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Abstract. Thanks to compact data representations and fast similarity
computation, many binary code embedding techniques have been re-
cently proposed for large-scale similarity search used in many computer
vision applications including image retrieval. Most of prior techniques
have centered around optimizing a set of projections for accurate em-
bedding. In spite of active research efforts, existing solutions suffer both
from diminishing marginal efficiency as more code bits are used, and high
quantization errors naturally coming from the binarization.
In order to reduce both quantization error and diminishing efficiency
we propose a novel binary code embedding scheme, Quadra-Embedding,
that assigns two bits for each projection to define four quantization re-
gions, and a novel binary code distance function tailored specifically to
our encoding scheme. Our method is directly applicable to a wide va-
riety of binary code embedding methods. Our scheme combined with
four state-of-the-art embedding methods has been evaluated with three
public image benchmarks. We have observed that our scheme achieves
meaningful accuracy improvement in most experimental configurations
under k- and ε-NN search.

1 Introduction

Scalable and efficient similarity search plays a key role in many large-scale com-
puter vision applications dealing with high-dimensional data space. One example
is the web-scale image retrieval. Common image descriptors, e.g., Bag-of-visual-
Words or GIST, used for image retrieval have hundreds or thousands of dimen-
sionality, and there are billions of images available on the web.

Traditional solutions adopting hierarchical structures (e.g., kd-trees) [1, 2] do
not provide sufficient scalability in terms of both computational time and stor-
age costs for high-dimensional, large-scale data sets. Recently, embedding high-
dimensional data to short binary codes has been recognized as one of the most
promising approaches to address both high-dimensionality and large-scaleness of
data, since it can provide a compact representation of data and efficient similar-
ity search. Consequently, a lot of binary code embedding algorithms have been
studied lately [3–12]. The core goal of binary code embedding methods is to
preserve similarities among original high-dimensional data in the corresponding
binary codes, i.e. neighbor data points in the original high-dimensional space
should be encoded to similar binary codes.
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Fig. 1. (a) Different quantization schemes for a data set shown in the top row given a
projection. The solid vertical line is a hyperplane associated with the projection, while
two dashed lines are additional partitioning planes, i.e. offset surfaces used for defining
the buffer area. SBQ and DBQ indicate the Single-Bit Quantization and Double-Bit
Quantization [13], respectively. (b) Different distance metrics used in different encoding
schemes. Any pair that does not have distance of 1 or 2 has zero distance. HH is
Hierarchical Hashing [11], which uses the same encoding scheme with Ours.

Most binary embedding methods compute a binary code of each data el-
ement using multiple projections, which can be categorized into two groups:
data-independent and data-dependent methods. Data-independent methods con-
struct the projections based on vectors randomly drawn from some specific dis-
tributions. The well-known work in this category is locality-sensitive hashing
(LSH) [3]. LSH is extended to various similarity metrics [4, 6, 7]. However, re-
cent researches give more attentions to data-dependent methods for designing
more data-friendly projections in order to achieve the higher accuracy. Notable
examples include spectral hashing [5], sequential projection [8], joint optimiza-
tion [9], and iterative quantization [10].

Despite the intensive research efforts to obtain effective projections, there
are still remaining issues; 1) diminishing returns as the number of projections
increases, and 2) quantization errors in high-density regions. The main cause
of the diminishing return is the growing difficulty of defining both independent
and informative set of projections as the number of projections increases. In
regard to the quantization error, quantization boundaries are usually within
dense regions, which is causing neighbor data points can be assigned to different
binary codes [13]. In this paper we aim to resolve these two issues. More precisely,
our contributions are:

– For each projection, we assign two bits to define four quantization regions
as shown in Fig. 1(a) instead of the conventional binary regions based on a
single bit (Sec. 3.2). In addition we propose a novel distance measure between
two binary codes tailored to our binary code embedding scheme (Sec. 3.3).

– We formulate an optimization problem to decide partitioning boundaries of
four regions suitable for our distance metric by minimizing the quantization
error (Sec. 3.4).
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Fig. 2. Results on CIFAR-60K-512D with k-NN (top) and ε-NN search (bottom). Our
method improves accuracy over SBQ and DBQ with different hashing methods. Our
method shows the best results when combined with ITQ [10].

According to our best knowledge, only two existing approaches, Hierarchi-
cal Hashing (HH) [11] and Double-Bit Quantization (DBQ) [13] are aimed for
similar goals that our method strives for. HH allows each projection to have
four quantization states, but used the common Hamming distance that does not
exploit all the benefits of having four states. DBQ quantized projection values
into three different states with two bits and used the Hamming distance (see
Fig. 1). In constrast, our method fully utilizes four states that two bits can
encode, and adopts a specialized distance metric that further lowers down the
quantization error caused by having four regions. To demonstrate benefits of our
method, we have tested our method in three well-known image retrieval bench-
marks in the context of two different types of nearest neighbor search, k-NN
and ε-NN, in Sec. 4. Our method achieves significant improvements in accuracy
over other prior encoding schemes across different hashing methods including
LSH [4], spectral hashing [5], shift-invariant kernel-based LSH [7], and iterative
quantization [10].

2 Related Work

2.1 Image Descriptors

To compactly and robustly represent images, a lot of image descriptors have been
developed. Some well-known examples include Bag-of-visual-Words (BoW) [14]
and GIST [15]. Finding similar images is then reduced to nearest neighbor
search among image descriptors. Since these image descriptors are defined as
high-dimensional vectors (e.g., larger than a few hundreds), performing nearest
neighbor search for such high-dimensional image descriptors in an efficient and
effective manner is very challenging [3]. Conventional approaches such as using
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hierarchical data structures (e.g., kd-trees) [16, 1] based on recursive space par-
titioning have been known to be inefficient for such high-dimensional data in
terms of search time and storage costs.

2.2 Binary Code Embedding Methods

To overcome the difficulty of handling large-scale and high-dimensional data sets,
a significant amount of researches has been put on embedding high-dimensional
data into compact binary codes preserving similarity among original data.

One of the most popular embedding methods is Locality-Sensitive Hashing
(LSH) [3], which uses random projections drawn from a specific distribution.
Many extensions of LSH have been proposed such as LSH with p-stable distri-
butions [4], kernelized LSH [6], shift-invariant kernel-based LSH [7], etc.

Data-independent methods [4, 7] based on the random projections do not
exploit data distributions. Departing from data-independent techniques, data-
dependent approaches have been more widely studied recently because they can
achieve higher accuracy given a fixed code length over data-independent tech-
niques. Spectral hashing [5] derived projection directions based on spectral graph
partitioning. He et al. [9] introduced a hashing technique that jointly optimizes
both search accuracy and time. Heo et al. [12] proposed spherical hashing that
partitions data using hyperspheres instead of commonly adopted hyperplanes.
These data-dependent techniques share similar optimization goals such as bal-
anced partitioning for each hashing function and independence between hashing
functions.

In addition to considering aforementioned optimization goals there are some
efforts to reduce the quantization error of a binary hashing function. Wang et
al. [8] sequentially constructed each hyperplane to reduce the quantization error.
Gong et al. [10] computed hyperplanes based on principal component analysis
and then rotated them to minimize the quantization error iteratively. Joly et
al. [17] used hyperplanes computed by support vector machine that produces
maximum margins between data points and hyperplanes.

2.3 Encoding Schemes with Low Quantization Error

All the prior binary code embedding techniques mentioned in the last section
aim to optimize projections for achieving the similarity-preserving property. On
the other hand, our approach targets for reducing the quantization error and
thus maximizing the discriminative power of given a set of projections.

There have been only a few research efforts on designing encoding schemes
that can reduce the quantization error. Liu et al. [11] interpreted an approximate
nearest neighbor structure with an anchor graph and then applied the graph
Laplacian technique to the graph, in order to construct discriminative projec-
tions. In order to attain higher accuracy, Liu et al. [11] proposed Hierarchical
Hashing (HH) that uses an additional hash bit for each projection that mini-
mizes the cut value of the graph Laplaician. Although HH achieved significant
improvement for Anchor Graph Hashing (AGH) [11], it is not straightforward
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Fig. 3. This figure shows the diminishing return of having more projections for hashing.
Y-axis is the mAP (mean Average Precision) of nearest neighbor search divided by the
number of projections. In the case of data-dependent methods (ITQ [10], GSPICA [9],
and spectral hashing (SH) [5]), mAP values per each hash bit consistently decrease
as the total number of projections increases. However a data-independent technique,
LSH, shows the diminishing return after 128 bit code lengths.

to apply its encoding scheme to other hashing methods. On the other hand, our
technique is orthogonal and can be used together with all the prior embedding
methods mentioned in the last section.

Kong and Li [13] will present a double-bit quantization, a similar strategy to
our method for reducing the quantization error. This technique quantizes projec-
tion values into three states with two bits to inform whether a point is near a par-
titioning hyperplane or not. This technique uses the common Hamming distance
for their encoding scheme. It was applied to prior binary code embedding meth-
ods such as iterative quantization [10] and achieved meaningful improvement.
Unlike this method, our approach utilizes four states, the maximum number of
states that two bits can represent, and adopts a novel distance metric that can
further reduce the quantization error caused by additional hashing boundaries.
We will demonstrate that our method shows noticeable improvements over this
technique in a wide variety of settings.

3 Our Approach

In this section we elaborate the motivation of our approach, followed by explain-
ing components of our method.

3.1 Motivation

Most binary code embedding techniques do not differentiate whether data points
are located closely or far away, when they have the same binary code. This phe-
nomenon is prominent when we encode data points with short binary code sizes.
As increasing their code sizes one can achieve higher accuracy. Nonetheless, the
benefit realized by having more projections, resulting in allocating more bits,
diminishes quickly in most prior binary code embedding techniques, as demon-
strated in Fig. 3. This is mainly because it is difficult to decorrelate hashing
functions and to find useful projections for hashing [11, 13].
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Before presenting our method, we first illustrate the quantization error of
projection-based binary code embedding methods in Fig 1. At a high level, the
quantization error is caused by two opposing cases: nearby points with a high
Hamming distance, and faraway points with a low Hamming distance. We name
these two as inter-quantization and intra-quantization errors, respectively. As an
example of the inter-quantization error, two nearby circular points in the top row
of Fig. 1(a) are partitioned by a hyperplane shown in the solid line and thus have
two different binary codes. Therefore, the Hamming distance between them is
not zero, even though these two circular points are closely located. On the other
hand, the right circular point is far from the rectangular point, but they are
partitioned together in the right side of the hyperplane. This is an example of
the intra-quantization error, since they have the same binary code and thus zero
Hamming distance even though they are located faraway.

Although both cases generating the quantization error are important, we fo-
cus on minimizing the inter-quantization error caused by nearby points with high
Hamming distances. This decision is based on two reasons: first, most hashing
techniques compute a short list of candidate nearest neighbor points by iden-
tifying data points that have zero or low Hamming distance. Once two nearby
points have a high Hamming distance, these nearby points may not be included
in the short list, unless computing an excessively long candidate list. Second, we
can effectively control intra-quantization error by culling out faraway points that
have low Hamming distances from the query point by adopting more expensive
distance computation or re-ranking methods on the short list.

3.2 Binary Code Embedding Function

In order to reduce the inter-quantization error, we introduce a buffer area along
a hyperplane. The buffer area is defined by two offset surfaces that are con-
structed by offsetting the hyperplane (or hypersphere) with offset distance r,
called margin. Two dashed lines shown in the top row of Fig. 1(a) are two offset
surfaces defining the buffer area given a hyperplane denoted by the solid line.

Two offset surfaces with the given hyperplane define four disjoint regions. In
order to encode where a data point x is located among these four regions, our
Quadra-Embedding method allocates two binary bits, h1(x) and h2(x), per one
projection f(x). In the case of using a simple hyperplane for the projection f(x)
is defined by wTx, where w is a normal of the hyperplane; projections based on
kernel techniques [6, 7, 9] and hyperspheres [12] are defined similarly. Specifically,
the first and second hash bits are defined as follows:

h1(x) = sign(f(x)) and h2(x) = sign(|f(x)| − r) (1)

Instead of defining the buffer area with the margin r we can define four regions
in a more general manner with three thresholds {t1, t2, t3} indicating positions
of the left offset surface, the hyperplane, and the right offset surface respectively,
as follows:

h1(x) = sign(f(x)− t2) and h2(x) =

{

0 if t1 ≤ f(x) ≤ t3
1 otherwise

(2)
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Intuitively, the first hash bit h1(x) indicates which side of the hyperplane con-
tains the data point in the same manner of hash bits used in most prior hashing
techniques. On the other hand, the second hash bit h2(x) indicates whether the
data point is inside the buffer area. For a given data point x ∈ R

d, the binary
code X ∈ {0, 1}m of a length m is defined by concatenating two vectors of the
first and second hashing functions, H1(x) and H2(x), each of which is based on
m/2 projections as follows:

X = (H1(x), H2(x)) = (h1

1
(x), · · · , h

m/2
1

(x), h1

2
(x), · · · , h

m/2
2

(x)) (3)

3.3 Hamming Distance for Quadra-Embedding

In order to maximize the benefit of our quantization scheme using two hash
bits, we propose a Quadra-Embedding Distance (QED) function tailored to our
method. The QED between two binary codes, X = (H1(x), H2(x)) = (X1, X2)
and Y = (H1(y), H2(y)) = (Y1, Y2), is defined as follows:

dQED(X,Y ) = 2|(X1 ⊕ Y1) ∧ (X2 ∧ Y2)|+ |(X1 ⊕ Y1) ∧ (X2 ⊕ Y2)| (4)

Intuitively QED between X and Y measures how many regions we should cross
to reach a region of the data point X (or Y ) from the region of the query point Y
(or X). Therefore QED imposes zero distance on neighboring regions. It results
in low inter-quantization errors, since data points are not discriminated by a
single boundary unlike most prior methods.

QED among four disjoint regions is shown in Fig. 1(b). For example, given
the right circular point (having the binary code of 10) in the top row of Fig. 1(a),
the QED against itself (10), the left circular point (00), the rectangular point
(11), and the diamond point (01) are 0, 0, 0, and 1 respectively. Computing our
distance function has only minor overhead compared to the Hamming distance
as discussed in Sec 4.5.

3.4 Threshold Optimization Process

Given our encoding scheme and distance function, it is critical to optimize the
margin of the buffer area or more generally three positional values {t1, t2, t3}
of two offset surfaces and the hyperplane. As we have larger buffer area, the
inter-quantization error given its projection boundary decreases. On the other
hand, a large buffer area makes a hash bit underutilized in terms of discriminative
power. Our goal of optimizing thresholds is minimizing quantization errors along
boundaries while keeping sufficient discriminative power.

For t2 we can simply use the original quantization boundary, to
2
, of a projec-

tion computed by any hashing methods. However, we have found that we can
achieve higher accuracy by mildly optimizing the value of t2 that are not too
far away from to

2
. This is mainly because the original hashing method may not

consider well to lower down the quantization error while constructing projec-
tions. Nonetheless, adjusting the original quantization boundary has a potential
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risk to destruct benefits of the original hashing method. As a result, we adjust
the value of t2 such that it does not deviate much from to

2
, while aggressively

attempting to optimize the locations (t1 and t3) of two offset surfaces.
Let T ⊂ R

d be a training set containing n points and P be a set of projected
data points, i.e. P = {p|p = f(x), x ∈ T}. Our optimization adjusts thresholds
such that projected data points in each region get away from thresholds, in order
to reduce the quantization error. Let four regions divided by three thresholds
be P1, P2, P3, and P4, i.e. P1 = {p ∈ P |p ≤ t1}, P2 = {p ∈ P |t1 < p ≤ t2},
P3 = {p ∈ P |t2 < p < t3}, P4 = {p ∈ P |t3 ≤ p}. We also define µ1, µ2, µ3, and
µ4 to be the mean values of four subsets P1, P2, P3 and P4 respectively. Our
objective is finding thresholds that minimize the following penalty function:

J =
∑

p∈P1

ℓ(p− µ1)
2 +

∑

p∈P2

ℓ(µ2 − p)2 +
∑

p∈P3

ℓ(p− µ3)
2 +

∑

p∈P4

ℓ(µ4 − p)2 , (5)

where ℓ(·) is a filtering function and set to be max(·, 0). ℓ(·) ignores negative
inputs and thus serves as the following two purposes: 1) the filtering function
used in the second and third terms ignores projected data points near the given
hyperplane, in order to less aggressively adjust t2, and 2) the filtering function
used in the first and fourth terms ignores faraway points that do not contribute
much to the change of quantization error, but affect heavily the penalty function.

Values of each term of Eq. (5) can be precomputed for all the possible pairs
of two neighboring thresholds in O(n2) with dynamic programming. We then
find the optimal solution by exhaustively searching all the possible pairs of t1
and t3. Note that as we incrementally change the value of t1 or t3, the optimal
t2 can be computed in a constant time by looking into only a fixed number of
potential candidates. This incremental computation makes our algorithm to run
in O(n2). In practice our algorithm takes approximately 1.44 s on average for
each projection to compute three thresholds with 20 k training data points. For
example, it took less than one minute for 64 bit code lengths.

4 Results and Discussions

In this section we explain our experiment protocols and compare our method
against the state-of-the-art techniques.

4.1 Datasets

We evaluated our method on the following three different image datasets:

– CIFAR-60K-512D: A set of 512 dimensional GIST descriptors [15] from the
CIFAR-10 dataset [18] sampled from Tiny Images [19].

– GIST-1M-960D: A set of 960 dimensional, one million GIST descriptors that
were used by Jégou et al. [20].

– GIST-75M-384D: A set of 384 dimensional GIST descriptors [15] of 75 mil-
lion images from Tiny Images [19].
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4.2 Tested Hashing Methods

In order to test our method, we compared our method against the following
state-of-the-art hashing methods:

– LSH: Locality-Sensitive Hashing [4] with the normalized data to have the
zero mean, as discussed in [10].

– SH: Spectral Hashing [5].
– SKLSH: Shift-invariant Kernel-based Locality-Sensitive Hashing [7] with the

bandwidth parameter, which is the inverse of the mean distance [21].
– ITQ: ITerative Quantization [10] with the normalized data to have the zero

mean.

Since ITQ and SH are based on principal component analysis, the number of
hashing functions cannot exceed the dimensionality of the original data. We
therefore measured the performance up to 256 bits.

4.3 Quantization Strategies

Given the hashing methods mentioned above, we tested different bit allocation
methods as follows:

– SBQ: Single-Bit Quantization which is commonly used in most prior hashing
methods.

– DBQ: Double-Bit Quantization proposed by Kong and Li [13].
– Ours: Our binary code embedding method, Quadra-Embedding.

We tested different quantization schemes with hashing functions computed by
hashing methods listed in Sec. 4.2. We combined one of quantization strategies
with one of hashing methods. To concisely represent them, we use a naming
scheme like LSH-SBQ, which uses SBQ with LSH. As another example, LSH-
Ours denotes our embedding scheme combined with LSH.

We did not compare our method against hierarchical hashing [11], mainly be-
cause hierarchical hashing is not naturally applicable to different hashing meth-
ods listed in Sec. 4.2, and its simplified version (using four regions with DBQ’s
thresholds) has been shown to be consistently inferior than DBQ [13].

4.4 Protocols

We followed the evaluation protocols that have been widely used in recent pa-
pers [12, 17]. We trained hashing functions with randomly chosen 20 k training
points on CIFAR-60K-512D and GIST-1M-960D, 100 k points on GIST-75M-
384D. Then we randomly selected 10 k, 1 k, and 500 queries on CIFAR-60K-
512D, GIST-1M-960D, and GIST-75M-384D rsepectively.

All the experimental results on CIFAR-60K-512D and GIST-1M-960D are
averaged over five independent training times, and results on GIST-75M-384D
are averaged over three independent training times because of its long compu-
tational time.
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Fig. 4. Results on GIST-1M-960D with k-NN (top) and ε-NN search (bottom). Our
method improves accuracy over SBQ and DBQ with different hashing methods. Our
method shows the best results when combined with ITQ [10].

The performance is measured by the mean average precision (mAP), which
is the average area under the recall-precision curves. The ground truths are
computed based on the Euclidean distance by exhaustively testing all the data
sets against query points. We adopted two major protocols for approximate
nearest neighbor search, k-NN and ε-NN. The ground truths of a point x in
k-NN and ε-NN are defined as follows:

gk-NN(x, y) =

{

1 if y ∈ k-NN(x)
0 otherwise

and gε-NN(x, y) =

{

1 if d(x, y) < ε
0 otherwise

(6)

In ε-NN, ε is determined by averaging distances of 50th nearest neighbors from
query points, as used in [13]. In this setting, approximately 299 queries in
GIST-1M-960D and 1731 queries in CIFAR-60K-512D have no nearest neighbors
within ε and thus we ignore these queries for evaluation. For GIST-75M-384D we
measure the performance only with k-NN since computing the ground truths of
ε-NN takes long computational time. We compared different methods including
ours given the same number of bits. Specifically DBQ and our method use only
half of the number of hashing functions that SBQ uses, but allocate two bits for
each hashing function.

4.5 Results

Figure 2 shows results of different methods for k-NN and ε-NN on the benchmark
of CIFAR-60K-512D. Especially for the benchmark we used k = 100 and set ε
to be the average distance of the 50th nearest neighbors, respectively; we have
also tried different k and ε for k-NN and ε-NN, and observed similar results.
Also, Table 1 shows mAP values at 64, 128, and 256 bits for two different types
of nearest neighbor search.
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Table 1. Results on CIFAR-60K-512D dataset.

100-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.1194 0.1516 0.1826 0.1639 0.2408 0.3228 0.2028 0.3411 0.4677

LSH 0.0545 0.0431 0.0452 0.1029 0.0945 0.1156 0.1680 0.1897 0.2317

SKLSH 0.0233 0.0231 0.0336 0.0503 0.0570 0.0875 0.1104 0.1159 0.1833

SH 0.0612 0.0898 0.1380 0.0804 0.1514 0.2194 0.0984 0.1961 0.2387

ε-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.2260 0.2668 0.2921 0.2738 0.3610 0.4395 0.3134 0.4597 0.5831

LSH 0.1396 0.1210 0.1285 0.2062 0.2050 0.2281 0.2771 0.3125 0.3627

SKLSH 0.0821 0.0797 0.1073 0.1366 0.1424 0.1895 0.2267 0.2351 0.3176

SH 0.1178 0.1566 0.2165 0.1454 0.2362 0.3397 0.1704 0.2925 0.3890

In both of k-NN and ε-NN our method shows better results, more than 100%
improvement in some cases, over SBQ and DBQ under different hashing meth-
ods in most cases, especially for 64 or more bits code lengths. For example, our
method achieved 42%, 24%, 65%, and 46% improvement over DBQ when using
ITQ, LSH, SKLSH, and SH with 256 bit length for k-NN, respectively. Also,
compared to SBQ, our method achieved 139%, 40%, 74%, and 191% improve-
ment when using ITQ, LSH, SKLSH, and SH for the 256 bit length, respectively.

Even at a low bit codes (e.g., 32 bits) our method showed a bit lower or mod-
est improvement in most cases. For example, at 64 bits our method showed im-
provement performance over DBQ in all the cases. However, our method showed
a lower accuracy over SBQ only in a single case when combined with LSH.
These results indicate that at low code lengths, more projections give higher
discriminative power over allocating more bits to reduce the quantization error
as we did in our method. On the contrary, as we use more bits to represent
high dimensional data points, our method reduces the quantization errors and
thus improve the overall discriminative power over using all the bits for having
different projections.

While our method showed improved results across different hashing methods,
it achieved the best results with ITQ across all the tested code lengths and
different types of NN search. Since ITQ constructs hashing functions to minimize
the quantization error, the goal of our method aligns best with ITQ and thus
achieved the best results.

We also tested the methods with GIST-1M-960D, which is a much bigger
dataset and has higher dimensionality than CIFAR-60K-512D. Nonetheless in
this benchmark we observed similar results achieved with CIFAR-60K-512D (see
Table 2).

Finally we tested LSH and ITQ in GIST-75M-384D, which is one of the
largest image benchmarks available to computer vision community. Overall re-
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Table 2. Results on GIST-1M-960D dataset.

1000-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.0620 0.0881 0.0899 0.0875 0.1545 0.1989 0.1101 0.2388 0.3415

LSH 0.0264 0.0230 0.0208 0.0573 0.0576 0.0626 0.0970 0.1279 0.1506

SKLSH 0.0129 0.0155 0.0160 0.0347 0.0370 0.0473 0.0790 0.0910 0.1145

SH 0.0239 0.0373 0.0681 0.0379 0.0665 0.1313 0.0595 0.1017 0.1618

ε-NN mAP

# bits 64 128 256

SBQ DBQ OURS SBQ DBQ OURS SBQ DBQ OURS

ITQ 0.2289 0.2585 0.2520 0.2544 0.3304 0.3713 0.2715 0.4164 0.4958

LSH 0.1812 0.1774 0.1734 0.2206 0.2343 0.2484 0.2610 0.3167 0.3458

SKLSH 0.1508 0.1517 0.1651 0.1956 0.2088 0.2380 0.2706 0.2888 0.3257

SH 0.1353 0.1497 0.2003 0.1721 0.2112 0.2903 0.2143 0.2678 0.3385

sults (Fig. 6) on this benchmark are similar to those achieved in other bench-
marks. In data-independent method LSH, our method showed comparable per-
formance with SBQ and DBQ up to 128 bits, while outperforming them after-
wards. With data-dependent method ITQ, our method showed better perfor-
mance from 128 bits.

4.6 Discussions
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Fig. 5. This figure shows ben-
efits of different components
of our method on CIFAR-
60K-512D with k-NN proto-
col and projections computed
by ITQ.

Figure 5 shows additional gains brought by
different components of our method. Ours w/
DBQ-Op. uses our encoding scheme and dis-
tance function, but with the threshold learning
of DBQ [13], while Ours w/ Our-Op. uses our
optimization process mentioned in Sec. 3.4. By
using our encoding and distance function over
DBQ we achieved 29% improvement at 128 bit
length. In addition we achieve 5% additional
gain by using our optimization method.

We also measured distance computation time
of our proposed distance function QED. One mil-
lion distance computations of QED for 256 bit
code lengths took 8.3 ms on average, while the
Hamming distance took 7.4 ms. Our distance
function significantly improved the overall accu-
racy of nearest neighbor search with comparable
computational time to the Hamming distance.



Quadra-Embedding: Binary Code Embedding with Low Quantization Error 13

83313 20.23635

8469 39.59939

7694 169.2177

0

0.02

0.04

0.06

0.08

0.1

32 64 128 256

1
0
0
0
0
-N

N
 m

A
P

 

Binary code length 

LSH-Ours

LSH-DBQ

LSH-SBQ

0

0.05

0.1

0.15

0.2

0.25

32 64 128 256
1
0
0
0
0
-N

N
 m

A
P

 
Binary code length 

ITQ-Ours

ITQ-DBQ

ITQ-SBQ

Fig. 6. Results on GIST-75M-384D with k-NN.

5 Conclusion and Future Work

We have introduced a novel binary code embedding method, Quadra-Embedding
technique for efficient and effective nearest neighbor search for image retrieval.
In order to reduce the quantization error, our method uses two different code bits
for each projection and a specialized distance function tailored to our encoding
scheme. We have explained an optimization method that adjusts the margin of
the buffer area for our method. We have tested our method with two different
types of nearest neighbor search and a diverse set of hashing methods under
three different image benchmarks. We have observed that our method achieves
significant improvement over prior quantization strategies such as single-bit and
double-bit quantizations [13] in most experimental configurations. These results
have demonstrated the usefulness and robustness of our approach.

Many interesting future research directions lie ahead. Our method showed
superior results over SBQ in long code lengths, especially with data-dependent
methods. In case of data-dependent methods, our method showed comparable
accuracy even at 32 bit code lengths and outperformed SBQ afterwards. How-
ever, our method showed a bit lower or comparable performance over SBQ with
LSH at 32 or 64 bit code lengths, while outperforming SBQ afterwards. These
results indicate that it is better to use a single bit for each projection for short
code lengths, i.e. 32 bit code lengths. Also, our approach can be easily extended
to allocate more than two bits per one hashing function. The most important
question that needs to be addressed is how to determine an appropriate number
of bits for each projection. Furthermore, designing a distance metric for this en-
coding scheme would be very challenging and thus we may have to learn useful
metric functions for maximizing the performance of this approach. Currently,
we optimized our encoding scheme given a hashing method. As a next step, it
would be very interesting to jointly optimize both encoding scheme and hash-
ing functions. As demonstrated by the fact that our method achieved the best
results with iterative quantization [10] that also aims to minimize the quantiza-
tion error, this joint optimization can further improve the accuracy of nearest
neighbor search.
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