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Abstract

Estimation of response functions is an important task in dynamic medical imag-
ing. This task arises for example in dynamic renal scintigraphy, where impulse
response or retention functions are estimated, or in functional magnetic res-
onance imaging where hemodynamic response functions are required. These
functions can not be observed directly and their estimation is complicated be-
cause the recorded images are subject to superposition of underlying signals.
Therefore, the response functions are estimated via blind source separation and
deconvolution. Performance of this algorithm heavily depends on the used mod-
els of the response functions. Response functions in real image sequences are
rather complicated and finding a suitable parametric form is problematic. In
this paper, we study estimation of the response functions using non-parametric
Bayesian priors. These priors were designed to favor desirable properties of the
functions, such as sparsity or smoothness. These assumptions are used within
hierarchical priors of the blind source separation and deconvolution algorithm.
Comparison of the resulting algorithms with these priors is performed on syn-
thetic dataset as well as on real datasets from dynamic renal scintigraphy. It is
shown that flexible non-parametric priors improve estimation of response func-
tions in both cases. MATLAB implementation of the resulting algorithms is
freely available for download.

Keywords: Response function, Blind source separation, Dynamic medical
imaging, Probabilistic models, Bayesian methods

1. Introduction

Computer analysis of dynamic image sequences offers an opportunity to
obtain information about organ function without invasive intervention. A typi-
cal example is replacement of invasive blood sampling by computer analysis of
dynamic images [1]. The unknown input function can be obtained by deconvo-
lution of the organ time activity curve and organ response function. Typically,
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both the input function and the response functions are unknown. Moreover, the
time-activity curves are also not directly observed since the recorded images are
observed as superposition of multiple signals. The superposition arise e.g. from
partial volume effect in dynamic positron emission tomography [2] or dynamic
and functional magnetic resonance imaging [3] or from projection of the volume
into planar dynamic scintigraphy [4]. Analysis of the dynamic image sequences
thus require to separate the original sources (source images) and their weights
over the time forming the time-activity curves (TACs). The TACs are then de-
composed into input function and response functions. Success of the procedure
is dependent on the model of the image sequence.

The common model for dynamic image sequences is the factor analysis model
[5], which assume linear combination of the source images and TACs. Another
common model is that TAC arise as a convolution of common input function and
source specific kernel [6, 7]. The common input function is typically the original
signal from the blood and the role of convolution kernels vary from application
area: impulse response or retention function in dynamic renal scintigraphy [8]
or hemodynamic response function in functional magnetic resonance imaging
[9]. In this paper, we will refer to the source kernels as the response functions,
however other interpretations are also possible.

Analysis of the dynamic image sequences can be done with supervision of
experienced physician or technician, who follows recommended guidelines and
uses medical knowledge. However, we aim at fully automated approach where
the analysis fully depends on the used model. The most sensitive parameter
of the analysis is the model of the response functions (i.e. the convolution
kernels). Many parametric models of response functions has been proposed,
including the exponential model [10] or piece-wise linear model [11, 12]. An
obvious disadvantage of the approach is that the real response function may
differ from the assumed parametric models. Therefore, more flexible class of
models based on non-parametric ideas were proposed such as averaging over
region [13], temporal regularization using finite impulse response filters [14], or
free-form response functions using automatic relevance determination principle
in [15].

In this paper, we will study the probabilistic models of response functions
using Bayesian methodology within the general blind source separation model
[16]. The Bayesian approach was chosen for its inference flexibility and for its
ability to incorporate prior information of models [17, 18]. We will formulate
the prior model for general blind source separation problem with deconvolution
[15] where the hierarchical structure of the model allow us to study various
versions of prior models of response functions. Specifically, we design different
prior models of the response functions with more parameters then the number
of points in the unknown response function. The challenge is to regularize the
estimation procedure such that all parameters are estimated from the observed
data. We will use the approximate Bayesian approach known as the Variational
Bayes method [19]. The resulting algorithms are tested on synthetic as well as
on real datasets.
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2. Probabilistic Blind Source Separation with Deconvolution

In this Section, we introduce a model of dynamic image sequences. Estima-
tion of the model parameters yields an algorithm for Blind Source Separation
and Deconvolution. Prior models of all parameters except for the response
functions are described here while the priors for the response functions will be
studied in details in the next section.

2.1. Model of Observation

Each recorded image is stored as a column vector dt ∈ R
p×1, t = 1, . . . , n,

where n is total number of recorded images. Each vector dt is supposed to be an
observation of a superposition of r source images ak ∈ R

p×1, k = 1, . . . , r, stored
again columnwise. The source images are weighted by their specific activities
in time t denoted as x1,t, . . . , xr,t ≡ xt ∈ R

1×r. Formally,

dt = a1x1,t + a2x2,t + · · ·+ arxr,t + et = AxT
t + et, (1)

where et is the noise of the observation, A ∈ R
p×r is the matrix composed from

source images as its columns A = [a1, . . . , ar], and symbol ()T denotes transposi-
tion of a vector or a matrix in the whole paper. The equation (1) can be rewritten
in the matrix form. Suppose the observation matrix D = [d1, . . . ,dn] ∈ R

p×r

and the matrix with TACs in its columns, X = [xT
1 , . . . ,x

T
n ]

T ∈ R
n×r. Note

that we will use the bar symbol, xk, to distinguish the kth row of matrix X ,
while xk will be used to denote the kthe column. Then, the (1) can be rewritten
into the matrix form as

D = AXT + E. (2)

The tracer dynamics in each compartment is commonly described as convo-
lution of common input function, vector b ∈ R

n×1, and source specific response
function (convolution kernel, mathematically), vector uk ∈ R

n×1, k = 1, . . . , r
[11, 20, 10]. Using convolution assumption, each TAC can be rewritten as

xk = Buk, ∀k = 1, . . . , r, (3)

where the matrix B ∈ R
n×n is composed from elements of input function b as

B =




b1 0 0 0
b2 b1 0 0
. . . b2 b1 0
bn . . . b2 b1


 . (4)

Suppose the aggregation of response functions U = [u1, . . . ,ur] ∈ R
n×r. Then,

X = BU and the model (2) can be rewritten as

D = AUTBT + E. (5)

The task of subsequent analysis is to estimate the matrices A and U and the
vector b from the data matrix D.
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2.1.1. Noise Model

We assume that the noise has homogeneous Gaussian distribution with zero
mean and unknown precision parameter ω, ei,j = Nei,j (0, ω

−1). Then, the data
model (2) can be rewritten as

f(D|A,X, ω) =
n∏

t=1

Ndt
(Axt, ω

−1Ip), (6)

where symbol N denotes Gaussian distribution and Ip is identity matrix of the
size given in its subscript. Since all unknown parameters must have their prior
distribution in the Variational Bayes methodology, the precision parameter ω
has a conjugate prior in the form of the Gamma distribution

f(ω) = Gω(ϑ0, ρ0), (7)

with chosen constants ϑ0, ρ0.

2.2. Probabilistic Model of Source Images

The only assumption on source images is that they are sparse, i.e. only some
pixels of source images are non-zeros. The sparsity is achieved using prior model
that favors sparse solution depending on data [21]. We will employ the auto-
matic relevance determination (ARD) principle [22] based on joint estimation of
the parameter of interest together with its unknown precision. Specifically, each
pixel ai,j of each source image has Gaussian prior truncated to positive values
(see Appendix Appendix A.1) with unknown precision parameter ξi,j which is
supposed to have conjugate Gamma prior as

f(ai,k|ξi,k) =tNai,j
(0, ξ−1

i,k ), (8)

f(ξi,k) =Gξi,j (φ0, ψ0), (9)

for ∀i = 1, . . . , p, ∀k = 1, . . . , r, and φ0, ψ0 are chosen constants. The precisions
ξi,j form the matrix Ξ of the same size as A.

2.3. Probabilistic Model of Input Function

The input function b is assumed to be a positive vector; hence, it will be
modeled as truncated Gaussian distribution to positive values with scaling pa-
rameter ς ∈ R as

f(b|ς) =tN (0n,1, ς
−1In), (10)

f(ς) =G(ζ0, η0), (11)

where 0n,1 denotes zeros matrix of the given size and ζ0, η0 are chosen constants.

2.4. Models of Response Functions

So far, we have formulated the prior models for source images A and input
function b from decomposition of the matrix D. The task of this paper is to
propose and study prior models for response functions U as illustrated in Figure
1. Different choices of the priors on the response functions have strong influence
on the results of the analysis which will be studied in the next section.
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Figure 1: Hierarchical model for blind source separation with deconvolution problem.
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Figure 2: Example of theoretical shape of response function (by [11]), left, and corresponding
real-world shape of convolution kernels, right.

3. Non-parametric Prior Models of Response Function

Here, we will formulate several prior models of response functions. Our
purpose is not to impose any parametric form as it was done, e.g., in [11, 10]
but model response function as a free-form curve with only influence from their
prior models. The motivation is demonstrated in Figure 2, where a common
parametric model [11] is compared to an example of response function obtained
from real data. While the basic form of the response function is correct, exact
parametric form of the function would be very complex. Therefore, we prefer to
estimate each point on the response function individually. However, this leads to
overparametrization and poor estimates would result without regularization. All
models in this Section introduce regularization of the non-parametric function
via unknown covariance of the prior with hyperparameters.

3.1. Orthogonal Prior

The first prior model assumes that each response function uk, k = 1, . . . , r,
is positive and each response function is weighted by its own precision relevance
parameter υk ∈ R which has a conjugate Gamma prior:

f(uk|υk) =tNuk

(
0n,1, υ

−1
k In

)
, (12)

f(υk) =Gυk
(α0, β0), (13)

for ∀k = 1, . . . , r and where α0, β0 are chosen constants.
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The precision parameters υk serves for suppression of weak response func-
tions during iterative computation and therefore as parameters responsible for
estimation of number of relevant sources.

3.2. Sparse Prior

The model with sparse response functions has been introduced in [15]. The
key assumption of this model is that the response functions are most likely sparse
which is modeled similarly as in case of source images, Section 2.2, using the
ARD principle. Here, each element of response function uk,j has its relevance
parameter υk,j which is supposed to be conjugate Gamma distributed. In vector
notation, each response function uk has its precision matrix Υk with precision
parameters υk,j on its diagonal and zeros otherwise. Then

f(uk|Υk) =tNuk

(
0n,1,Υ

−1
k

)
, (14)

f(υk,j) =Gυk,j
(α0, β0), ∀j = 1, . . . , n, (15)

where α0, β0 are chosen constants.
The employed ARD principle should suppress the noisy parts of response

functions which should leads to clearer response functions and subsequently to
clearer TACs.

3.3. Sparse Differences Prior

Modeling of only sparsity in response functions could possibly leads to ar-
bitrary solution such as very non-smooth curve. The model of differences in
response functions allow us to formulate the model favoring smooth response
functions which is biologically reasonable requirement. Let suppose the model
of differences of response function uk, ∇uk, where the difference matrix ∇ is
defined as

∇ =




1 −1 0 0

0 1
. . . 0

0 0
. . . −1

0 0 0 1



, (16)

with ARD prior on each difference using precision parameter υk,j forming again
precision matrix Υk; however, with precisions of differences on its diagonal.
Then, we can formulate this problem equally as

f(∇uk|Υk) = tN∇uk

(
0n,1,Υ

−1
k

)
⇐⇒ f(uk|Υk) = tNuk

(
0n,1,∇−1Υ−1

k ∇−T
)
,

(17)
where symbol ()−T denotes transpose and inversion of matrix. The prior model
is accompanied by prior model for precisions in the same way as in (15):

f(uk,j) = Gυk,j
(α0, β0), ∀j = 1, . . . , n, (18)

where α0, β0 are chosen constants.
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Figure 3: The used localization matrix L for the first two diagonals. The black pixels denote
ones and the white pixels denote zeros. This example is given for n = 15 and r = 3.

3.4. Wishart Prior

So far, we have modeled only the first or the second diagonal of the precision
matrix Υk. Each of these approaches have its advantages which we would like
to generalize into estimation of several diagonals of the prior covariance matrix.
However, this is difficult to solve analytically. Instead, we note that it is pos-
sible to create the model for the full prior covariance matrix of the response
functions as well as their mutual interactions. For this task, we use vectorized
form of response functions denoted as u ∈ R

nr×1, u = vec(U) =
[
u
T
1 , . . . ,u

T
r

]T
.

This rearranging allow us to model mutual correlation between response func-
tions. The full covariance matrix Υ ∈ R

nr×nr can be modeled using Wishart
distribution, see Appendix Appendix A.2, as

f(u|Υ) =tNu

(
0nr,1,Υ

−1
)
, (19)

f(Υ) =WΥ (α0Inr, β0) , (20)

with scalar prior parameters α0, β0.
The advantage of this parametrization is obvious, the full covariance matrix

is estimated. The disadvantage is this model is that for estimation nr parame-
ters in vector u, we need to estimate n2r2 additional parameters in covariance
structure. The problem is regularized by the prior on Υ, (20), which is relatively
weak regularization with potential side effects. We try to suppress these side
effects in the next section.

3.5. Wishart Prior with Localization

Since restriction of the covariance structure to several diagonals is infeasible
in the considered dimensions, we apply an alternative approach known as local-
ization. This techniques originates in data assimilation of atmospheric models
[23]. The basic idea of the method is that the most information is localized on
the first two diagonals of the matrix Υ and its sub-matrices. Hence, we can use
Hadamard product, know also as element-wise product, of the original estimates
Υ and localization matrix L of the same size as the matrix Υ. The localization
matrix used in this paper for the first two diagonals is illustrated in Figure 3.
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Algorithm 1

1. Initialization:

(a) Set prior parameters α0, β0, ϑ0, ρ0, φ0, ψ0, ζ0, η0.
(b) Set initial values for Â, ÂTA, Ξ̂, û, ûTu, Υ̂, b̂, b̂Tb, ς̂ , ω̂.
(c) Set the initial number of sources rmax.

2. Iterate until convergence is reached using computation of shaping param-
eters from Appendix Appendix B:

(a) Source images µai
,Σai

and their variances ψi, φi ∀i using (B.1)–(B.4).
(b) Response functions µu,Σu and their hyper-parameters depending on

version of the prior:
i. RelRF: (B.10) and (B.11)–(B.12),
ii. SparseRF: (B.10) and (B.13)–(B.14),
iii. SparDifRF: (B.10) and (B.15)–(B.16),
iv. WishRF: (B.10) and (B.17)–(B.18),
v. LocWishRF: (B.10) and (B.19)–(B.20).

(c) Input function µb,Σb and its variance ζ, η using (B.5)–(B.7).
(d) Variance of noise ϑ, ρ using (B.8)–(B.9).

3. Report estimates of source images Â, response functions Û , and input
function b̂.

After localization, the model of response functions is the same as in Section
3.4, (19)–(20), however, the estimate of Υ, Υ̂, is replaced by

Υ̂new = Υ̂ ◦ L, (21)

where symbol ◦ denotes the Hadamard product. We will show that this local-
ization is a soft version of smoothing of the Wishart model from Section 3.4;
however, not so strict as modeling of differences in Section 3.3.

Theoretically, we could employ any conceivable localization as well as smoother
version of localization using smooth transitions between ones and zeros; how-
ever, this is out of scope of this paper.

3.6. Variational Bayes Approximate Solution

The whole probabilistic model forming equations (6)–(7), (8)–(11), and se-
lected response functions model from Sections 3.1–3.5. The probabilistic model
is solved using Variational Bayes (VB) method [19]. Here, the solution is found
in the form of probability densities of the same type of the priors. The shap-
ing parameters of the posterior densities form a set of an implicit equations,
Appendix Appendix B, which is typically analytically intractable and has to be
solved iteratively.

The algorithms are summarized in Algorithm 1. All prior parameters are
set to 10−10 or 10+10 in order to obtained non-informative priors. The initial
response functions are selected as pulses with different lengths with respect to
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Figure 4: The results of the five studied methods on synthetic dataset (the first row). The red
lines are generated data while the blue lines are estimated results from the respected methods.

cover the typical structures while the initial input function is selected as an
exponential curve since the iterative solution could converge only to a local
minimum [19].

4. Experiments and Discussion

We proposed five versions of model of non-parametric response functions
within the model of probabilistic blind source separation model in Sections 3.1–
3.5. The proposed algorithms are tested on simulated phantom study as well as
on representative clinical data set from dynamic renal scintigraphy.

4.1. Synthetic Dataset

Performance of the proposed models of response functions is first studied
on a synthetic dataset generated according to the model (5). The size of each
image is 50 × 50 pixels and the number of simulated time points is n = 50.
We simulate 3 sources which are given in Figure 4, top row, using their source
images and response functions together with generated input function b (top
row, right). We generate homogeneous Gaussian noise with standard deviation
0.3 of the signal strength.
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Prior model of the response function total MSE on U MSE on b

Orthogonal, Sec. 3.1 34.50 6.58
Sparse, Sec. 3.2 18.76 0.99
Sparse Differences, Sec. 3.3 22.84 8.03
Wishart, Sec. 3.4 30.33 3.43
Wishart with Localization, Sec. 3.5 9.26 1.19

Table 1: Computed mean square errors (MSE) from the simulated data.
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Figure 5: Sensitivity study of MSE of estimated on the parameter α0 of the Wishart prior
and the Wishart prior with localization.

The results of the five proposed models are given in Figure 4 in the row-wise
schema. Note that all algorithms are capable to estimate the correct number
of sources. It can be seen that all methods estimated the source images cor-
rectly. The main differences are in estimated response functions, the forth to
the sixth columns, and estimated input function, the seventh column. Note that
only the first prior, orthogonal, was not able to respect the sparse character of
the modeled response functions, all other priors were able to do so. The vi-
sual results are accompanied by the corresponding mean square errors (MSE)
summarized in Table 1. Here, the MSE is computed between the estimated
response functions and their simulated values as well as between the estimated
input functions and its simulated value for each method. The Wishart prior
with localization outperforms the other ones in estimation of response functions
while it is comparable with the sparse prior in estimation of input function.

4.1.1. Influence of Localization in Wishart Prior

The effect of localization on the algorithm with the Wishart prior is illus-
trated studied in Figure 5 via sensitivity study of the prior parameter α0 on the
resulting MSE of the response functions. The prior parameter β0 is selected as
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10−10 for all cases. For large values of α0 the results are comparable, however
the localized version is improving with decreasing α0. For values of α0 < 1,
the results of the localized version stabilize and become insensitive to the exact
value of α0.

4.2. Datasets from Dynamic Renal Scintigraphy

The methods from Sections 3.1–3.5 were tested on real data from dynamic
renal scintigraphy taken from online database2. We illustrate the possible out-
come of the method on two distinct datasets, numbers 84 and 42. Each dataset
represent different behavior of the methods.

Both sequences consist of 50 frames taken after 10 seconds and both were
preprocessed by selection region of the left kidney. The data are expected to
contain three sources of activity: (i) parenchyma, the outer part of a kidney
where the tracer is accumulated at the first, (ii) pelvis, the inner part of a
kidney where the accumulation has physiological delay, and (iii) background
tissues which is typically active at the beginning of the sequence. Since the noise
in scintigraphy is Poisson distributed, the assumption of homogeneous Gaussian
noise (6) can be achieved by asymptotic scaling known as the correspondence
analysis [24] which transforms the original data Dorig as

dij =
dij,orig√∑p

i=1 dij,orig
∑n

j=1 dij,orig

. (22)

First, we applied the methods from Sections 3.1–3.5 on dataset number 84 as
a typical non-controversial case. The results are shown in Figure 6 using the es-
timated source images (columns 1–3), the estimated related response functions
(columns 4–6), and the estimated input function (column 7). The results of all
five methods are comparable with the main difference being in the smoothness
or non-smoothness of the estimated response functions. This is most remarkable
in the fifth column corresponding to the response functions of the pelvis. The
sparse prior prefers sparse solution with many zeros, the sparse differences prior
favors smooth solution (i.e. many differences being equal to zeros), while the
Wishart prior models full covariance of response function where no smoothness
is incorporated. The hypothetical compromise of all versions seems to be the
Wishart prior with localization where the full covariance is modeled and subse-
quently localized. However, the differences in this case are relatively minor.

Second, we apply the methods 3.1–3.5 on dataset number 42 where differ-
ent methods yield more distinct results, see Figure 7. Note that the sparse
and the sparse differences priors were not able to separate the pelvis which
is mixed with the parenchyma in the first column while the orthogonal prior
estimated the source images reasonably; however, the response functions of

2Database of dynamic renal scintigraphy, http://www.dynamicrenalstudy.org (accessed:
1st December 2014).
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Figure 6: Estimated source images (columns 1–3), response functions (columns 4–6), and
input functions (column 7) using priors: Orthogonal, Sparse, Sparse Differences, Wishart,
Wishart with localization.

12



O
rt

h
o

g
o

n
a

l

source image 1

0 50
0

0.5

1

response f. 1source image 2

0 50
0

0.5

1

response f. 2source image 3

0 50
0

0.5

1

response f. 3

0 50
0

0.5

1

input function

S
p

a
rs

e

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

S
p

a
rs

e
D

if
fe

re
n

c
e

s

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

W
is

h
a

rt

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

W
is

h
a

rt
 w

it
h

L
o

c
a

liz
a

ti
o

n

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

0 50
0

0.5

1

Figure 7: Estimated source images (columns 1–3), response functions (columns 4–6), and
input functions (column 7) using priors: Orthogonal, Sparse, Sparse Differences, Wishart,
Wishart with localization.
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the parenchyma and the pelvis are clearly mixed. The Wishart-based priors,
Wishart and Wishart with localization, were able to separate the parenchyma
and the pelvis correctly together with meaningful estimates of their response
functions. The main difference between the Wishart and the Wishart with lo-
calization priors is in smoothness. The estimated response functions from the
Wishart prior with localization better matches the physiological expectations
than the estimates from the Wishart model. In this case, the use of more com-
plex prior models significantly outperform the simpler models.

Indeed, the analysis of the full database would be of interest in concrete
application; however, it is not a goal of this paper.

5. Conclusion

A common model in functional analysis of dynamic image sequences assumes
that the observed images arise from superposition of the original source images
weighted by theirs time-activity curves. Each time-activity curve is assumed
to be a result of common input function and source-specific response function,
both unknown. Estimation of the model parameters yields an algorithm for
blind source separation and deconvolution. The focus of this study is the prior
model of the response functions while the models of the source images and the
input function are the same. We propose five prior models of the response
functions. The first three prior models are based on automatic relevance de-
termination principle on the whole response functions, on each element of the
response function, and on the differences between elements of the response func-
tions, respectively. The forth model is based on full model of covariance matrix
using Wishart distribution while the fifth model is based on the same prior;
however, with additional localization within the deconvolution algorithm. The
advantage of all five models is their flexibility in estimation of various shapes of
response functions since we do not impose any parametric form of them. The
formulated probabilistic models in the form of hierarchical priors are solved
using the Variational Bayes methodology.

The performance of the proposed methods is tested on simulated dataset
as well as on representative real datasets from dynamic renal scintigraphy. It
is shown that the behaviors of the methods well correspond with their prior
expectations. We conclude that the most complex model, i.e. the Wishart model
with localization, provide also the most desirable results in the sense of mean
square errors to the original simulated data as well as in sense of biologically
meaningfulness of the results on the real datasets. Notably, the methods have no
domain-specific assumptions; hence, they can be used in other task in dynamic
medical imaging. The MATLAB implementation of all methods is available for
download in http://www.utia.cz/bss_rf_priors/.
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Appendix A. Required Probability Distributions

Appendix A.1. Truncated Normal Distribution

Truncated normal distribution, denoted as tN , of a scalar variable x on
interval [a; b] is defined as

tN (µ, σ, [a, b]) =

√
2 exp((x− µ)2)√

πσ(erf(β) − erf(α))
χ[a,b](x), (A.1)

where α = a−µ√
2σ

, β = b−µ√
2σ

, function χ[a,b](x) is a characteristic function of
interval [a, b] defined as χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise.
erf() is the error function defined as erf(t) = 2√

π

´ t

0 e
−u2

u. .
The moments of truncated normal distribution are

x̂ = µ−√
σ

√
2[exp(−β2)− exp(−α2)]√

π(erf(β) − erf(α))
, (A.2)

x̂2 = σ + µx̂−√
σ

√
2[b exp(−β2)− a exp(−α2)]√

π(erf(β) − erf(α))
. (A.3)

Appendix A.2. Wishart Distribution

Wishart distribution W of the positive-definite matrix X ∈ R
p×p is defined

as

Wp(Σ, ν) = |X | ν−p−1

2 2−
νp

2 |Σ|− ν
2 Γ−1

p

(ν
2

)
exp

(
−1

2
tr
(
Σ−1X

))
, (A.4)

where Γp

(
ν
2

)
is the gamma function. The required moment is:

X̂ =νΣ. (A.5)

Appendix B. Shaping Parameters of Posteriors

Shaping parameters of posterior distributions are given as:
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Σai
=


ω̂

n∑

j=1

(x̂T
j xj) + diag(Ξ̂i)




−1

, (B.1)

µai
=Σai

ω̂

n∑

j=1

(x̂jdi,j), (B.2)

φi =φi,0 +
1

2
1r,1, (B.3)

ψi =ψi,0 +
1

2
diag

(
â
T
i ai

)
, (B.4)

Σb =


ς̂In + ω̂

r∑

i,j=1

(âT
i aj)




n−1∑

k,l=0

∆T
k ∆l ̂uk+1,jul+1,i






−1

, (B.5)

µb =Σbω̂

r∑

k=1




n−1∑

j=0

∆j ûj+1,k




T

DT
âk, (B.6)

ζ =ζ0 +
n

2
, η = η0 +

1

2
tr
(
b̂Tb

)
, (B.7)

ϑ =ϑ0 +
np

2
, (B.8)

ρ =ρ0 +
1

2
tr
(
DDT − ÂX̂TDT −DX̂ÂT

)
+

1

2
tr
(
ÂTAX̂TX

)
. (B.9)

Here, x̂ denotes a moment of respective distribution, tr() denotes a trace
of argument, diag() denotes a square matrix with argument vector on diagonal
and zeros otherwise or a vector composed from diagonal element of argument
matrix, 1n,1 denotes the matrix of ones of dimension n × 1, the auxiliary ma-

trix ∆k ∈ R
n×n is defined as (∆k)i,j =

{
1, if i − j = k,

0, otherwise,
, and standard mo-

ments of required probability distributions are given Appendix Appendix A.1
and Appendix A.2 and, e.g., in the appendix of [19].

The shaping parameters for response functions are given in following sub-
sections while the parameter µu is common for all methods as

µu = Σu

(
ÂTA⊗ ω̂B̂TB

)
vec

(
B̂TB

−1

B̂TDT ÂÂTA
−1

)
. (B.10)

Appendix B.1. Shaping Parameters for Orthogonal Prior

Σu =
(
ÂTA⊗ ω̂B̂TB + In ⊗ Υ̂

)−1

, (B.11)

αk =αk,0 +
n

2
, βk = βk,0 +

1

2
tr
(
uku

T
k

)
, (B.12)
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Appendix B.2. Shaping Parameters for Sparse Prior

Σu =
(
ÂTA⊗ ω̂B̂TB + diag(vec(Υ̂))

)−1

, (B.13)

α =α0 +
1

2
1nr,1, β = β0 +

1

2
diag

(
ûuT

)
, (B.14)

Appendix B.3. Shaping Parameters for Sparse Differences Prior

Σu =
(
ÂTA⊗ ω̂B̂TB + (Ir ⊗∇)Υ̂(Ir ⊗∇T )

)−1

, (B.15)

αk =αk,0 + 1n,1
1

2
, βk = βk,0 +

1

2
diag

(
∇T

uku
T
k∇

)
, (B.16)

Appendix B.4. Shaping Parameters for Wishart Prior

Σu =
(
ÂTA⊗ ω̂B̂TB + Υ̂

)−1

, (B.17)

ΣΥ =
(
ûuT + (α0Inr)

−1
)−1

, β = β0 + 1, (B.18)

Appendix B.5. Shaping Parameters for Wishart Prior with Localization

Σu =
(
ÂTA⊗ ω̂B̂TB + Υ̂ ◦ L

)−1

, (B.19)

ΣΥ =
(
ûuT + (α0Inr)

−1
)−1

, β = β0 + 1. (B.20)
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