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Detecting groups is becoming of relevant interest as an important step for scene (and

especially activity) understanding. Differently from what is commonly assumed in

the computer vision community, different types of groups do exist, and among these,

standing conversational groups (a.k.a. F-formations) play an important role. An F-

formation is a common type of people aggregation occurring when two or more per-

sons sustain a social interaction, such as a chat at a cocktail party. Indeed, detecting

and subsequently classifying such an interaction in images or videos is of considerable

importance in many applicative contexts, like surveillance, social signal processing,

social robotics or activity classification, to name a few. This paper presents a princi-

pled method to approach to this problem grounded upon the socio-psychological con-

cept of an F-formation. More specifically, a game-theoretic framework is proposed,

aimed at modeling the spatial structure characterizing F-formations. In other words,

since F-formations are subject to geometrical configurations on how humans have to

be mutually located and oriented, the proposed solution is able to account for these
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constraints while also statistically modeling the uncertainty associated with the posi-

tion and orientation of the engaged persons. Moreover, taking advantage of video

data, it is also able to integrate temporal information over multiple frames utilizing

the recent notions from multi-payoff evolutionary game theory. The experiments have

been performed on several benchmark datasets, consistently showing the superiority of

the proposed approach over the state of the art, and its robustness under severe noise

conditions.

Keywords: group detection, f-formation detection, conversational groups,

game-theory, scene understanding

1. Introduction

The visual analysis of groups is becoming more and more widespread in computer

vision, after decades of research on the automated modeling of individuals (which

still remains an open problem), the goal has moved from encoding simple actions

performed by a single subject to capturing dyads or clusters of social interactions5

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This is of extreme importance in many fields and appli-

cations, also addressing social and life sciences [11, 12]. This seems to be a necessary

step, since humans are essentially a social species, as demonstrated by the fact that in

everyday life people continuously interact with each other to achieve goals or simply

to exchange states of mind. In this paper, we exploit a recent taxonomy presented in10

[13], which indicates that many types of groups can be defined. In particular, we target

standing conversational groups, also known as F-formations [14], that is, groups of

people who spontaneously decide to be in each other’s immediate presence to converse

with each and every member of that group.

Standing conversational groups are of primary importance in many contexts, such15

as video surveillance [7], social signal processing [2, 6, 4, 1], multimedia [3], social

robotics [15], and activity recognition [16], as we will discuss extensively in Sec. 2.

Many studies have been carried out by social psychologists to understand how peo-

ple behave in public. By exploiting the theory behind these findings, we propose novel

and more socio-psychologically principled ways of designing methods for automati-20
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Figure 1: Standing conversational groups: a) in black, graphical depiction of overlapping space within an F-

formation: the o-space; b) a poster session in a conference, where different groupings are visible; c) circular

F-formation; d) a typical surveillance setting where camera is located at 2.5-3 meters from the floor, for

which detecting groups is challenging.

cally analyzing human behavior. For example, Hall [17] proposed that relationships

and levels of interactions could be inferred by considering different physical distances.

Goffman [18] observed that group interactions can be categorized into those that are

‘focused’ and those that are ‘unfocused’. Focused interactions concern the gathering of

people to participate in an activity where there is a common focus, such as playing and25

watching a football match, conversing, or marching in a band. Unfocused encounters

involves light interactions such as avoiding people on a busy street, briefly greeting a

colleague while passing them in the corridor, or indicating to let someone pass when

boarding a train. This taxonomy has been exploited recently in [13] for addressing

F-formations.30

Within the class of focused encounters, the F-formation is a specific type of group

interaction which requires more attention from our senses. Specifically, an F-formation

arises “whenever two or more individuals in close proximity orient their bodies in such

a way that each of them has an easy, direct and equal access to every other participant’s

transactional segment, and when they maintain such an arrangement” [19, p. 243].35

Some examples of F-formations in real-world situations are illustrated in Fig. 1a. There

can be different F-formations as shown in Fig. 2a-e. In the case of two participants,

typical F-formation arrangements are vis-a-vis, L-shape, and side-by-side.

Three social spaces emerge from an F-formation: the o-space, the p-space and the

r-space. The most important part is the o-space (see Fig. 2), a convex empty space40

surrounded by the people involved in a social interaction, in which every participant
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Figure 2: F-formations; a) components of an F-formation: o-space, p-space, r-space; in this case, a face-to-

face F-formation is sketched; b) modeling the frustum of attention by particles: in the intersection stays the

o-space; c) L-shape F-formation; d) side-by-side F-formation; e) circular F-formation.

looks inward, and no external people are allowed. The p-space is a narrow strip that

surrounds the o-space, and that contains the bodies of the conversing people, while the

r-space is the area outward the p-space.

Our goal in this paper is to develop a robust approach to automatically detect F-45

formations from images and videos employing a single monocular camera. As input,

the approach requires the position of the persons in the scene on the ground plane as

well as their body orientation, although in most cases, head orientation is more readily

captured, even under heavy occlusions. These cues are easily obtainable nowadays,

even if they are not estimated very accurately, and many approaches are aimed at ex-50

tracting such information from raw images/videosequences [20, 21, 4]. Among the

few approaches of F-formation detection, a recent experimental work of Setti et al. [22]

shows that substantial improvement in the performance of F-formation detection algo-

rithms can be achieved by combining a probabilistic approach (as [7]) and graph-based

clustering methods [6]. Motivated by these studies, we develop a new sociologically-55

based approach which combines in a natural way the modeling of the uncertainty in

the position and orientation of the subjects and a game-theoretic clustering approach ,

allowing one to extract coherent groups in edge-weighted graphs, digraphs and hyper-

graphs [23, 24]. The game-theoretic setting provides a conceptual framework which

allows us to integrate temporal information in a principled way, in an attempt to re-60

liably extract groups in video sequences under severe noisy conditions. This is done

by using a recent approach to integrate multiple payoff functions in an evolutionary
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game-theoretic setting [25].

This work represents a substantial contribution to group detection in real scenarios.

To date in computer vision, grouping behaviors have been analyzed mainly in dynamic65

situation via tracking, exploiting the oriented velocity as a primary cue, for example

by associating individuals’ tracklets [26, 27, 28, 29, 30, 31, 32, 33, 34]. In our case,

F-formation are manifested primarily when people are still, so that a finer yet robust

analysis is required. Our approach considers in fact the detection of groups in both still

images and videos.70

To test the effectiveness of the proposed approach, we performed extensive experi-

ments over five different datasets, each one representing a particular scenario. In partic-

ular, we used a synthetic dataset [7], the Coffee Break dataset [7], the GDet dataset [7],

the Idiap Poster data dataset [6], the Cocktail Party [5] dataset and two new dataset, one

proposed by Choi et al in [35] and FriendsMeet2 that we propose in this work. We also75

carried out systematic noise resilience experiments to fully investigate the stability and

robustness of our method. The results consistently show the superior or comparable

performances of the proposed approach over the state of the art.

The rest of the paper is organized as follows. A detailed review of the literature

on group detection approaches is presented in Section 2. Our approach is detailed in80

Section 3. In Section 4 we describe the game-theoretic clustering approach we use to

extract F-formations and its extension to multiple affinity matrices. Finally, Section 5

presents the experimental results and Section 6 concludes the paper.

2. Literature review

2.1. Groups85

During multi-party activities, we expect that there is a different underlying struc-

ture that governs the behavior of groups compared to individuals acting independently.

For example, there has been considerable prior work on estimating group activities by

modeling behavior at the individual as well as group level [8, 9, 10, 36]. However,

unlike works that treat all group structures equivalently, our premise is that there are90

fundamental semantic differences in what this prior work has considered to be a ’group’
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and what we refer (from the social psychological literature) as an ’F-formation’ [14].

These prior definitions of a group of people assume that they should be close together

because they are for example, forming a queue, watching a football match, crossing

the road together, or asked to mingle in a specific location. Some of these principles95

informed early socially-motivated methods of people tracking [37] by the social force

model [38], that originated from pedestrian simulation research.

In more semantically meaningful social cases, one can attribute meaning to group-

ings based on some form of acquaintanceship, such as for detecting when people are

traveling together [28, 36] or when people are conversing in a lecture hall [2]. Such100

an interaction requires a focusing of the senses, compared to the other group behav-

iors which can rely more on peripheral and unfocused sensing [18]: an interesting

taxonomy of diverse kinds of social groups in relation to the kind of acquaintanceship

of their members, and especially suited to computational frameworks, can be found

in [13]. The automated analysis of different forms of unfocused and unfocused en-105

counters was investigated extensively by Choi et al. [35] who created a data set of 7

different categories of group types, relating categories such as queues, sitting in a row,

standing in a row, standing facing each other, and others. However in free standing sce-

narios, when people come together physically in order to make conversation, a specific,

unspoken, and mutual agreement is made between all those involved that they wish to110

converse for some extended but finite period of time. Such behavior goes beyond just a

cooperation between people to behave in a socially acceptable manner (e.g. by staying

in line in a queue) and really indicates someone’s willingness to be associated with

someone else, and to actively exchange ideas and build social relations with a person.

Importantly, the region in front of the body in which limbs can reach easily, and115

hearing and sight is most effective was defined as the transactional segment[19]. A

necessary condition of the F-formation was that the transactional segments of all mem-

bers of an F-formation should overlap. Such a region can be considered an individual’s

frustum of social attention.
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2.2. Exploiting visual attention120

Considering this idea of frustum of attention, computer vision researchers have

considered how the head pose can be used as a proxy for visual attention [39]. For

visually led tasks such as looking at adverts [39], considering the visual attentional

mechanisms is useful. However, when considering social contexts, the concept of so-

cial attention is a relatively new domain in the social sciences [40]. More specifically,125

head pose is actually equally if not more perceptually salient as a cue for gaze direc-

tion in humans [40, Ch. 6]. Moreover Kendon studied the role of gaze direction during

conversational interactions suggesting that it functions as a cue for turn-taking, hold-

ing, or yielding [41]. Jovanovic and Op den Akker also found that addressees could be

identified using gazing cues [42], while Duncan found that speakers attracted the gaze130

of listeners [43] during conversations. Finally, Ba and Odobez [44] exploited findings

in primate social behavior by modeling plausible eye-in-head positions for gaze esti-

mation to estimate the visual focus of attention of participants during meetings using

only head pose.

2.3. Conversational groups detection135

For the specific task of detecting F-formations, different approaches have been pro-

posed. Groh et al. [1] proposed to use the relative shoulder orientations and distances

(using markers attached to the shoulders) between each pair of people as a feature vec-

tor for training a binary classification task. Cristani et al. [7] proposed to solve the task

using a Hough voting strategy which accumulated a density estimating the location of140

the o-space. Concurrently, Hung and Kröse [6] proposed to consider an F-formation as

a dominant-set cluster [45] of an edge-weighted graph where each node in the graph

was a person, and the edges between them measures the affinity between pairs.

Later these two approaches were compared by Setti et al. [22] to investigate the

strengths and weaknesses of both approaches for the F-formation task. They found145

that while the method of Cristani et al. [7] was more stable using head orientation in-

formation in the presence of noise, the method of Hung and Kröse [6] performed better

when only position (and not orientation) information was available. Setti et al. [46] also

proposed to handle the physical effect that different cardinalities of the F-formations
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Figure 3: The pipeline of the algorithm

sizes would have on the most plausible physical spatial layout of each member of the150

group. By taking this into account using separate accumulation spaces for each size,

they were able to improve over the original Hough voting strategy proposed in [7]. A

similar density-based approach has also been proposed by Gan et al. [3] where the fi-

nal purpose of the task was to dynamically select camera angles for automated event

recording. Tran et al. have subsequently analyzed temporal patterns of activities [10].155

Choi et al. [35] have modelled different forms of group behaviour discriminatively by

projecting the body positions into 3d space and similar to our model, finding overlaps

in a sampled density space. However, their approach was trying to distinguish differ-

ing group types and is not dedicated to conversational groups. Finally, Setti et al. [13]

presented a graph-cut based minimization for detecting F-formations using proxemic160

data, that even if it shows strong performances, does not include temporal reasoning (it

applies only to static images).

3. Our approach

Given a dataset of frames with positions of the persons and head/body orientations,

the pipeline of the algorithm can be summarized in the following steps:165

1. For each person pi ∈ P in a frame/scene, generate a frustum fi based on his

position and orientation in world coordinates and modeled by a 2-dimensional

histogram (see Sec. 3.1)

2. Compute a pairwise affinity matrix for each pi ∈ P (see Sec. 3.3)
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3. In case a smoothing across multiple frame is required, compute the weights of170

each frame based on the theory of multipayoff games (see Sec.4.1)

4. Extract F-formation (clusters) using evolutionary stable strategy (ESS)-clusters

(see Sec. 4)

3.1. Frustum of attention modeling

Our frustum of social attention is inspired by Kendon’s definition of a transactional175

segment. This takes into account both the field of view of the person and also the

locus of attention of all other senses for a given body orientation. Since it is typically

easier to obtain the head pose rather than the body orientation in crowded environments

(due to occlusions), the head pose provides an approximation of the direction of the

social attention frustum. It is characterized by a direction θ (which is the person’s180

head orientation), an aperture γ (we used γ = 160◦ which was reported by Ba and

Odobez [44], who used the same measure for approximating the range of possible eye

gaze directions given a specific head pose) and a length l specified in cm or in meters

based on the data. These three elements determine the socio-attentional frustum of a

person. In this work we propose a new frustum model based on sampling from two185

probability distributions. In our approach the sampling has a twofold impact in the

whole pipeline:

• application decoupling: it decouples the entire algorithm from a specific model

because using samples and histograms makes the entire approach non-parametric

and thus able to easily accommodate forthcoming models;190

• data smoothing: sampling methods, in general, smooth noisy data by looking for

a statistical consensus. It is quite common in our scenario to deal with unreliable

data since tracking, detections, head orientations, etc. are all noisy and prone to

errors;

The new model differ from [47] in two fundamental aspects:195

• sampling method: previously, samples were drawn from a 2D Gaussian distribu-

tion which was chopped based on the field of view (see Fig. 5a). Each sample

was subsequently marked as valid or not and the drawning process stops until the
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(a) (b)

Figure 4: a) The probability distribution over the orientations and b) the distance from the person.

desired number of valid samples was reached. This approach is time consuming.

The samples generated using our new method are all valid by default speeding200

up the entire process.

• peripheral view: the new method is more expressive since it is able to capture

the peripheral field of view (see Fig. 5b) emboding the natural lateral decay of

the human view instead of the sharp boundaries of the previous approach.

These two modifications are reflected into an higher performances and an overall205

speedup of the algorithm. More precisely, the proposed new frustum is based on a

combination of two probability distributions, a Gaussian distribution G and a Beta

distribution B.

The G distribution (see Fig4 a) is used to generate samples related to the aperture of

the frustum so is centered in the head orientation θ of a person with a variance set such210

that the full width of the Gaussian distribution corresponds to the desired aperture of

the frustum. In a Gaussian distribution the 99% of the samples are located in the range

of [−3σ, 3σ]; this range will correspond to the full aperture of the frustum, so that

setting the variance in a way that the aperture is fully covered becomes an easy task,

σ = 1
3 ∗

γ
2 .215

The B distribution (see Fig4 b) is used to generate samples that are dense in close
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Figure 5: a) The old frustum model proposed in [47]. b) the newer frustum based on the sampling from the

two distribution.

proximity of the person while decades going far away, to achieve this shape we set the

distribution parameters α = 0.8 and β = 1.1 (see Fig5a). The values returned by theB

distribution are bounded in [0, 1] and need to be multiplied by the desired length of the

frustum l. The samples obtained using these two distributions are in polar coordinates220

(an angle and a distance), to obtain samples in the 2D space is sufficient to apply a

simple trigonometric rule to each of them. Given a pair of samples from G and B

(Gi, Bi) and the position of a person (px, py) the 2D position of each sample is:

sx = px + cos(Gi) ∗Bi ∗ l (1)

sy = py + sin(Gi) ∗Bi ∗ l

Drawn independently n samples from both the distributions and applying the above

equations we obtain a set of samples that falls in the human frustum of visual attention.225

With respect to the previous model there is no need to have a continuous sampling

until the desired number of samples are reached, because all pairs of sample generated

from the N and B distributions are already valid without the need of pruning the un-

biological ones and making the approach faster.

Using the approach in [47] with the number of samples n = 5000 the time to generate230

the feasible samples is ' 0.161s while with the new method is ' 0.008s, speeding
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up the entire algorithm twenty time the previous approach. Each person in a scene is

thus modeled using his/her frustum represented as 2-dimensional histogram hi of size

Nc ×Nr, normalized by the number of samples (n), where Nc and Nr span over the

area of the scene captured by the camera.235

3.2. Histogram binning

In order to decide the best binning of the 2D histogram we decided to carry out

an extensive experimentation over all the publicly available datasets to see which size

gives the better trade-off between required space to store the histograms and perfor-

mances. We tested the performances using binning ranges from [5, 10, 15, 20, 30, 50,240

100, 150, 200, 300, 400], obtaining the F1-score plotted in Fig.6.
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Figure 6: F1 score on each dataset by changing the number of bins in the histogram. As one can see the

performances are quite stable if the binning varies from 10 to 100.

Summing the F1-score obtained on each dataset for a particular binning it is possible to

rank the performance, obtaining the Table3.2: Here we ca see (Table3.2) that the best

performances are obtained using Nc = Nr = 50 or 20 bins; since their performance

difference is very low (0.002), we decided to use histograms of size 20x20 to keep the245

size as smaller as possible without losing the strengths of the method.
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#Bins Rank #Bins Rank #Bins Rank

50 4,974583 100 4,948771 200 4,757109

20 4,972243 10 4,918738 300 4,423196

15 4,96876 150 4,844176 400 3,843835

30 4,968515 5 4,786053

Table 1: This table show the overall performances of the F1-score across different dataset using different

binning. Rank are based on the sum of the F1-scores.

3.3. Quantifying pairwise interactions

Two persons are more likely to be interactants if their social attention frustums over-

lap. By quantifying the pairwise interaction as a distance between distributions, we are

able to encode the uncertainty about the true transactional segment of the persons given250

their head pose. Since we are dealing with histograms that represent discrete probabil-

ity distributions, it is natural to consider information-theoretic measures to model the

distance between them.

Given a pair of discrete probability distributions P = {p1, . . . , pn} and Q =

{q1, . . . , qn}, the first natural choice to measure their distance is given by the well-255

known Kullback-Leibler (KL) divergence, which is defined as:

D(P ||Q) =

n∑
i=1

log pi
pi
qi

(2)

The KL-divergence is known to be asymmetric. A symmetric version of the KL-

divergence measure is the Jensen-Shannon (JS) divergence [48], which is defined as:

J(P,Q) =
D(P ||M) +D(Q||M)

2
(3)

where M = 1
2 (P +Q) is the mid-point between P and Q. Hence, given two persons i

and j in a scene and their vectorized histograms hi and hj , the distance between i and260

j can be calculated either as D(hi||hj) or as JS(hi, hj).

To obtain a measure of affinity, rather than distance, between each pair of his-

tograms we used the classical Gaussian kernel:

γ(i, j) = exp

{
−d(hi, hj)

σ

}
(4)
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where the funtion “d” refers to either the KL- or the JS-divergence. The parameter

σ in Eq. 4 allows intrinsic properties of the scene (e.g., how far people usually stand265

from each other when they are in an F-formation) to be taken into account. Once we

calculate this measure, it becomes possible to find groups of persons that are interacting

by exploiting a grouping game, as described in the next section.

4. Grouping as a non-cooperative game

In this work we cast the approach proposed in [23] in the problem of detecting F-270

formations in terms of a non-cooperative clustering game. We choose this clustering

algorithm for a series of desirable properties:

• The similarity function is not required to be a metric, so it is usable with the

Kullback-Leibler.

• Setting an a-priori number of clusters, like in the k-means procedure, is not275

needed. This is useful, since the number of groups in a scene in unknown.

• Game-theory domain provides us the theoretical foundation to integrate multiple

payoff matrices, which is of valuable importance when dealing with different

temporal instants (see Sec.4.1).

Despite the above properties and for the sake of completeness, the performances of the280

game-theoretic clustering in this scenario has been compared with a more traditional

method, the Spectral Clustering [49] algorithm, showing the superiority of the first

method. The details of the experiment and the quantitative results has been reported

respectively in Sec.5.3.3 and in Table 3 (see ”R-GTCG SC” rows).

285

Given a set of elements O = {1 . . . n} and an n× n (possibly asymmetric) affinity

matrix A = (aij) which quantifies the pairwise similarities between the objects in O,

we envisage a situation whereby two players play a game which consists of simultane-

ously selecting an element from O. After showing their choice the players get a reward

which is proportional to the similarity of the chosen elements. In game-theoretic jargon290

the elements of set O are the “pure strategies” available to both players and the affinity

14



matrix A represents the ”payoff” function (specifically, aij represents the payoff re-

ceived by an individual playing strategy i against an opponent playing strategy j). In

our application, the objects to to be grouped (namely, the pure strategies of this group-

ing game) correspond to the persons detected in a scene, the payoff function being the295

similarity measure between subjects as described in the previous sections.

A central notion in game theory is that of a mixed strategy, which is simply a

probability distribution x = (x1, . . . , xn)T over the set of pure strategies O. Mixed

strategies clearly belong to the (n− 1)-dimensional standard simplex:

∆ =

{
x ∈ Rn :

n∑
i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
. (5)

Given a mixed strategy x ∈ ∆, we define its support as σ(x) = {i ∈ O : xi > 0}.

The expected payoff received by an individual playing mixed strategy y against an

opponent playing mixed strategy x is given by yTAx. The set of best replies against

a mixed strategy x is defined as β(x) = {y ∈ ∆ : yTAx = maxz zTAx}. Finally,

a mixed strategy x ∈ ∆ is said to be a Nash equilibrium if it is a best reply to itself,

namely if x ∈ β(x) or, in other words, if

xTAx ≥ yTAx (6)

for all y ∈ ∆. If inequality holds strictly, then x is said to be strict Nash equilibrium.

Intuitively, at a Nash equilibrium no player has an incentive to unilaterally deviate

from it. The clustering game is supposed to be played within an evolutionary setting300

wherein the two players, each of which is assumed to play a pre-assigned strategy, are

repeatedly drawn at random from a large population. Here, given a mixed strategy x ∈

∆, xj (j ∈ O) is assumed to represent the proportion of players that is programmed

to select pure strategy j. A dynamic evolutionary selection process will then make

the population state x evolve according to a survival-of-the-fittest principle in such a305

way that, eventually, the better-than-average (pure) strategies will survive while the

others will get extinct. Within this context, a mixed strategy x ∈ ∆ is said to be

an evolutionary stable strategy (ESS) if it is a Nash equilibrium and if, for each best

reply y to x, we have xTAy > yTAy. Intuitively, ESS’s are strategies such that

15



any small deviation from them will lead to an inferior payoff (see [50] for an excellent310

introduction to evolutionary game theory).

In [23, 24] a combinatorial characterization of ESS’s is given which makes them

plausible candidates for the notion of a cluster (which they call ESS-cluster). The

motivation behind this claim resides in the property that ESS-clusters do incorporate

the two basic features which characterize a cluster, i.e.,315

• internal coherency: elements belonging to the cluster should have high mutual

similarities;

• external incoherency: the overall cluster internal coherency decreases by intro-

ducing external elements.

We refer to [23, 24] for details. One of the distinguishing features of this approach is320

its generality as it allows one to deal in a unified framework with a variety of scenarios,

including cases with asymmetric, negative, or high-order affinities. Note that, when the

affinity matrixA is symmetric (that is,A = AT ) the notion of an ESS-cluster coincides

with that of a dominant set [45], which amounts to finding a (local) maximizer of

xTAx over the standard simplex ∆.325

Algorithmically, to find an ESS-cluster one can use the classical replicator dynam-

ics [50], a class of dynamical systems which mimic a Darwinian selection process over

the set of pure strategies. The discrete-time version of these dynamics is given by the

following update rule:

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)TAx(t)
(7)

for all i ∈ O. The process starts from a point x(0) usually close to the barycenter of the

simplex ∆, and it is iterated until convergence (typically when distance between two

successive states is smaller than a given threshold). It is clear that the whole dynamical

process is driven by the payoff function which, in our case, is defined precisely to favor

the evolution of highly coherent objects. Accordingly, the support σ(x) of the con-330

verged population state x does represent a cluster, the non-null components of which

providing a measure of the degree of membership of its elements.
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Figure 7: Pipeline for the multipayoff approaches.

The support of an ESS corresponds to the indices of the elements in the same group.

To extract all the ESS-clusters we implemented a simple peel-off strategy: when an

ESS-cluster is computed the corresponding elements are removed from the original335

and the replicator dynamics is executed again on the remaining elements.

4.1. Integrating multiple frames in video sequences

When dealing with videos, the inter-frame smoothness between consecutive frames

can be exploited to face cases of noisy data, such as wrong positions or head orienta-

tions. The idea is simply to consider a buffer of K frames: at time t, we will have340

knowledge of the frames at time t−K+ 1, . . . , t, which can be used jointly for a more

robust group estimation. This keeps the process of group modeling on-line (it can lie on

top of the tracking algorithm), while permitting to prune out noise in an effective way.

Assuming that the movement of the same person between frames is smooth, given a set

of K consecutive frames, the problem is then to somehow integrate the corresponding345

affinity matrices to perform the grouping process.

From our game-theoretic perspective this problem can be seen in the context of

multiple-payoff (or multi-criteria) games, a topic which has been the subject of in-

tensive studies by game theorists since the late 1950’s [51, 52, 53, 54]. Under this

setting, payoffs are no longer scalar quantities but take the form of vectors whose com-350

ponents represent different commodities. Clearly, the main difficulty which arises here

is that the players’ payoff spaces now can be given only a partial ordering. Although in

”classical” game theory several solution concepts have been proposed during the years,

the game theory community has typically given little attention to the evolutionary set-
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ting. Recently, a solution to this problem has been put forward by Somasundaram and355

Baras [25] who extended the notion of replicator dynamics and that of an ESS using

the concept of Pareto-Nash equilibrium. Another recent attempt towards this direction,

though more theoretical in nature, can be found in [55].

In the work reported in this paper, we follow the idea proposed in [25]. Using

concepts from multi-criteria linear programming (MCLP) [56] they proposed a no-360

tion of Pareto reply and of Pareto-Nash equilibrium and showed the equivalence with

”weighted sum scalarization”, a classical technique from multi-objective optimization

(see, e.g., [56]). Basically, this means that a Pareto-Nash equilibrium can be achieved

by integrating the K affinity matrices as follows:

Â =

K∑
i=1

ŵiAi (8)

where the ŵi’s (i = 1 . . .K) represent appropriate non-negative trade-off weights as-365

sociated to the different matrices, subject to the constraint
∑
i ŵi = 1. Formulated

in this way, the problem of determining a Pareto-Nash equilibrium in a multi-payoff

scenario is now reduced to the problem of determining the correct trade-off weights

and this in turn can be done by solving a multi-objective linear programming problem.

To this end, following [25], in our experiments we used the multi-objective simplex370

method described in [56, Chapter 7] (see also [25] for details).

The algorithm described above provides as output a set of weight vectors which

allows one to obtain the whole Pareto front of the original multi-objective problem.

However, in practice, in a decision-making context like ours one has to obtain somehow

a single solution but, in general, it is not clear how to do it since it might depend on375

subjective or other extra-criterion preferences on the decision maker’s part. Below we

provide some heuristics which are motivated by the following empirical observations.

1. If the matrices are all very similar to each other the weights generated are uni-

formly distributed meaning that the matrices are all equally important.

2. If a matrix is very different from the other ones (e.g. one noisy frame) it gets the380

highest weight.

At a first glance, the straightforward idea is to remove the matrix with the highest
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weight, unfortunately this could lead to very bad results because the most diverse could

be the matrix without corruption if two frames are taken into account. Given a set of

weights W = {w1, . . . , wn}, in which each wi is an K-dimensional vector represent-385

ing the weight for each payoff matrix A1...K , we propose the following heuristics to

select/generate the proper set ŵ:

4.1.1. Normalized sum of the weights

The set W can be seen as a k×nmatrix in which each column is a feasible solution

from the Pareto front. The final weights are computed summing the rows of the matrix390

W and normalizing the result by the sum, so that
∑n
i=1 ŵi = 1:

ŵi =

n∑
j=1

Wj,i

ŵi =
ŵi∑K
i=1 wi

(9)

this heuristic has been used in [47] to solve the problem of highly unbalanced weights

that occur when few frames in the window are available (in particular in case of two

frames). Few frames, in general, produce a reduced set of feasible solutions. Moreover,

in the case of noise, the algorithm assigns an higher weight to the more dissimilar

matrix (the correct or the corrupted ones), ending up into a set of unbalanced weights

with the limit case of weights in {0,1}. For example, given two consecutive frames

(A,B) with B the corrupted ones, a possible set of weights can be:

W =


w1 w2

A 0.99 0.01

B 0.01 0.99


If the w1 is taken the uncorrupted matrix is chosen while taking w2 the opposite hap-

pens. Choosing w2 lead to a poor performances or wrong grouping since the corrupted

frames is chosen. As one can see, making a decision in this context is very complicated

because we have no prior information on whether the noise is and the weights are not395

informative enough. To avoid to make this choice, a statistical consensus is searched

by meaning the possible solution. This heuristics, in the previous example, will assign
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the same weights ŵA = ŵB = 0.5 to both the frames. Thus in the final matrix at least

half of the correct data are kept from A and half of the corrupted data from B are left. In

case that more frames are taken into account, the number of possible weights become400

larger and thus the true importance of each frame emerges naturally by meaning the

weights.

4.1.2. Weighting of the solutions

The rationale of this approach is to weigh each solution w ∈ W based on the

similarity with respect to the other; this leads the most similar one to be chosen as the405

most representative, while the others participate less in the final solution. A way of

deciding the weights is using the characteristic vector provided by the Dominant Set

[45] approach. A graph G=(V,E,ω) is created in which V = W , the set of weights,

and the similarity between pairs of weights i, j is ω(wi, wj) = e−||wi−wj ||2 . The first

dominant set is extracted and the corresponding characteristic vector x is used to weigh410

each w. The final weight is:

ŵi =

n∑
j=1

xj ∗Wi,j

ŵi =
ŵi∑K
i=1 wi

(10)

4.1.3. Maximal Entropy

The rationale is to select the set of weights which are close to an uniform distri-

bution, in order to prune trivial solutions (the ones having only one matrix with full

weight) and keeping the peculiar characteristics of different payoff matrices in which415

each matrix is represented.

ŵ = arg max
w∈W

(
−
∑
i

wi log2 wi

)
(11)

4.1.4. Consensus of Clustering Ensemble

The rationale here is that, since each set of weights w ∈ W represents a feasible

theoretical solution, we use each set separately to extract the groups of people from420

an image obtaining n different possible groupings. The final solution is generated

20



via ”consensus” between the different groupings from the n solutions. Given a set of

groupings, the consensus is found by an evidence accumulation matrix E = m ×m,

similar to [57], in which m is the maximum number of persons in the scenes and Ei,j

counts the number of times that persons i and j are grouped together in n different solu-425

tions. The E matrix is then divided by the number of solutions n. The final grouping is

then obtained through clustering over the matrix E using the Dominant Set approach.

5. Experiments and Results

We carried out experiments considering both the single- (Sec. 5.3) and multiple-

frame methods (Sec. 5.4) in ideal and noisy situations. In the former, F-formations430

are estimated on each single frame independently, while in the latter we perform inte-

gration over consecutive frames in order to filter out noisy detections. Moreover, the

robustness of the method injecting increasing levels of noise (Fig.9) has been tested.

5.1. Datasets

The seven datasets used (see Tab. 2) are the current publicly available benchmarks435

for detecting F-formations, where for each individual in a scene its x, y position and the

head orientation are provided. Consecutive frames are available for three of them with

a low frame rate. In four cases the annotation has been done via automatic tracking

while other two were manually annotated by the respective authors as stated in Tab. 2.

The datasets that are used in this work are all in world coordinates, with a top-view440

camera setting, except for the Idiap Poster data, which used an orthogonal projections

of a 3-D bounding box overlayed on people in the scene to determine the position of

each person in the image plane.

FriendsMeet2 (FM2). It consists of an extensions of the FriendsMeet proposed in [58];

this version is composed by the 15 original real sequences, in which additionally the445

head orientation has been manually annotated in each sequence. This results in 10685

annotated frames, the biggest dataset for group detection available to date. The head

orientation annotation has been done in the image plane by pointing to the head of

the person and drawing a line in the direction where she/he is looking. Through the
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available homography has been possible to convert the line from image plane to world450

coordinates obtaining the real head angle on the ground plane. The ground-truth for

the groups is the same as in the original dataset.

Discovering Groups of People in Images (DGPI). This dataset has been recently pro-

posed by Choi et al. [35] and is composed of 599 images of different real environments.455

Groups are divided into 7 categories based on the internal disposition of the persons:

queuing (Q), standing facing each other (SF), sitting facing-each-other (OF), sitting

on the ground facing-each-other (GF), standing side by side (SS), sitting side by side

(OS), sitting on the ground side by side (GS). For each image, the annotation of the per-

sons position, head orientation, the groups and the corresponding types are provided.460

The dataset has been not specifically designed for the task of conversational groups

detection and, on the basis of the hypothesis that facing is mandatory to converse, we

use only the groups of facing people (SF, OF, and GF) as our ground-truth.

PosterData [6]. It consists of 3 hours of indoors video in the large atrium of an hotel

building with over 50 people during a scientific meeting involving poster presentations465

and a coffee break. The cameras were mounted from above pointing downwards to

record the scene. The 82 distinct image frames were selected based on maximizing

differences between images, ambiguity in group membership and varying levels of

crowdedness. 21 trained annotators were split into 7 groups (3 persons each) who

annotated 10-11 images for F-formations, leading to a subjective representation of the470

ground-truth.

CocktailParty [5]. The CocktailParty dataset contains 16 minutes of video recordings

of a cocktail party in a 30m2 lab environment involving 7 subjects. This scenario was

recorded using four synchronized angled-view cameras (15Hz, 1024 × 768px, jpeg)

installed in the corners of the room. The dataset is challenging for video analysis due to475

frequent and persistent occlusions given the highly cluttered scene. Subject’s positions

and horizontal head orientations were logged using a particle filter-based body tracker
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with head pose estimation. Groups were annotated manually by a trained expert every

3 seconds, resulting in a total of 320 distinct frames for evaluation.

CoffeeBreak [7]. The dataset focuses on a coffee-break scenario of a social event,480

with max 14 individuals organized in groups of 2-3 people. People positions were esti-

mated by exploiting multi-object tracking of the heads, and head orientation detection

has been performed afterward, considering solely 4 possible orientations (Front, Back,

Left, Right). The tracked positions were projected onto the ground plane. A trained

expert annotated the videos indicating the groups present in the scenes (in combination485

with questionnaires that the subjects filled in about the number of people they spoke

with) on two different coffee-break events, for a total of 45 frames for Seq1 and 75

frames for Seq2, acquired every 3 seconds.

Synth [7]. A trained expert synthesized 10 different situations, with F-formation and

singletons. Each situation is repeated 10 times, with slightly varying positions and head490

orientations of the subjects. Here, noise (in position and orientation) is absent.

GDet [7]. The scenario consists in a vending machines area where people take coffee

and other drinks, and chat. In this case, head orientation considers solely 4 possible

alternatives and, since the frame rate is very low, the multiple frame approach cannot

be applied.495

As comparative approaches, we consider the Hough-based approach of [7] in its re-

newed version of [22] (HFF), the hierarchical extension of the Hough-based approach

of [46] (MULTI), the dominant set-based technique of [6](DS), and the approach of

Choi et al [35]. Comparison with other baselines are not reported in Tab. 3 since they500

are already carried out and reported in [22, 7].

5.2. Evaluation metrics and parameter exploration

In terms of evaluation, as in [22], we consider a group as correctly estimated if at

least d(T · |G|)e of their members are correctly detected by the algorithm, and if no

more thand(1 − T ) · |G|e false subjects are identified, where |G| is the cardinality of505

23



Dataset #Sequences #Frames Consecutive Automated

Frames Tracking

FriendsMeet2 15 10685 Y N

DGPI 1 599 N Y

CoffeeBreak 2 45,74 Y Y

CocktailParty 1 320 Y Y

GDet 5 132,115,79,17,60 N Y

PosterData 82 1 N N

Synth 10 10 N N

Table 2: Datasets: multiple #Frame indicate diverse sequences, in these cases the final results are averaged

over the sequences and normalized by the number of frames.

the labeled group G, and T = 2/3. The DGPI [35] dataset uses a different criterion to

evaluate the performances: a group is correctly detected if at least half of the persons

in a detected group matches a group in the ground-truth. In practice, it is the same cri-

terion as above but with T parameter equal to 0.5. Based on this metrics, we compute

precision, recall, and F1-score per frame; averaging these values over the frames gives510

the final scores.

Different combinations of parameters are explored and validated on each dataset. In

particular, we examine the performance of our approach when using the similarity

function in Eq.4 with the distance function in Eq.3 (as suggested by [47]), and by vary-515

ing the value of σ in the range {0.1, 0.2, 0.4, 0.5, 0.7, 0.9}. To explore the effect of

the length of the frustum we based our analysis on the studies conducted in [59, 60] in

which a focused encounter between two persons may occur between 45 cm to 2 meters;

correspondingly, the parameter l will range in the same interval.

5.3. Single-frame experiment520

In this experiment, we apply our method on several publicly available datasets and

one new dataset proposed in this paper. The section is subdivided into two parts, the
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first in which we compare our method with consolidated public benchmarks, and the

last one dedicated to the new datasets.

5.3.1. State-of-the-art datasets525

Tab. 3 shows the parameters used and the quantitative results obtained in the single-

frame modality, and in Fig.8 qualitative results of our group detector are shown in

comparison with the HFF method [7]. As done in the comparative approaches, we

show here the performances obtained with the best parameter settings using the Jensen-

Shannon (JS) divergence, and averaged over 10 runs to evaluate the stability. As shown,530

the only cases where our approach does not outperform the state-of-the-art [6] is on the

Poster Data, with a difference of 1% in the precision with respect to HHF, and in the

recall of the CoffeeBreak with a difference of 1% , a difference which is still below

the variance found in the experiments. In the other cases, the results are definitely

superior, saturating for example the synthetic benchmark, and outperforming by over535

10% the F1-score on the GDet and the CocktailParty. In the IRPM approach, results are

considerable low, since the F/formation modeling was one of the first being formalized

in computer vision from the sociological literature. In particular, it stated that a group

is formed by people whose view frustum intersect, without accounting for occlusions

among people. This generated many false positives that, in turns, cause the approach540

to lose many good groups (in other words, a group is estimated accounting the wrong

people, which in turns may have been involved in other formations). It is worth noting

that the performances across the different runs of the algorithm have been quite stable,

with a maximum variance about 0.6% for both the precision and recall values.

545

5.3.2. New datasets

The results on the DGPI dataset are reported in Table 4. The features on this dataset

are automatically annotated and for this reason this dataset is represents a very chal-

lenging test bed. The comparison with [35] has been made by taking as our ground-

truth the union of the ground-truths of the facing persons, and we compared our results550

with the average on the related ground-truth obtained by [35]. The reported values
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CoffeeBreak (S1+S2) PosterData Gdet

Method ? Prec Rec F1 Prec Rec F1 Prec Rec F1

IRPM [61],[22] 0.60 0,41 0,49 - - - - - -

HFF [22] 0,82 0,83 0,82 0,93 0,96 0,94 0,67 0,57 0,62

DS ([6], [22])* 0,68 0,65 0,66 0,93 0,92 0,92 - - -

MULTISCALE [46] 0,82 0,77 0,80 - - - - - -

GTCG [47] KL 0,80 0,84 0,82 0,90 0,94 0,92 0,76 0,75 0,75

GTCG [47] JS 0,83 0,89 0,86 0,92 0,96 0,94 0,76 0,76 0,76

R-GTCG SC 0,52 0,59 0,55 0,26 0,27 0,26 0,75 0,75 0,75

R-GTCG 0,86 0,88 0,87 0,92 0,96 0,94 0,76 0,76 0,76

σ=0.2 , l=145 σ=0.25 , l=115 σ=0.7 l=180

Cocktail Party Synth

Method ? Prec Rec F1 Prec Rec F1

IRPM [61],[22] - - - 0,71 0,54 0,61

HFF ( [7], [46] ) 0,59 0,74 0,66 0,73 0,83 0,78

MULTISCALE [46] 0,69 0,74 0,71 0,86 0,94 0,90

GTCG [47] KL 0,85 0,81 0,83 1,00 1,00 1,00

GTCG [47] JS 0,86 0,82 0,84 1,00 1,00 1,00

R-GTCG SC 0,77 0,72 0,74 0,40 0,90 0,56

σ=0.6 , l=170 σ=0.1 , l=75

R-GTCG 0,87 0,82 0,84 1,00 1,00 1,00

Table 3: Results on single frame: only the best results are shown while the parameters are discussed in the

paper (σ in Eq.4 and l in Eq.1). The comparative methods are: IRPM [61], HFF [7], DS [22], MULTISCALE

[46], GTCG [47], ”R−GTCG” our method and ”R-GTCG SC” the results of our method using the Spectral

Clustering technique instead of the game-theoretic-clustering. * Note that in [22] the parameters for the DS

method were not fully optimised.? In case of double citations, the first one refer to the original method while

the latter refers to the more recent paper from which the results has been taken.

are calculated using the result from the full model in Table 2 of [35]. If all the seven

ground-truth classes are considered as generic groups and used for evaluating our ap-
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(a) Seq 1 (b) Seq 1 (c) Seq 2 (d) Seq 2

Figure 8: Qualitative results on the CoffeeBreak dataset compared with the state of the art HFF [7]. In yellow

the ground-truth, in green our method and in red HFF. As evident from (a,b,c,d) HFF often fails in detecting

groups of more than two persons while our approach is more stable.

Prec Rec F1-score

Choi et al [35] 0.59 0.65 0.62

Our 0.54 0.57 0.56

Table 4: Results obtained on the DGPI dataset.

proach, we have very high figures with a precision reaching 0.99, a recall of 0.73, and

an F1-score of 0.84. Unfortunately, in [35] only the average over the detections per555

type of groups is reported (precision 0.50, recall 0.44, and F1-score 0.47), so this com-

parison is not completely fair but it gives an indication of the goodness of our approach

also in these conditions.

The results on the FM2 dataset are reported in Table 5, the parameters used in this560

dataset are the same for all the sequences, since there is no change of the viewpoint,

l = 1.5 and σ = 0.5. As one can note, the performance is very low in three sequences

(Seq 11, 12, and 13): this is motivated by the fact that in these sequences there are

no conversational groups but persons that are queuing or walking producing a lot of

false positives. If we keep only the sequences in which persons are facing and inter-565

acting (Seq1 to 10, Seq14 and Seq15), we obtain very good performances with a mean

precision of 0.886 , recall equal to 0.862 , and F1-score equal to 0.873.
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Seq1 Seq2 Seq3 Seq4 Seq5

Prec 0.88441 0.92537 0.74896 0.85863 0.90859

Rec 0.82137 0.93419 0.74896 0.7578 0.87165

F1 0.85172 0.92976 0.74896 0.80507 0.88974

Seq6 Seq7 Seq8 Seq9 Seq10

Prec 0.9289 0.91389 0.68278 1 0.97187

Rec 0.9289 0.91854 0.65559 0.99804 0.93095

F1 0.9289 0.91621 0.66891 0.99902 0.95097

Seq11 Seq12 Seq13 Seq14 Seq15

Prec 0.41232 0.11231 0.12818 0.86818 0.93551

Rec 0.30806 0.13478 0.1409 0.86818 0.91408

F1 0.35264 0.12252 0.13424 0.86818 0.92467

Table 5: Results on the different sequences of the FriendsMeet2.

5.3.3. ESS-clustering vs. Spectral Clustering

The rationale of this experiment is to compare the overall performances of our

pipeline when changing the clustering method in the last step. To this end a more tradi-570

tional clustering technique, the spectral clustering [49] algorithm 1, has been chosen. In

this experiment the last step (the fourth) of the pipeline has been changed, substituting

the Game-Theoretic-clustering method with the Spectral Clustering and keeping the

remaining steps fixed. The single-frame modality on all the state-of-the-art datasets

has been explored since the interest is to prove the validity of our clustering choice575

rather than other steps of the algorithm. The evaluation criteria are exactly the same

as the other experiments and the quantitative results have been reported in Table 3 (see

”R-GTCG SC” rows) showing the superiority of the game-theoretic approach.

1Note that since the number of groups in a scene (number of clusters) are not known a-priori, the spectral

gap heuristic [49] has been used to find the proper subdivision of the data
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5.4. Multiple-frame experiment

In this experiment we carried out the analysis in case of noisy unreliable data, faced580

using the multi-payoff game theory proposed in Sec. 4.1. This analysis involves the

injection of noise in the data, and in particular in the head orientation rather than in

the person position; this because the orientation is the most problematic feature to be

automatically extracted and so the more noisy. Given a window of K frames, the noise

is added to the head orientation on an increasing number frames and persons in the585

scene, and is expressed in percentage. In particular, the amount of frames and persons

affected by noise was set by selecting from these values: F = {0%, 25%, 50%, 75%},

where the percentages indicate both the number of corrupted frames (whose time in-

dexes have been sampled uniformly without replacement from the entire sequence)

and the number of people affected by the noise. For example, in a sequence with590

100 frames and 8 persons, setting a noise of 25% means to have 25 random frames in

which the head orientation of 2 (random) individuals is altered by noise. Considering

the following size of the windowK = {1, 2, 3, 4, 5, 7, 9} of frames, we explore our ap-

proach applying the temporal integration. The JS divergence has been used to generate

the similarity matrices because it produces the better results [47] in the single-frame595

experiments, outperforming the KL divergence in both the datasets.

5.4.1. Heuristic performance analysis

In Fig.9, we analyze the performance of the heuristics proposed in Sec. 4.1 under

the highest level of noise in the head orientation γ = 2
3π, and on an increasing num-

ber of corrupted frames and persons. From the Fig. 9, we can drawn the following600

conclusions for each heuristic:

Fig. 9a . The normalized sum of weight is the best performing heuristic over the other

methods, in particular when a small number of frames is considered. This is

because when few frames (2 or 3) are taken into account, the number of possible

solutions is more or less in the same order, if one keeps at random one of these605

solution it may choose exactly the corrupted frame so averaging over the possible

weights makes an uniform distribution, eventually avoiding or less weighting, the

erroneous frames.
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(a)

(b)

(c)

(d)

Figure 9: The results using the different heuristics: a) Normalized sum of weights (Sec. 4.1.1). b) Weighted

solutions (Sec. 4.1.2). c) Maximal Entropy (Sec. 4.1.3). d) Clustering Ensemble (Sec. 4.1.4).
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Fig. 9b . The weighted solution using the characteristic vector is an intriguing alterna-

tive to the normalized sum. The first dominant set extracted in fact captures the610

peculiarity of the entire graph assigning a high score to the most similar node.

This means that the set of weights which share the larger similarity with respect

to the other possible solutions, will have a higher score. Statistically, the noisy

part should be less than the entire set, hence the set of weights with the highest

score will have a good chance to be the right one.615

Fig. 9c . The use of the maximal entropy is motivated by the fact that when the entropy

is maximized a uniform distribution is obtained. In our case, we have an equal

weight distribution only in the case when all the frames are exactly the same,

but in most of the cases this does not happen. For this reason, searching for the

maximal entropy means to find the set of weights giving a chance to all frames620

to participate in the final grouping process without suppressing the ability of the

optimizer in assigning more weight to the most diverse matrices.

Fig. 9d . The performance of the ensemble of clusters starts from very low results that

rapidly grow as the number of frames increases. This is motivated by the fact

that when few frames are taken into account (2..4) the number of weights that625

the algorithm in Sec.4.1 finds is very few. This leads to very different clustering

results in which it is difficult to find a consensus. When the number of frames

increases, so do the weights, and thus finding a consensus becomes an easier

task. For example, with 9 frames the average number of possible weights are

more than 150, this means that we will have more than 150 clustering results in630

which finding a consensus is quite an easy task.

As one can note, in general, there is a performance drop in correspondence of

K = 5: this is quite obvious because after 5 frames the changes in the scene starts being

consistent. This occurs in particular in Seq 1 of the CocktailParty dataset, because

in that sequence the groups change frequently. To achieve a good smoothing is thus635

suggested to use no more than 5 consecutive frames.

Compared with the single-frame approach, in a noiseless tracking situation (blue

curve), this version gives comparable results. As shown in the Fig. 9, the temporal
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integration varies almost uniformly except a slight increase in the Seq1 of the Coffee-

Break dataset. In the case of noise (green,red and cyan curves) the single frame (first640

point on the curves) provides a low F-score and is in general completely dominated by

the multi-frame version, irrespective of the number of frames considered in the buffer.

For the sake of curiosity we carried out a last experiment with the aim of establishing if

the existing relationship between speed and visual field of view, the so-called tunnelling645

effect affecting the visual field of view on high speed moving, could be confirmed in

scenarios in which the velocity of persons are not as high as in cars. To this end,

we set the following experiment: for the three datasets in the multi-frame experiment

we changed the length and the aperture of the frustum (l and θ parameter) and we

correlate them with the speed typical of the dataset used. We end up that there were no650

relationship at all.

5.5. Discussion

After this empirical evidence we can provide an overall final analysis. The proposed

approach is to be preferred over the others under a wide variety of different scenarios.

In general, the performance is incredibly stable under both noisy (real) and ideal (syn-655

thetic) dataset. For example, we have the highest performance in the CoffeeBreak even

if it is a very noisy dataset in terms of head orientation since only 4 orientations are

possible. From the single-frame experiments, it is clear that the JS measure produces

the highest and more stable performance. This seems to suggest that, while model-

ing a pairwise social interaction, it is reasonable to assume that both the individuals660

want to maintain a connection with the same strength, implying a symmetric affinity.

Moreover, the comparison between the noisy multi- and the single-frame results re-

veals the meaningfulness of considering consecutive instants of the same scene to to

smooth out the noise effect. From the computational point of view, the multi-frame

approach is to be preferred in case of noisy measures, using a window of no more than665

5 frames. If more frames are considered, the found solutions could be inconsistent. If

near real-time detection is required, the single-frame approach is to be preferred over

the multiple frame, because it is able to perform group detection at 15/20 fps. Summa-
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rizing, the more significant processing modules that absolutely contributed the most in

this work and that represent the main novelty, are the biologically inspired model of the670

frustum, which capture far better the sociological interaction between individuals with

respect to the previous approaches, and the game-theoretic temporal integration which

provides a principled way to efficiently prune noise by smoothing data across multiple

frames.

As very final note, we analyze the timing requirements for the two approaches, the675

single- and multi-frame modalities. In the former case, the time requirement is very

low, reaching the 15/20 fps (given the detections). Things get worse in the latter case,

since the fastest heuristics represented by the weighted summation and the maximal

entropy weights (Sec.4.1.14.1.3) reaches peaks of 2-5 fps (depending by the number of

frames). This is quite obvious due to the fact that after having found the set of weights,680

the final re-weighting is based on a simple sum or sum of logarithms. In second po-

sition, we find the weighted solutions (Sec.4.1.2), in which a Dominant Set extraction

is performed over the set of weights to find the most representative ones. In the last

position, we have the clustering ensemble (Sec.4.1.4) in which we perform a separate

clustering on each set of weights and the final solution is found again by clustering over685

the evidence accumulator matrix.

The code has been written in (non optimized) Matlab on a Core i7-3720QM2.60GHz

with 8GB of RAM.

6. Conclusions

In this paper, we have proposed a method for detecting conversational groups (F-690

Formations) that can be included in a typical surveillance pipeline or on top of a per-

son detector. The approach improves upon existing methods by building a stochastic

model of social attention which captures pairwise scores between people, indicating

their joint tendency in aggregating in a group. Pairwise scores fill an affinity matrix

which encodes an edge weighted graph representing the entire scene under analsysis.695

On this structure, a game-theoretic clustering strategy efficiently finds the groups. In

addition, this game-theoretic perspective has allowed us to integrate in a principled
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way information coming from multiple consecutive frames in videos, in an attempt to

deal with noisy situations resulting from the scene complexity (e.g., a crowded high

density scenario) and the inaccuracy of the detection and orientation estimation al-700

gorithms. Our extensive experimental session on single-frame situation has shown a

dramatic improvement over other methods in the literature on five different datasets,

and competitive performances on other two benchmarks. Adding the integration with

multiple-frames, where applicable, has allowed to augment the overall group detec-

tion accuracy, especially in the case of strong noise altering person positions and the705

related head orientations. In the future, we plan to address the problem of modeling

F-formations by considering the instability points, that is, when a group is forming or

disgregating, with the challenge of guessing as soon as possible when a person will

join or leave a group.
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