show with a simple experiment the improvement with the
estimated measurement covariances at each patch. Figure [14]shows example
patches that are tracked in 2D using uniform measurement noise at each
patch. The same figure also shows patches that have been tracked using
the measurement covariances estimated using the 2D version of equation [20]
With the uniform measurement noise assumption, the patches on the left
side drift from their true positions, whereas with the estimated covariances,
the same patches do not drift.

5. Conclusions and Future Work

This article has presented a method for estimating scene flow, by com-
bining local and global approaches to regularisation. This was achieved by
using a set of interconnected patches, for which each patch provided a local
regularisation of the solution and the interconnected nature of the model
provided global regularisation. The results show that the performance of the
proposed method is either equivalent to or better than results obtained from
multiple instances of a state-of-the-art optical flow algorithm. An important
point here is that the optical flow techniques have been successively refined
over 30 years, and it is a mark of achievement that the proposed method
performs well against these well established techniques.

The second contribution of this article has been a method of estimating
the scene flow confidence at each patch, using the Hessian matrix of patch
image gradients with respect to the motions. This method can be seen as
an extension of existing methods for estimating the confidence of 2D feature
points, and was used in this article for propagating measurements between
patches in a probabilistic way when incorporating the global motion prior.

There are several interesting avenues for further work. For the case of 2D
tracking, the knowledge of motion estimation confidences has been used to
implement a feature detector that selects the best features for tracking [16],
17]. This principle could therefore be extended to give a feature detector
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Figure 14: Tracking results for a textureless region of the Katy sequence,
using frames {0,20,40}. The top row shows the results using a smooth
motion prior and uniform measurement noise at each patch, and the bottom
row shows the results when the covariances at each patch are used. The
blue lines show the magnitude and direction of the estimated motion at each
patch. Note that with uniform measurement noise at each patch there is
considerable drift, but when the covariances are employed, the patches do
not drift from their original positions.

that finds the best features for 3D patch tracking. Finding texture features
on a surface is not new, as a few authors have already proposed this idea
for the purpose of mesh matching [41], 49]. However, the selection of surface
features for 3D tracking would be both novel and useful, and is a relatively
straightforward extension of the work proposed here.

Another interesting avenue for further work would be the application
of the new technique to a mesh model. The current surface description
does not include any knowledge of connectivity, and instead this has to be
inferred by using the Euclidean distance between patch centres. If possible,
a mesh model should therefore be employed to ensure that only the true
neighbouring surface points are used when enforcing smooth motion. Even
with the change of scene description, it should be noted that this method
would still be relevant: the patch should be used as a motion estimation tool

29



at each mesh node, and the propagation of the Gaussian densities should be
carried out in exactly the same way. It is fairly easy to envisage how the
method described in section [3| could therefore be used to improve existing
mesh based techniques. This would lead to a probabilistic Laplacian mesh
deformation instead [25] [7]. These all assume equal measurement noise at
each point of the surface model, but the ellipsoids in figure (1| clearly show
that this is invalid.
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