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Abstract

The proliferation of wearable visual recording devices such as SenseCam,
Google Glass, etc. is creating opportunities for automatic analysis and us-
age of digitally-recorded everyday behaviour, known as visual lifelogs. Such
information can be recorded in order to identify human activities and build
applications that support assistive living and enhance the human experience.
Although the automatic detection of semantic concepts from images within a
single, narrow, domain has now reached a usable performance level, in visual
lifelogging a wide range of everyday concepts are captured by the imagery
which vary enormously from one subject to another. This challenges the
performance of automatic concept detection and the identification of human
activities because visual lifelogs will have such variety of semantic concepts
across individual subjects. In this paper, we characterize the everyday activ-
ities and behaviour of subjects by applying a hidden conditional random field
(HCRF) algorithm on an enhanced representation of semantic concepts ap-
pearing in visual lifelogs. This is carried out by first extracting latent features
of concept occurrences based on weighted non-negative tensor factorization

∗Corresponding author at: Department of Computer Science and Technology, Tsinghua
University, Beijing, 100084, China. Tel: +86 -10 -62786910

Email addresses: pwang@tsinghua.edu.cn (Peng Wang1), sunlf@tsinghua.edu.cn
(Lifeng Sun1), yangshq@tsinghua.edu.cn (Shiqiang Yang1), alan.smeaton@dcu.ie
(Alan F. Smeaton2), cathal.gurrin@computing.dcu.ie (Cathal Gurrin2)

Preprint submitted to Computer Vision and Image Understanding June 22, 2016



(WNTF) to exploit temporal patterns of concept occurrence. These results
are then input to an HCRF-based model to provide an automatic annotation
of activity sequences from a visual lifelog. Results for this are demonstrated
in experiments to show the efficacy of our algorithm in improving the accu-
racy of characterizing everyday activities from individual lifelogs. The overall
contribution is a demonstration that using images taken by wearable cameras
we can capture and characterize everyday behaviour with a level of accuracy
that allows useful applications which measure, or change that behaviour, to
be developed.

Keywords: Lifelogging, Assistive living, SenseCam, Activity classification,
Wearable camera

1. Introduction

There is growing interest in creating large volumes of personal, first-
person video or long duration image sequences, for lifelogging or quantified-
self types of applications. These use wearable visual recording devices like
Google Glass or Microsoft’s SenseCam. Visual lifelogging is the term used
to describe a class of personal sensing and digital recording of all of our
everyday behaviour which employs wearable cameras to capture image or
video sequences of everyday activities. As the enabler for visual lifelog-
ging, camera-enabled sensors are used in wearable devices to record still
images [41] or video [14, 31, 4] taken from a first-person view, i.e. represent-
ing the subject’s view of everyday activities. Visual lifelogging has already
been widely applied in assistive living applications including aiding human
memory recall, diet monitoring, chronic disease diagnosis, recording activities
of daily living and so on. Example visual lifelogging projects include Steve
Mann’s WearCam [30, 31], the DietSense project at UCLA [39], the Way-
Markr project at New York University [5], the InSense system at MIT [4], and
the IMMED system [32]. Microsoft Research catalysed research in this area
with the development of the SenseCam [13, 41] which was made available to
other research groups in the late 2000’s.

In terms of sensing devices, visual lifelogging can be categorized roughly
into in-situ lifelogging and wearable lifelogging. In-situ lifelogging can be
described simply as lifelogging in instrumented environments such as homes
or workplaces. This means that human activities can be captured through
video sensors installed in the local infrastructure [34]. Typical use of video
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sensors for in-situ lifelogging also includes work as reported in [18, 16, 1, 49,
17] and [2]. [18] proposed a depth video-based activity recognition system for
smart spaces based on feature transformation and HMM recognition. Similar
technologies are applied in other work by the same authors in [16] and [1]
which can recognise human activities from body depth silhouettes. In related
work by [49], depth data is utilised to represent the external surface of the
human body. By proposing the body surface context features, human action
recognition is robust to translations and rotations. As with Jalal’s work in
[17, 2], Song’s work [49] still depends on static scenes with an embedded
sensing infrastructure. Current activity recognition in such settings usually
assume there is only one actor in the scene and how these solutions can scale
up to more realistic and challenging settings such as outdoors are difficult.

To alleviate such challenges, we focus on activity recognition within non-
instrumented environments using wearable visual sensing. In wearable lifel-
ogging, the sensing devices are portable and worn directly by the subjects
and can include head-mounted cameras in work by [14] and [31] or cam-
eras mounted on the front of chests in work by [4] and by [41]. In [15], the
key issues and main challenges in generating wearable diaries and lifelogging
systems are discussed. In [12], other sensors such as accelerometers, GPS,
image and audio are recorded using a smartphone and applied in an appli-
cation based on annotating daily activities. Though effective to a limited
extent, a direct mapping from low-level features like colours and textures to
semantic labels lacks flexibility in characterizing the semantics of activities
such as understanding occurrences of scenes, objects, etc. in images. Recent
work in [48] has also highlighted the same problem.

As a new form of multimedia, the effective management of large visual
lifelogs requires semantic indexing and retrieval, for which we can use the
preliminary work already done in other domains. State-of-the-art techniques
for image/video analysis use statistical approaches to map low-level image
features like shapes and colours to high-level semantic concepts like “indoor”,
“dog” or “walk”. According to the TRECVid benchmark [44], acceptable de-
tection results have been achieved, particularly for concepts for which there
exists enough annotated training data. Introducing automatic detection of
semantic concepts from visual lifelogs enables searching through those lifel-
ogs based on their content and this is particularly useful in characterizing
everyday life patterns [6, 9]. However, because of the wide variety of activi-
ties that people usually engage in and the differences in those activities from
person to person, a very wide range of semantic concepts can appear in vi-
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sual lifelogs, which increases the challenges in developing automatic concept
detectors from which we can detect everyday activities. Moreover, due to
subjects’ movements as lifelog images are captured, even images captured
passively within the same lifelogged event may have significant visual differ-
ences. This poses burdens on the characterization of activities based on the
detected concepts, especially in applications where the detection of everyday
behaviour is to be done in near real-time.

Figure 1: The Microsoft SenseCam as worn by subjects.

The SenseCam, shown in Fig. 1, is a sensor-augmented wearable camera
designed to capture a digital record of the wearer’s day by recording a series
of images and a log of sensor data. It captures the view of the wearer from a
fisheye lens and pictures are taken at the rate of about one every 50 seconds
without the trigger of other sensors. The on-board sensors for measuring
ambient light levels, movement, and the presence of other people through a
passive infra-red sensor, are also used to trigger additional capture of pictures
when sudden changes are detected in the environment of the wearer as well
as to prevent images being captured when the wearer, and the SenseCam,
are being moved which would result in blurring of images. SenseCam has
been shown to be effective in supporting recall of memory from the past for
individuals [41, 43], as well as having applications in diet monitoring [36],
activity detection [56], sports training [35], etc. Due to its advantages of
multiple sensing capabilities, light weight and unobtrusive logging with a
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long battery life, we employ SenseCam as a wearable device to log details of
subjects’ everyday lives.

Temporal patterns of concept occurrence can characterize image sequences,
but at a higher level. Consider the “cooking” activity, where visual concepts
like “fridge”, “microwave”, “oven” often occur in sequence and frequently in-
teract with the concept of “hands”. For example, “opening fridge” is typically
observed before “starting microwave”. Such patterns can also be regarded as
temporal semantics of concepts. To deal with such concept temporal seman-
tics, the major contributions of this paper can be highlighted as: first, we
proposed a time-aware concept detection enhancement algorithm based on
weighted non-negative tensor factorization (WNTF) for which a multiplica-
tive solution is derived. The effectiveness of this factorization method is also
proven. The second contribution is an everyday activity characterization
based on hidden conditional random fields (HCRF), proposed by merging
time-varying dynamics of concept attributes.

The rest of the paper is organized as follows: in Section 2 we present
related work on concept detection and event processing used to drive a char-
acterization of everyday activities. An overview of our proposed solution
is presented in Section 3. In Section 4, we describe tensor factorization
approaches to tackle the concept enhancement problem at a frame-level of
concept indexing. This is followed by an HCRF-based algorithm to combine
concept semantics from a frame level for higher-level activity characterization
in Section 5. The experimental implementation and analysis of our results
are presented in Section 6. Finally, we close the paper with conclusions and
pointers to future work.

2. Related Work

2.1. Automatic Concept Detection and Enhancement

Compared to low-level features like colour, texture, shape, etc. which in
their raw form do not convey much meaning, semantic concepts can more
usefully express the real content of any visual media as high-level features
such as “indoor”, “outdoor”, “vegetation”, “computer screen”, etc. Semantic
concepts can be automatically detected, providing a meaningful link between
low-level image features and user interpretation of the media. In assistive
technology applications, the appearance of semantic concepts can reveal un-
derlying human behaviour, differences in behaviour from person to person,
or between an individual person and what we would call normal behaviour,
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and if a lifelog is generated for a long enough period, patterns of appearance
of semantic concepts can reveal gradual shifts in behaviour such as those
associated with degenerative human conditions like Parkinson’s disease of
forms of dementia.

The state-of-the-art approach to detecting semantic concepts is to apply
a suite of discriminative machine learning algorithms such as Support Vector
Machines (SVMs) to decide on the presence or absence of each concept given
the extracted low-level features [47]. SVMs have been demonstrated to be
an efficient framework by many research groups in concept detection [29, 7,
46] and are particularly suited to highly imbalanced classes in terms of the
uneven distribution of semantic concepts in visual media.

In many concept detection approaches, applications of machine learning
assume that classifiers for a set of concepts are independent of each other,
and equally weighted in terms of importance. Yet, intrinsic relationships
among concepts are neglected under this assumption so we end up with
multiple isolated binary classifiers thus not taking advantage of inter-concept
semantics [25]. This is likely to result in misclassification or inconsistencies.
Since the accuracy of a concept detector/classifier is an important factor in
the provision of satisfactory solutions to indexing visual media, it is widely
accepted that detection accuracy can be improved if concept correlation can
be exploited in some way. Multi-label training methods such as that proposed
in [37] try to learn all concepts from one integrated model, but the direct
shortcoming is the lack of flexibility, which means the learning stage needs
to be repeated when the concept lexicon is changed or in our case, when
the visual lifelog for a new subject is to be analyzed. In other related work,
researchers have used ensembles of classifiers like the multi-SVM (MSVM)
approach which efficiently handles the issue of an imbalance in the relative
sizes of positive and negative classes (concepts) when dealing with concepts in
visual media [40]. The idea here is to divide the data into balanced subsets
of positive and negative training data, train an SVM on each subset and
apply a fusion function to the output of the individual SVMs. While this
divide and conquer approach is appealing, it greatly increases the processing
time required, though recent developments in machine learning such as kernel
optimization [26] or approximate learning [22] might alleviate this.

Because concept detection scores obtained by specific binary detectors al-
low independent and possibly specialized classification techniques to be lever-
aged for each concept [45], detection enhancement using post-processing also
attracts research interest based on exploiting concept correlations inferred
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from pre-constructed knowledge [58, 21] or annotation sets [51, 52, 20, 19].
These methods depend highly on external knowledge such as WordNet or
other training data. When concepts do not exist in a lexicon or extra an-
notation sets are insufficient for correlation learning because of the limited
size of a corpus or the sparsity of annotations, these methods cannot adapt
to such situations. In a state-of-the-art refinement method for the indexing
of TV news video by [20, 19], the authors combined the training procedure
and the knowledge inference together by learning the concept graph from the
training set.

While the work outlined above is making progress in the task of multi-
concept indexing of visual media, none of the methods existing to date are
able to use any of the temporal semantics that might be part of the collection
of visual information. In the domain of visual lifelogging this is an importance
feature in trying to determine human activities where unlike other domains,
the lifelog collection has a strict linear temporal dimension as it represents a
recording of the continuous lifelog of a single individual or subject.

2.2. Concept-Driven Activity Characterization

The purpose of visual lifelogging in our work is that it is an application
where we try to characterize activities or events for a human subject in
his/her everyday life. In other applications of lifelogging such as memory
aids, work-related recording, and so on, a full understanding of activities is
usually necessary yet in work in those areas there is still little information
representing the semantics of human activities. Discovering activities where
there is such little metadata represents a real challenge, especially where we
are dealing with long-term lifelog data.

In visual lifelogging, much work has been done on activity processing such
as automatic event segmentation [10], event representation [53], life pattern
analysis [23], event enhancement [11] and so on. To drive these applications,
all of the work uses images from wearable cameras and some additionally uses
other captured metadata such as location from GPS, date and time. Recent
work on semantic learning from lifelog data has also shown promising results
in activity-related concept detection [6] where semantic indexing has shown
potential for relating low-level visual features to high-level semantic concepts
(such as indoors, outdoors, people, buildings, etc.) using supervised machine
learning techniques. This is then applied in [9] to learn lifestyle traits from
lifelogs collected by different users, based on automatically detected everyday
concepts.
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Although the effectiveness for many of the above approaches is satis-
factory for some tasks like diet monitoring, we still lack accurate indexing
and retrieval methods to localize activities of interest from a large volume
of lifelog data. To address such a challenge, concept-based event detection
has attracted much attention from researchers. In work by [50], a rule-based
method is proposed to generate textual descriptions of video content accord-
ing to concept classification results. The authors also found that although
state-of-the-art concept detections are far from perfect, they are still able
to provide useful clues for event classification. Work in [33] employed an
intermediate representation of semantic model vectors trained from SVMs,
as a basis for detecting complex events, and revealed that this representation
outperforms, and is complementary to, other low-level visual descriptors for
event modeling. Similar work has also been carried out in lifelogging using
concept detections to characterize everyday activities as reported by the au-
thors of this paper [56]. Activity recognition as presented in [56] is also built
on the basis of underlying detection of semantic concepts.

3. Overview of Solution Framework

Our approach to characterizing everyday activities for personal applica-
tions is based on detection of semantic concepts from a series of images taken
from events which have been automatically segmented based on the technique
introduced in [28]. An event corresponds to a single everyday activity in the
subject’s day such as watching TV, commuting to work, or eating a meal,
with an average stream of between 20 and 40 such events of varying duration,
in a typical day.

Fig. 2 shows the paradigm of utilising concept temporal dynamics for
high-level activity detection, in which typical indoor activities like “cook-
ing”, “watching TV”, etc. are demonstrated, as well as the corresponding
trajectories. The concept detection results temporally aligned with these ac-
tivities are depicted as “

√
” and “×” in the diagram, to represent presence

and absence of concepts, respectively. It is important to note that the con-
cept detection shown in Fig. 2 does have errors and this can affect further
analysis to various degrees. Therefore, in order not to propagate these errors
into the subsequent analysis for activity and behaviour characterization, the
original concept detections are revised and enhanced in a time-aware manner
based on WNTF as presented later in Section 4.
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Figure 2: Framework paradigm for proposed solution.

Images taken from a single subject’s lifelog are tightly related to those
other images with which they are aligned temporally, i.e. they are related
to images from around the same event. When a user remains in the same
location and is engaged in a prolonged activity such as watching TV in their
living room or preparing a meal in their kitchen, the contents of successive
captured images are very similar, visually. In this case, the temporal consis-
tency of certain types of concepts like “indoor”, “screen” and “hands” can be
viewed as cues for concepts like “using computer” while “pages” and “hands”
suggests a “reading” activity. Even though some activities require the user to
be changing their location all the time like “walking” and “doing housework”,
the dynamics of concepts present in the activity will still show some patterns,
such as the frequent appearance of “road” for the “walking” activity in an
urban environment, or the transitions between “kitchen” and “bathroom”
for the “housework” activity. Under this assumption, the concepts contained
in these images can reflect significant temporal patterns, characterizing the
semantics of the activities they represent. An activity characterization algo-
rithm based on HCRF is employed in our work to model the dynamic concept
occurrence patterns described above, which is introduced later in Section 5.
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4. Time-Aware Concept Detection Enhancement

Co-occurrence and re-occurrence patterns for concepts are a reflection of
the contextual semantics of concepts since everyday concepts usually co-occur
within images rather than in isolation. In some potentially long-duration
activities like “using computer”, “driving”, etc., the indicating concepts may
appear frequently and repeatedly in the first-person view. In this section, the
modeling of contextual semantics is elaborated based on time-aware tensor
decomposition.

Figure 3: NTF-based concept detection enhancement framework.

To avoid information loss from event segmentation and utilise the tem-
poral features reflected in different events, a tensor is employed to formalize
the problem given its merit in representing the structure of multidimensional
data more naturally. The procedure for concept tensor construction and
factorization is shown in Fig. 3. As illustrated, our approach treats con-
cept detection results in a way which has the advantage of preserving local
temporal constraints using a series of two-dimensional slices. Each slice is a
segmented part of an event and is represented by a confidence matrix. The
slices are then stacked one below another to construct a three-dimensional
tensor which preserves the two-dimensional characters of each segment while
keeping temporal features along the event dimension and avoids significant
loss of contextual information.

4.1. WNTF-based Detection Enhancement

Assume each two-dimensional slice is a segment of N visual lifelog images,
each of which is represented by a vector of M concept detection confidences
(i.e. concept vectors (cij)M×1, 1 ≤ j ≤ M for the i-th image). The con-
structed concept detection tensor T has the dimensionality of N ×M × L
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for events with L time intervals and N neighborhood lifelog images in each
slice. The task of WNTF is to discover the latent features to represent the
three components of confidence tensor T . For this purpose, we approxi-
mate tensor T as a sum of 3-fold outer-products with rank-K decomposi-
tion T̂ =

∑K
f=1 U

(1)
·f ⊗ U

(2)
·f ⊗ U

(3)
·f , which means that each element T̂ijk =∑K

f=1 U
(1)
if U

(2)
jf U

(3)
kf .

This factorization can be solved by optimizing the cost function defined
to qualify the quality of the approximation. Similar to work described in [57],
we also employ the weighted cost function to distinguish the contribution of
different concept detectors, which can be formalized as

F =
1

2
‖T − T̂‖2W =

1

2
‖
√
W ◦ (T − T̂ )‖2F

=
1

2

∑
ijk

Wijk(Tijk −
K∑
f=1

U
(1)
if U

(2)
jf U

(3)
kf )2

s.t. U (1), U (2), U (3) ≥ 0 (1)

where ◦ denotes element-wise multiplication, W = (Wijk)N×M×L denotes the
weight tensor and ‖ · ‖2F denotes the Frobenius norm, i.e., the sum of squares
of all entries in the tensor. To obtain a reconstruction of the underlying
semantic structure, the weights in Eqn. (1) need to be set in terms of concept
accuracy. Because each confidence value Tijk in T denotes the probability of
concept cj occurring in the image, estimating the existence of cj is more likely
to be correct when Tijk is high enough, which is also adopted in [24] and in [57]
under the same assumption that the initial detectors are reasonably reliable
if the returned confidences are larger than a predefined value threshold.
After factorization, the refinement can be expressed as a fusion of the two
confidence tensors:

T ′ = αT + (1− α)T̂ = αT + (1− α)
K∑
f=1

U
(1)
·f ⊗ U

(2)
·f ⊗ U

(3)
·f (2)

A gradient descent method can be applied for optimizing the solution
to this problem, implemented by updating each matrix U (t) in the opposite
direction to the gradient at each iteration through

U (t) ← U (t) − αU(t) ◦ ∂F/∂U (t), t = 1, 2, 3 (3)
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According to [57], the cost function differential with respect to an element

U
(1)
if can be represented as

∂F/∂U
(1)
if =

∑
jk

(W ◦ T̂ )ijkU
(2)
jf U

(3)
kf −

∑
jk

(W ◦ T )ijkU
(2)
jf U

(3)
kf (4)

By employing αU(1) as the form

α
U

(1)
if

= U
(1)
if /

∑
jk

(W ◦ T̂ )ijkU
(2)
jf U

(3)
kf (5)

where / denotes element-wise division, and substituting into Eqn. (3), we
obtain the multiplicative updating rule [27, 42] as

U
(1)
if ← U

(1)
if (

∑
jk

(W ◦ T )ijkU
(2)
jf U

(3)
kf )/(

∑
jk

(W ◦ T̂ )ijkU
(2)
jf U

(3)
kf ) (6)

The updating of U (2) and U (3) can be achieved in a similar manner. Note
that it is not difficult to prove that under such updating rules, the cost
function in Eqn. (1) is non-increasing in each optimization step.

4.2. Analysis of Effectiveness

In this sub-section we prove the non-increasing property of the updating
rule presented in Eqn. (6). Considering the cost function given in Eqn. (1)

and expanding F (U
(1)
if +∆) with the second order Taylor series, we construct

F (U
(1)
if + ∆) = F (U

(1)
if ) +

∂F

∂U
(1)
if

∆ +
1

2

∂2F

∂2U
(1)
if

∆2 (7)

Recall the updating rule derived according to Eqn. (3) and (5), we have

∆ = −α
U

(1)
if
∂F/∂U

(1)
if and

α
U

(1)
if

=
U

(1)
if∑

jk(Wijk

∑K
f=1 U

(1)
if U

(2)
jf U

(3)
kf )U

(2)
jf U

(3)
kf

≤
U

(1)
if∑

jk(WijkU
(1)
if U

(2)
jf U

(3)
kf )U

(2)
jf U

(3)
kf

=
U

(1)
if

U
(1)
if

∑
jkWijkU

2(2)
jf U

2(3)
kf

(8)
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From Eqn. (4), we can obtain

∂2F/∂2U
(1)
if =

∑
jk

WijkU
2(2)
jf U

2(3)
kf (9)

Substituting Eqn. (9) into (8), there exists α
U

(1)
if
≤ 1/(∂2F/∂2U

(1)
if ). Then

we have

F (U
(1)
if + ∆)− F (U

(1)
if )

= −α
U

(1)
if

(
∂F

∂U
(1)
if

)2 +
1

2
α2

U
(1)
if

(
∂F

∂U
(1)
if

)2
∂2F

∂2U
(1)
if

= −α
U

(1)
if

(
∂F

∂U
(1)
if

)2(1− 1

2
α
U

(1)
if

∂2F

∂2U
(1)
if

)

≤ −α
U

(1)
if

(
∂F

∂U
(1)
if

)2(1− 1

2
) ≤ 0

So far, we can conclude that the iteration is non-increasing under the
update rule formalized in Eqn. (6).

5. HCRF-based Activity Characterization

As shown in Fig. 2, everyday activities can be regarded as stochastic
temporal processes consisting of various lengths of concept vectors. With
this, the dynamic evolution of concept vector occurrences can characterize a
deeper meaning of underlying, or derived, human activities if the evolution
patterns can be modeled. The conditional random field (CRF) is an effective
method to model temporal sequence data using an undirected graph model.
While Hidden Markov Modeling (HMM) assumes all of the observations in
a sequence are independent and conditional on the hidden states, CRF has
no such constraints so that it allows the existence of non-local dependencies
between hidden states and observations. Because the dependence is allowed
in a wider range, a CRF model can flexibly adapt to dynamic sequences
in which high correlations might exist between different regions. This is
especially useful for modeling the kind of activities recorded by wearable
lifelog cameras.

In Fig. 4 we see that due to unexpected movements of the wearer, cue
concepts indicating the characteristics of activities usually appear more ran-
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Figure 4: HCRF structure for activity modeling.

domly in the visual sequence, breaking the local consistence of concept oc-
currences. For example, within one recorded activity of “cooking”, the lifelog
subject might have talked with others or answered a phone call, as shown in
Fig. 4. This introduces non-relevant concepts like “face”, “mobile”, etc., to
which the corresponding lifelog images are highlighted by orange dashes in
Fig. 4, making non-local dependencies more important in characterizing the
temporal models.

We employed graphical modeling based on the HCRF [38] of activity de-
tection to use the time-varying concept patterns from a dynamic viewpoint.
By combining the outputs of WNTF-based concept detection enhancement,
as discussed in Section 4, this model aims for higher-level semantic con-
cepts which characterize underlying or derived everyday activities. Similar to
HMM, HCRF also introduces a series of hidden variables S = {S1, S2, ..., Sn}
to each of the observations C = {C1, C2, ..., Cn}, i.e. the concept vector for
one lifelog image, where n denotes the length of the visual lifelog steam rep-
resenting one activity. Assume θ = {θ1, θ2, ..., θm} is the model parameter,
then the conditional probability can be defined as

P (Y, S|C, θ) =
expΨ(Y, S, C; θ)∑

Y,S exp
∑m

j θjFj(C, Y )
(10)

where Ψ(Y, S, C; θ) =
∑m

j θjFj(C, Y ) is the potential function parameterized
by θ. Feature functions Fj(C, Y ) depend on the whole sequence of concept
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detection results C. By calculating the marginal probability on S [38], we
can obtain

P (Y |C, θ) =
∑
S

P (Y, S|C, θ) =

∑
S expΨ(Y, S, C; θ)∑

Y,S exp
∑m

j θjFj(C, Y )
(11)

Therefore, the training of parameter θ can be achieved through the opti-
mization of the objective function

L(θ) =
n∑
i=1

logP (Y |C, θ)− ||θ||
2

2σ2
(12)

where the regularization term ||θ||2
2σ2 is applied to avoiding over-fitting and

other numerical problems. The optimization can be carried out through the
traditional gradient method, i.e. calculating θ∗ = argmaxθL(θ) through mul-
tiple iterations. In the implementation of HCRF in this paper, we employed
the linear-chain structure feature functions as

Fj(C, Y ) =
n∑
i=1

fj(yi−1, yi, C, i) (13)

Under this structure, each fj depends on the whole sequence of concept
detection results within one activity but is only relevant with the current and
previous labels. In addition, because of the defined liner-chain structure, the
objective function and its gradient can be solved in terms of the marginal
distribution of hidden variables. The inference and parameter estimation
can be performed by applying a belief propagation method. The described
HCRF model with the above formalization can be demonstrated with the
structure shown in Fig. 4.

6. Experiments and Evaluation

6.1. Experimental Setup and Datasets

For our experiments we carried out assessment of our algorithms using
datasets with various levels of accuracy for concept detection. While it would
be useful to have shared lifelog datasets and agreed evaluation metrics so as
to allow direct comparison of techniques developed from different research
teams, sharing personal lifelog data is fraught with challenges of privacy and
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data ownership because lifelog data is by definition, inherenelty personal. At
the present time there is simply no publicly available, shared lifelog dataset
on which teams can work on shared problems, though we hope this changes
soon.

To tackle the image quality problem introduced by wearers’ movements
despite the on-board movement sensors on the SenseCam, low-quality images
are filtered out according to a fusion of the Contrast and Saliency measures
which, in previous work, is shown to be effective in choosing high-quality lifel-
ogging event representations [8, 54]. The 23 everyday activity types listed in
Table 1 are applied in the evaluation for which 12,248 visual lifelog images
are involved in our experiment [56]. Since there exist numerous types of ac-
tivity in our everyday daily lives, those activities which have high frequency
and count for more time spent would be of greatest value for applications
like independent living assistance, obesity analysis, and chronic disease diag-
nosis. An investigation into the automatic detection of such activities would
be valuable in providing insights into utilizing concept semantics in more
sophisticated tasks. The criteria of time dominance, generality and high fre-
quency are employed in selecting the 23 target activities shown in Table 1,
to ensure that these activities can collectively cover most of the time spent
in a typical day and are applicable to a range of individuals and age groups
[55].

For this purpose, 4 people were recruited with different background demo-
graphics including a mix of older people and younger University researchers.
Among these participants, one older participant is less functional in terms of
capacity for household and community activities from an occupational thera-
pist’s viewpoint. The choice of these four people helps to test if our algorithm
is applicable from among a group of heterogeneous subjects. All of our sub-
jects have worn a SenseCam consecutively for more than 7 days and this
allows them to get over the initial adoption and comfort issues. This guaran-
tees a better reflection of their life patterns and visual variety of their activity
samples. To address the privacy issues induced by detailed activity record-
ings in real life, ethical approval was first obtained from Research Ethics
Committee in Dublin City University for the use of participants’ SenseCam
images. More details about the data sources used in this paper can be found
in [56].

A detailed study of concept detector implementations is beyond the scope
of this paper and motivated by [56], we simulate the detection of concepts
with various accuracies based on groundtruth data. The purpose of this is
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Table 1: Everyday activity types in evaluation

1 2 3 4
Eating Drinking Cooking Clean/Tidy

5 6 7 8
Wash clothes Use computer Watch TV Children care

9 10 11 12
Food shopping Shopping Bar/Pub Using phone

13 14 15 16
Reading Cycling Pet care Go to cinema

17 18 19 20
Driving Taking bus Walking Meeting

21 (give) 22 (listen to) 23
Presentation Presentation Talking

to focus on activity characterization issues rather than on concept detection.
Besides this, the concept detection enhancement method proposed in this
paper is independent of the specific implementation of the concept detection.
Evaluation on more general detection results with different accuracy levels
will further reflect its performance in improving both concept, and activity
classifications. The details of the simulation are described in previous work
by the authors in [56], following from work in [3].

Concept detectors for 85 everyday concepts at different accuracy levels
are simulated by changing the mean of the positive class µ1 for each concept
classifier [3]. The posterior probability of concept existence is returned as
the simulated concept detection output and we use this value as the original
classifier confidence. For any configuration of µ1, our evaluation is carried
out with training and testing components for each run. With each parameter
setting we executed 20 repeated runs and the averaged concept mean average
precision (MAP ) is calculated to evaluate concept detection enhancement.
In Fig. 5, the averaged concept MAP s (original) over all 20 runs are plotted
with different configurations of µ1. In the generation of Fig. 5, the other
three parameters are assigned with fixed values of 1.0, 1.0, 0.0 for σ0, σ1 and
µ0 respectively. Fig. 5 shows the improving trend for concept MAP with
increasing µ1 value and nearly perfect detection performances are achieved
when µ1 ≥ 5.5.
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Figure 5: Averaged concept MAP with different µ1 values.

6.2. Discussion of Results

In implementing our proposed solution, we carried out concept detection
enhancement first, as described in Section 4. The HCRF-based model was
then applied on the enhanced results to classify different activity categories
according to the concept dynamic patterns in each visual lifelog stream. We
applied a discriminative method in deciding the classification result, i.e. for
each testing sequence, the likelihoods returned by HCRF models of posi-
tive and negative classes were compared and the highest was selected as the
characterized activity type.

The results of our enhancement of concept detection are depicted in
Fig. 6 at different µ1 values where WNTF-based enhancement (K = 50,
threshold = 0.3) significantly improves detection results when the positive
class mean increases from 0.5 to 5.0. The fusion parameter in Eqn. (5) is
simply set to α = 0.5, assigning equal importance to the two tensors. The less
satisfactory performance at µ1 = 0.5 is explained by the initial detection ac-
curacy being just too low. As shown in Fig. 5, the overall MAP at µ1 = 0.5
is nearly zero. In this case, no correctly detected concept can be selected
and utilised, which is actually impractical in real-world applications. When
initial detection performance is good enough, as shown in Fig. 5 if µ1 ≥ 4.5,
there is less space to improve detection accuracy, thus the improvement is
not significant at µ1 ≥ 4.5.

To highlight the importance of time-awareness in concept detection en-
hancement, three parameter settings of N = 1, 3, 5 are depicted respectively
in Fig. 6. When N = 1, the factorization problem formalized in Eqn.
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Figure 6: Enhanced concept detection by WNTF.

(1) is indeed the weighted non-negative matrix factorization (WNMF), in
which the temporal information from event segmentation and the features of
different events cannot be captured separately. This explains why the over-
all improvement at N = 1 is significantly out-performed by the time-aware
WNTF-based method at N = 3, 5. This indicates that our approach can pre-
serve local temporal constraints by introducing an extra dimension of event
segment (slice as shown in Fig. 3) by representing concept detection results
as a 3-way tensor.

Concept-driven activity characterization for lifelogging is a relatively new
topic and the most recent report close to our work is [56] which employed
a HMM to model concept dynamics and showed its effectiveness in activity
modeling. In this experiment, we compare our new proposed method with
HMM-based algorithm as the baseline.

To make full use of activity samples in the dataset, we decompose each
set of positive samples into 50:50 ratios for training and testing respectively.
While enough positive samples are necessary for the evaluation, 16 event
types, each of which has more than 5 positive samples, are selected as shown
in Fig. 7 for further evaluation. The activity types are shown in Table 2
with sample number and numbers of images contained. Finally, a total of
250 training samples and 250 testing samples composed of various lengths of
visual lifelog streams is used for this evaluation. Because two hidden states
have been tested to achieve the best overall performance in [56], to be fair,
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Figure 7: Typical activity samples.

we also employed two hidden states in the experiment to train the proposed
method and the baseline.

In Fig. 8, quartile comparison is shown over different original concept
detection accuracies, controlled by the parameter µ1, i.e. the mean of positive
class. Each quartile is generated across 16 activity categories depicting the
distribution of overall performance of 20 repeated runs. From Fig. 8 we find
that the medians of the proposed method lie above the baseline at different
concept detection accuracies. When the original concept detection accuracy
is low, such as at µ1 = 0.5 and µ1 = 1.0, even the first quartile for the
method proposed in this paper lies above the median of the baseline. At
µ1 = 0.5, 75% of the scores through the proposed method are higher than
the baseline. This suggests that the proposed method can better adapt to the

20



Table 2: Experimental data set for activity classification

Type Eating Drinking Cooking Clean/Tidy/Wash

# Samples 28 15 9 21

# Images 1,484 188 619 411

Type Watch TV Child care Food shopping General shopping

# Samples 11 19 13 7

#Images 285 846 633 359

Type Reading Driving Use phone Taking bus

# Samples 22 20 12 9

# Images 835 1,047 393 526

Type Walking Presentation Use computer Talking

# Samples 19 11 17 17

# Images 672 644 851 704

Figure 8: F-score comparison of proposed method and baseline.

low-accuracy concept detections than the baseline. Both methods perform
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better when increasing the parameter µ1 (improving concept detections) in
Fig. 8. However, the proposed method shows steady performance and has
lower variance than the baseline.

Table 3: Accuracy comparison on different concept detection performances (controlled by
µ1).

µ1 = 0.5 µ1 = 1.0 µ1 = 1.5 µ1 = 2.0 µ1 = 2.5 µ1 = 3.0
Baseline 89.5% 94.7% 97.5% 98.8% 99.3% 99.5%
Proposed 94.4% 97.3% 98.5% 99.1% 99.1% 99.6%

Similar conclusions can be seen in Table 3 in which our proposed method
out-performs the baseline significantly when concept detections are less sat-
isfactory. This is consistent with Fig. 8 in that, while both methods achieve
comparable accuracies at better original concept detections such as at µ1 ≥
2.0, our proposed method still shows its merits in characterizing activities at
poorer concept detections.

In Table 4, pairwise activity classification F-scores are compared. From
Table 4 we find that our proposed method using enhanced concept detections
outperforms using non-enhanced results on most of the activities. Because
more noisy concepts might be involved, the classification performances of
activities like “cook”, “drink”, “general shopping”, “talk”, etc. are relatively
less satisfactory for both methods. Due to the movement nature of activi-
ties like “cook”, “general shopping”, “talking”, etc. and their wildly-varying
environments, there are usually lots of concepts appearing in their image
streams which are less discriminative for activity classification. For “drink”,
similar concept appearances like “cup”, “table”, “hands”, etc. also introduce
more misclassifications with activity “eat”. In this sense, the less discrim-
inative concepts can be termed as noisy concepts for activity classification.
This shows consistency with the results as reported in [56], in which these
activities have poorer F-scores even when evaluated on clean concept annota-
tions, i.e. directly on the groundtruth. However, the method using enhanced
concept detections still performs better than the non-enhanced method for
most activities, showing its advantages in characterising them. For example,
the “face” concept is enhanced by 9.1% and 6.7% at µ = 1.0 and µ = 2.0
respectively, which indicates the activity “talk” better. Similarly, the “sky”
and “road/path” concepts are enhanced by 17.6% and 15.2% respectively
at µ = 1.0, which further enhanced the accuracy of “walk”. At µ1 = 2.0,
significant improvements are achieved for concepts like “monitor” (23.1%),
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Table 4: Pairwise comparison of F-score at different concept detection performances (con-
trolled by µ1).

non-enhanced enhanced

Activity Types µ1 = 1.0 µ1 = 2.0 µ1 = 1.0 µ1 = 2.0
care for child 67.2% 85.0% 67.6% 96.8%

clean/tidy/wash 67.9% 88.1% 72.6% 90.3%
cook 67.6% 86.7% 65.2% 79.5%
drink 55.5% 86.0% 60.5% 89.0%
drive 98.5% 99.0% 98.4% 99.5%
eat 91.7% 98.9% 93.6% 98.6%

food shopping 74.6% 90.9% 65.2% 92.4%
general shopping 23.6% 58.0% 36.1% 77.9%

presentation(listen) 93.9% 95.4% 95.1% 95.4%
reading 66.8% 76.8% 68.7% 94.0%
take bus 88.9% 97.6% 91.1% 98.8%

talk 56.9% 90.6% 68.6% 91.0%
use computer 89.6% 98.2% 92.5% 99.4%

use phone 72.0% 95.6% 73.9% 95.5%
walk 75.0% 90.5% 78.9% 86.0%

watch TV 63.0% 88.8% 62.0% 92.5%

“screen” (15.2%), “newspaper” (17.7%), “shelf” (21.6%), etc. These can
interpret an even better characterization of “watch TV”, “use computer”,
“reading”, “general shopping”, etc.

Some activity recognition results are presented in Fig. 9 and visualized
in returned order for each activity type. In Fig. 9 one representing frame
for each sample is chosen for its visualization. The top 10 returned “talk-
ing” samples are listed in Fig. 9 (a) for our proposed method carried out
on enhanced and non-enhanced concept detection results at µ1 = 1.0. Top
10 samples are both satisfactory showing the characterizing capability of the
proposed method in (a). After applying the enhancement algorithm, more
correct samples (first row of (a)) are returned due to better detection of con-
cepts like “face”. Similar results are also shown in Fig. 9 (b) in which more
“reading” samples are correctly returned when enhancement is applied. In
this case, the concept “newspaper” is enhanced and helps to recognize “read-
ing” better. It is interesting to discover that our characterizing method can
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also provide more semantics which might not be included in manual annota-
tions. In Fig. 9 (c), one activity (highlighted in red dashes) is annotated as
“child care” since “pram” appears consistently in the image stream. How-
ever, our method also returns this sample as “walking” which helps us to
realize that the subject is indeed taking the baby for a walk in the garden.
In activities which are semantically similar to each other such as “eating” and
“drinking”, concepts like “cup”, “glass”, “table”, etc. often occur in both and
introduce more difficulties in discriminating them. Taking “drinking” as an
instance in 9 (d), both the enhanced and non-enhanced methods can return
“eating” samples by mistake. This is because of the lack of discriminative
capability of these concepts.

Figure 9: Sample results of the proposed methods. (a)–(d) represent frames for top-
ranked activity samples, for “talking”, “reading”, “walking” and “drinking” respectively.
Incorrect samples are denoted with red borders.
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6.3. Computational Complexity Analysis

While the convergence property has been proven in Section 4.2, the com-
putational efficiency of our proposed concept enhancement depends on the
convergence speed of WNTF. By denoting a total number of iter iterations,
the computational complexity is thus O(iter ·NML ·K3), where N , M and
L stands for the dimensionality of input tensor T , and K denotes the rank
of decomposition.

In real world applications, the lower rank K can usually achieve satisfac-
tory results and the two dimensions of slice in Fig. 3 (M for concept number
and N for image number) are much smaller than the number of slices L.
Hence the computational complexity can be simplified as O(iter ·L). In our
experiments, the updating step of the approximation of U (1), U (2) and U (3)

only takes several dozens of iterations to obtain satisfactory approximation.
Thus we empirically fix iter = 100 and it takes approximately three minutes
to execute the enhancement on a conventional desktop computer.

7. Conclusions

An algorithm of WNTF used to exploit the semantics of concept re-
occurrence and co-occurrence patterns is proposed and evaluated in this pa-
per. This aims to enhance multi-concept detections for visual media captured
by wearable cameras in lifelogging applications. Based on WNTF, the con-
textual semantics of co-occurrence and re-occurrence of semantic concepts
are utilised through partial concept detection results which have better ac-
curacies. The enhanced concept detection results are then applied to clas-
sification of everyday human activities by combining with an HCRF-based
dynamic modeling algorithm. Experimental results are presented and dis-
cussed to show the efficacy of our algorithm in providing better concept and
human activity detection results. Our future work is to combine the con-
textual semantics and temporal semantics analyzed in this paper to propose
more flexible indexing approaches for wearable visual lifelogging.
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