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Stereo reconstruction using top-down cues

Simon Hadfielda,∗, Karel Lebedaa, Richard Bowdena

aCVSSP, University of Surrey, GU2 7XH Guildford, United Kingdom

Abstract

We present a framework which allows standard stereo reconstruction to be unified with a wide range of classic top-down
cues from urban scene understanding. The resulting algorithm is analogous to the human visual system where conflicting
interpretations of the scene due to ambiguous data can be resolved based on a higher level understanding of urban
environments. The cues which are reformulated within the framework include: recognising common arrangements
of surface normals and semantic edges (e.g . concave, convex and occlusion boundaries), recognising connected or
coplanar structures such as walls, and recognising collinear edges (which are common on repetitive structures such as
windows). Recognition of these common configurations has only recently become feasible, thanks to the emergence
of large-scale reconstruction datasets. To demonstrate the importance and generality of scene understanding during
stereo-reconstruction, the proposed approach is integrated with 3 different state-of-the-art techniques for bottom-up
stereo reconstruction. The use of high-level cues is shown to improve performance by up to 15 % on the Middlebury
2014 and KITTI datasets. We further evaluate the technique using the recently proposed HCI stereo metrics, finding
significant improvements in the quality of depth discontinuities, planar surfaces and thin structures.

Keywords: Stereo reconstruction, Scene understanding, biologically inspired, high level cues, bottom up, top down

(a) Input data (b) Appearance matching (c) Scene reasoning (d) Output reconstruction

Figure 1: An illustration of the different components which are unified within the proposed framework. Specifically including both bottom-up
matching (b) and a top-down understanding (c) of an outdoor (top) and indoor (bottom) urban scene.

1. Introduction

One of the classic challenges of computer vision is esti-
mating the 3D structure of an environment, using only vi-
sual information. It is one of the most commonly exploited
techniques, with uses in mapping, robotics, surveying and
many others. However, it is also one of the most challeng-
ing problems in computer vision to solve for general scenes

∗Corresponding author. Telephone: +44 1483 682260.
Email addresses: S.Hadfield@surrey.ac.uk (Simon Hadfield),

K.Lebeda@surrey.ac.uk (Karel Lebeda), R.Bowden@surrey.ac.uk
(Richard Bowden)

as visual information is inherently ambiguous. The same
observations may be produced by infinitely many combina-
tions of structure, texture and illumination. However, not
all these different configurations are equally probable in
the real world. Particularly when the environment is highly
structured, such as in an urban setting, there are strong
cues which can be used to find a feasible interpretation of
the scene. In this paper we demonstrate a general frame-
work which enables top-down scene reasoning to be inte-
grated into state-of-the-art stereo reconstruction pipelines,
alongside traditional bottom-up appearance matching.

The formulation is inspired by the human visual sys-
tem. At the lowest level the human vision system perceives
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depth by recognising matched elements of the observations
from the eyes. These matches are then triangulated to
estimate depth. This is analogous to traditional stereo
reconstruction techniques from computer vision (with some
additional assumptions about smoothness) dating back
as far as the 1960s [1, 2]. In this paper, we refer to this
approach as bottom-up reconstruction, because the re-
construction emerges from the matching of small scene
sub-units. It is also interesting to note that before this
bottom-up matching can be undertaken in most computer
vision systems, an additional calibration task must first be
solved: estimating the epipolar geometry. This is equiva-
lent to the innate knowledge of the eyes’ characteristics in
the human visual system.

However, this is not the only approach employed by
humans. The human visual system also exploits a wide
range of very strong high-level cues to help understand
the structure of the environment, particularly within more
structured domains such urban environments. It is easy
to recognise this, when one considers that a person has no
difficulty understanding the layout of objects within the
source environment for a photo or video, even though the
information obtained via triangulation correctly states that
the objects are all on a planar surface. The cues that the
human vision system uses to achieve this have been well
studied in computer vision, especially in this particular
scenario when only a single image is available. This is often
called single-image scene understanding.

As with bottom-up reconstruction, the human vision
system has a significant advantage over computer vision,
which is gained through experience and understanding of
the world. Studies have found that these types of top-down
cues take around 7 months of continuous online training to
emerge in humans [3]. It is only recently, with the growth
of large-scale 3D datasets that more accurate data-driven
approaches to scene understanding have become feasible
within computer vision [4, 5]. In previous work, some of the
most commonly exploited cues involve assumptions about
gravity and the viewing orientation, assumptions about the
types of surfaces found in urban environments (for example
the Manhattan world assumption) and assumptions about
common configurations of objects and primitives. In this
work we refer to these collectively as top-down reconstruc-
tion techniques, because the structure for each element
of the scene is determined based on rules relating to the
overall configuration of multiple sub-units.

One interesting advantage of the proposed unified frame-
work is that the use of top-down cues reduces issues relating
to the baseline which are common in traditional bottom-up
reconstruction. The accuracy of these matching and trian-
gulation based systems is strongly limited by the baseline
(i.e. the separation of the two cameras). When the range
of the scene is significantly larger than this baseline, even
small errors in the initial matching and triangulation are
manifested as much larger errors in the estimated depth. In
contrast, our unified system is capable of smoothly transi-
tioning from top-down reconstruction when the bottom-up

cues become less reliable. In this way, the technique again
mirrors the behaviour of the human vision system, as re-
searchers have found that the different types of depth cue
each have different operating ranges [6]. This results in
3 general “perceptual spaces” for both the human vision
system and the proposed framework: the near space (where
the triangulation cue dominates), the ambient space (where
a combination of bottom-up and top-down reconstruction is
used), and the vista space where only top-down information
is useful, as light entering the eye/sensor is near parallel and
observations are approximately identical between the view-
points. Our approach smoothly interpolates between these
3 situations, due to penalisation of the inverse depth error.

In our previous conference publication [7] we under-
took an initial investigation of stereo representations which
enable the unification of bottom-up and top-down recon-
struction, as illustrated in Figure 1. In this paper we
expand on this in all respects. In particular, the methodol-
ogy has been greatly expanded, and now fully formalizes
all linearised matching cost functions in Section 6. The
technique has also been extended to allow integration with
existing bottom-up stereo-reconstruction algorithms. Fol-
lowing this, the evaluation has been expanded and now
investigates the effect of top-down reconstruction cues on
a range of traditional state-of-the-art algorithms in Sec-
tion 7.1. The behaviour of the various sub-components
within the framework is also investigated in Section 7.2,
which makes it possible to obtain a much deeper under-
standing of the behaviour of the approach. Finally in
Section 8 we examine the approach in terms of the newly
released HCI stereo metrics benchmark [8]. This explores
geometry-aware aspects of the stereo reconstruction, which
are particularly important for applications such as robotics
and augmented reality.

2. Related Work

2.1. Bottom-up reconstruction

The traditional approach to stereo reconstruction is
based on matching and triangulation between multiple
views of the same environment. Local bottom-up recon-
struction techniques are based on independently detecting
and matching small numbers of distinctive feature points.
The most prevalent of these approaches is the matching of
SIFT or similar features [9, 10]. More recently a number of
additional matching criteria have been proposed, including
the census transform [11], generative models [12] and edge
preserving filters [13].

In the most general case, the matching may be run
across the entire scene, to allow an initial estimate of
the calibration to be obtained [14, 15]. However, when
the calibration is already known, these local matching
approaches can be limited to search only along the epipolar
lines defined by the camera configuration.

A recent extension to this epipolar search was proposed
as part of the semi-global matching approach, originally
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proposed by Hirschmüller [16]. This has gained significant
popularity, due to it’s robustness to minor calibration inac-
curacies. Recent extensions of this idea include the addition
of weighting terms [17], an iterative variant [18] and the
augmented Manhattan world assumption [19, 20].

However, whichever matching technique is chosen, it
is still impossible to fully reconstruct general scenes using
only local matching information. This limitation is imposed
by the well known aperture problem [21] which states that
regions without strong texture (or more explicitly regions
without significant gradient information perpendicular to
the epipolar line) cannot be reliably matched between im-
ages, regardless of the descriptor which is used for matching.
This is because, by definition, the matching point may move
along the epipolar line, without causing a change in the
observation in the other image. Due to this limitation,
most work on bottom-up reconstruction (including the pre-
viously mentioned SGM techniques) has focused on global
techniques, wherein various formulations of spatial smooth-
ness are optimised alongside the local appearance matching.
Some examples of these spatial-smoothness constraints in-
clude Total Variation (using both L1 and L2 norms [22, 23]),
Monte-carlo inspired PatchMatch approaches [24, 25] and
the Total Generalized Variation [26, 27] which was designed
to deal with staircasing artifacts which are often introduced
by total variation techniques.

An alternative way to encourage local smoothness,
which has received significantly less attention in recent
years, is to reconstruct the environment as a collection
of scene primitives. This obviates the need to explicitly
match every pixel, instead the matches are inherent in
the configuration of primitives. This also helps to deal
with common artifacts such as staircasing and oversmooth-
ing, however the primitives which are chosen impose their
own restrictions on the scene. For example smoothly curv-
ing surfaces can never be perfectly modelled using simple
oriented planar primitives as used in many previous tech-
niques [28, 29, 30], while the curved surfaces used by Zhang
et al . [31] cannot model rough surfaces such as jagged
stone. Despite this, reasonably chosen primitives can prove
extremely effective for reconstruction within specialised
domains such as urban environments. The most complex
examples of primitive based reconstruction include earlier
work by Wu and Levine [32] using geometric subunits or
“geons” (i.e. full 3D shapes as primitives). More recently
this idea has been extended even further using whole-object
primitives [33, 34]. In this work, we make use of oriented
planar primitives, which are particularly well suited to
urban reconstruction.

One of the primary issues with reconstruction based
on primitives, is determining the number and arrangement
of the primitives. One of the most common approaches is
to use superpixel segmentations to hypothesise consistent
regions which can be well modelled by a single primitive.
Mičuš́ık and Košecká made use of this representation to
segment the scene into planar primitives similar to the
proposed technique [35]. However, unlike the proposed

technique they used a discrete set of possible orientated
planes, and focussed purely on bottom up matching and
smoothness costs. More recent work by Bódis-Szomorú et
al . [36, 37] has investigated highly efficient piecewise planar
reconstruction, based on sparse input control points (from
a separate SfM system).

2.2. Top-down reconstruction

The most common types of top-down reconstruction
employ similar primitive sub-units, and then propose rela-
tional constraints between multiple primitives. Examples
of these kinds of relationship at the local level (e.g . dealing
with small collections of primitives), include data driven
techniques to recognise common configurations of oriented
planes [38], or concave/convex edges [5], and recent deep
learning approaches which exploit prelearned representa-
tions [4]. These data-driven techniques are designed to
exploit the recent prevalence of large scale reconstruction
datasets, to learn which configurations are the most com-
mon and recognisable. In addition to detecting the exis-
tence of common primitive configurations, there has been
work on categorizing types of inter-primitive relationships
such as “occluding”, “supporting” or “on-top-of” [39].

As is the case for bottom-up reconstruction, these lo-
cal top-down techniques are commonly embedded within
a global reconstruction framework. The global top-down
interpretations tend to be particularly focussed on urban
environments, perhaps the most well known global con-
straint in top-down reconstruction is the Manhattan-world
assumption [40, 41, 42]; that scenes are composed entirely
of planes, each having one of 3 orthogonal orientations [43].
For indoor environments, this idea has been successfully
extended to coarsely modelling rooms as the interior of
a cuboid, with between 2 and 5 visible faces [44, 45], per-
haps containing box-shaped furnishings (the so called “box
world” approach).

2.3. Joint approaches

There has previously been little work looking at tech-
niques to unify both bottom-up and top-down knowledge
during 3D reconstruction of urban environments. Addition-
ally, although there have been a number of data-driven ap-
proaches to top-down scene understanding, there has been
only limited exploitation of these large-scale reconstruc-
tion datasets in the traditional bottom-up reconstruction
literature. The work that does exist generally falls within
the domain of “Reconstruction meets Recognition”, using
an initial detection stage to locate pre-determined classes,
to condition the following reconstruction stage. This has
proven effective in a number of specific problem domains
such as the outdoor urban reconstruction of Hane et al . [46]
which initially splits the scene into buildings, sky, ground,
vegetation and clutter. The 3D reconstruction that fol-
lows can then exploit collections of pre-learned weightings
which favour particular types of reconstruction for each
category (e.g . planar for buildings or horizontal for ground

3
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regions). There has also been work which obviates the need
for pre-learned weightings by instead transferring generic
object models into the 3D reconstruction when particular
objects are recognised. So far this type of approach has
been mostly limited to cars in urban environments. Cor-
nelis et al . [47] used computer graphics techniques to blend
the generic car models into the environment. However
they required the background reconstruction to already be
completed in order to constrain the placement of the car
models. More recently Guney and Geiger [48] proposed a
technique where the 3D car models were inserted before
background reconstruction took place (i.e. the recognition
constrained the reconstruction).

This type of approach is perhaps the closest to that
proposed in this paper. However the proposed technique is
more general as the cues are model-free and data-driven,
rather than relying on a pre-selected set of object classes.
As far as we are aware, the only work which attempts
this is Saxena et al . [49], which used data-driven low-level
monocular cues to improve stereo depth estimation. These
monocular cues are similar to those used by Thomas et al .
[50], except that they are purely data driven and do not
depend on the detection of pre-selected object classes. How-
ever, this work still did not include any top-down reasoning
about the entire scene. By combining both types of cues,
the proposed technique has significant advantages as it in-
herently balances between both types of information, based
on the type and reliability of the information available.

In the following sections, we present our novel frame-
work for 3D scene reconstruction, which unifies the use
of top-down and bottom-up cues in a manner inspired by
the human vision system (Section 3). Two building blocks
of bottom-up scene reconstruction are formalised for use
within this unified representation in Sections 4.1 and 4.2.
Section 5 then introduces cues from the other side of the
spectrum: several aspects of top-down scene knowledge
are presented and integrated into the framework. An effi-
cient linear joint optimisation scheme is then introduced
in Section 6. Finally, the proposed technique is evaluated
on the recent Middlebury 2014 [51] and KITTI [52] bench-
marks in Section 7. This evaluation includes examples of
utilising top-down reconstruction within 3 existing state-of-
the-art bottom-up reconstruction algorithms (Section 7.1)
and an exploration of the characteristics of various sub-
systems within the framework (Section 7.2). We extend
this evaluation in Section 8 using the recently proposed
HCI stereo metrics [8] to examine various “geometrically
inspired” properties of the reconstructions.

3. Unified bottom-up and top-down reconstruction

In both bottom-up and top-down approaches from the
literature, the scene is defined as consisting of primitives.
In the proposed method we localise our primitives using
superpixel segmentation to obtain small contiguous scene
regions. Superpixels are, however, not transferable between
different views of a scene, as the segmentation employed

for their extraction is viewpoint variant (this is especially
the case for wide baseline reconstruction). In short, this
means that it is not feasible to match superpixels from one
viewpoint against superpixels from the second viewpoint.
Instead the superpixels are used as an intermediate step for
matching between the pixels of the (reference and target)
images directly.

To achieve this, we use oriented planes to represent
superpixels within the scene; each superpixel si is param-
eterised by a single vector αi ∈ R3. The direction of this
vector represents the normal direction of the respective
oriented plane, while the vector’s length is equal to the
inverse of the shortest (perpendicular) distance from the
plane to the reference camera centre, which is taken to
be the origin. With this parameterisation, two important
relationships are observed. Firstly, every 3D point p ∈ R3

lying on plane α satisfies

α>p = 1 . (1)

Secondly, every ray r cast from the origin intersects the
plane α at distance

d =
1

r>α
. (2)

Every 3D plane induces a unique planar homography
between two views. Without loss of generality, we assume
these views are taken by a pair of non-parallel cameras. The
geometric transformation between these views is described
by the rotation matrix R and the translation vector t. The
homography which the plane αi induces between images
from these two views is then expressed by

Hi = R + tα>i . (3)

In the reference image Ir, we define a homogeneous point xr

(pixel coordinates) which lies within superpixel si. Given
the plane-induced homography, the corresponding point xt

in the target image It can be computed as:

xt = KtHiK
−1
r xr , (4)

where Kr and Kt are the intrinsic calibration matrices of
the reference and target cameras, respectively. Through-
out this publication, we will refer to this projection more
concisely as a function xt = H (xr|αi), conditioned on the
plane parameters. Also note that the ray r corresponding
to a particular reference pixel xr is simply defined as

r =
K−1

r xr∥∥K−1
r xr

∥∥ . (5)

Because this is a trivial mapping, the remainder of the paper
omits this conversion in order to improve conciseness; for
example both pixels and rays are interchangeably extracted
from superpixels.
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4. Bottom-up reconstruction

Using this formalisation, a number of standard bottom-
up cost functions can now be formulated in terms of oriented
plane primitives. For simplicity, we do not distinguish
between homogeneous and non-homogeneous coordinates
throughout this paper and use the same notation (x) for
both pixel locations (to index 2D images as in Equation (6))
and uncalibrated 3D rays (for 3D geometric computations
as in Equation (5)).

4.1. Appearance matching

The Brightness Constancy assumption is one of the
most basic matching relationships, expressing the direct
difference between two images in terms of their intensities.
The associated energy is defined as

Ebc (si) =
∑

xr∈si

ψ (Ir (xr)− It (H (xr|αi))) . (6)

where ψ is a robust cost function, preventing outlier over-
penalisation. Similar relationships are the Gradient Con-
stancy assumption with energy

Egc (si) =
∑

xr∈si

ψ
(
Ir∆ (xr)− It∆ (H (xr

i |αi))
)

(7)

(Ir∆ is the gradient image of Ir and It∆ of It) and the
Modified Census Transform

Ece (si) =
∑

xr∈si

ψ
(
IrC (xr)⊕ ItC (H (xr|αi))

)
, (8)

where IC are the census transform images [53]. The ⊕
symbol denotes the “exclusive or” binary operation, which
is required as census transform similarity is defined via the
Hamming distance.

4.2. Triangulation

In addition to these dense pixelwise assumptions, lo-
cal (feature-based) bottom-up cues are available. These
originate from matching and triangulation, similar to a stan-
dard Structure from Motion (SfM) reconstruction pipeline.
These triangulated matches are inherently sparse, how-
ever they tend to be more reliable and thus have a higher
confidence. This can help to avoid local minima during op-
timisation, by ensuring that the initialisation is reasonable
for the scene. In this work, the primary matching is based
on CNN descriptors ω ∈ R128, however the technique is
not dependent on this and can make use of any feature
correspondences. The CNN descriptors are computed with
the deep network of [54], which consists of 6 convolutional
layers, each followed by max-pooling, subsampling and
rectification layers. The network was pre-trained on the
Middlebury06 dataset [55] and is used as provided by the
authors of [54].

The set of correspondences C between the two images
defined by this matching is taken as the subset of matches
with a low cosine error

C =

{(
xr,xt

) ∣∣∣∣ ωr · ωt

‖ ωr ‖‖ ωt ‖
> λ

}
, (9)

where

ωr = CNN (Ir (xr)) and ωt = CNN
(
It
(
xt
))
. (10)

In order to obtain 3D points whose projections corre-
spond to these matches, the point depths are estimated by
triangulation of the correspondences. To provide robustness
to errors in the camera calibration and point localisation,
the maximum-likelihood depth value is computed for a
given correspondence [56]

d̂ = r> arg min
p

∑
x∈{xr,xt}

‖Π(p)− x‖ , (11)

where {xr,xt} are matches from C and Π denotes a camera
projection function (for Ir or It, according to x). In other

words d̂ is the projection of the maximum likelihood 3D
point (p) for the correspondence, onto the ray r in question.
Note that we omit the conversion from homogeneous to
non-homogeneous coordinates for clarity, the distances are
computed in image coordinates. The confidence ν̂ of the
depth estimation (i.e. triangulation quality score) is taken
as the reciprocal of the residual for this triangulation. Thus
a large residual leads to a low confidence and small residuals
lead to high confidences.

This information can be integrated into the proposed
framework by formulating a sparse feature-based cost func-
tion, in terms of the planar primitives. However, because
larger depth values are less reliable (uncertainty grows
with the distance from the cameras), this cost function is
formulated such that inconsistencies in the inverse depth
are penalised. Similarly to the appearance constancy costs
(Equations (6)–(8)), this provides a confidence based on
theoretical limits on the information that can be extracted
from the images [57] and therefore ensures a smooth transi-
tion between our different information sources. A relative
error measure is used to penalise these inverse-depth incon-
sistencies (which are also known as the fractional depth er-

ror): (d̂−d)/d. Here d̂ is the (fixed) estimated sparse depth
of the correspondence and d is the refined depth on the
oriented plane (defined by superpixel si). By making use of
the relationship defined in Equation (2), this error measure
can be expressed in terms of the plane parameters αi:

d̂ − d
d

=
1

d
d̂ − 1 = r>αid̂ − 1 . (12)

Finally, an energy (which is linear in the plane parameters)
can be formulated by aggregating the inverse depth errors
over all the triangulated correspondences, while accounting
for their triangulation confidences

Etr (si) =
∑

xr∈si∩C
ν̂ψ
(
r>αid̂ − 1

)
. (13)
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Figure 2: An example of an indoor scene interpretation in the “Origami world” [5, 38]. Left: input image; right: 3D scene interpretation with
colour-coded normal directions (at every point the R-G-B colour channels represent the z-x-y components of the vector normal to the surface.)
We additionally show a set of discovered concave edges (denoted by the “minus” sign). No convex edges were detected in this example).

This triangulation energy function could also be used
to integrate one or even several existing bottom-up recon-
struction techniques into the proposed framework. This
can be achieved simply by adding to the deep correspon-
dences C, and including any confidences ν̂ if available. In
the experimental section 7.1 we exploit this to examine the
value of top-down scene cues within current state-of-the-art
stereo reconstruction systems.

5. Top-down reconstruction

All the bottom-up cues introduced in the previous sec-
tion are formalised in terms of oriented planar primitives
(α). This allows us to use them in a unified manner, along-
side the top-down cues in the proposed joint framework.
Top-down cues encapsulate knowledge of real human-made
urban environments and can thus disambiguate between dif-
ferent solutions, greatly improving reconstruction accuracy.

One of the most commonly used high-level top-down
cues is information about surface directions and types of
edges present in the scene. We use a data-driven approach
(following Fouhey et al . [5]) to probabilistically estimate
surface normals and edge classes to create an “Origami
world”, as shown in Figure 2. This data-driven approach is
able to exploit the recent availability of large-scale datasets
to learn what scene structures are realistic. All of the top-
down cues presented in this section are based on surface
normals and edge classification provided by this approach,
which is trained using the NYU dataset [58].

The edge categories recognised by the system are: Con-
cave, Convex, Occlusion boundary and No edge. For every
pixel in the image, the probability of belonging to each
of these classes is estimated. In [5] this probability map
is post-processed to extract consistent edges. However in
this work we accumulate the class probabilities from each
pixel along a particular superpixel boundary in order to
estimate the class of that boundary.

5.1. Surface normal consistency

The obtained scene interpretation is used to produce
a number of constraining energy functions. The first pe-
nalises inconsistencies between the surface normal images
Irn and Itn estimated by [38]:

Esn (si) =
∑

xr∈si

ψ
(
RIrn (xr)− Itn (H (xr|αi))

)
. (14)

Rotation by (R) ensures that the normal directions are
compared in a consistent co-ordinate frame (specifically
the target camera’s). Since this energy uses both images
and penalises inconsistencies between them, it can be seen
as a hybrid cue. Similar to the bottom-up cues, it is based
on low level matching of elements of the top-down scene
interpretation. Unlike the other top-down cues in this
section this directly provides depth information for planes,
not only pairwise constraints between planes.

5.2. Connected structures

In addition to enforcing a new type of consistency, we
can use the interpretation of the scene to produce top-
down pairwise constraints on the relationships between
collections of oriented planes. One example of this is if the
boundary between two neighbouring superpixels si and sj
is not detected as an occlusion boundary, we can favour
reconstructions with a concave or convex (rather than
disjoint) connection between the surfaces. If we define Ni,j

as the set of pixels in si which border sj then the fractional

depth error across the boundary corresponds to
dj−di√
didj

.

This can be re-arranged in terms of α using Equation (2) as:

Ecn (si, sj) =
∑

xr
i∈Ni,j

∑
xr
j∈Nj,i

ψ
(√

didj
(
r>j αj − r>i αi

))
.

(15)
Figure 3a illustrates this idea. It should be noted that
the neighbourhood pixel sets N are empty if the boundary
between si and sj is classified as an occlusion boundary.
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(a) The cost function Ecn encourages neigh-
bouring planes to be connected in 3D (i.e.
having aligned boundaries), if their configura-
tion is not recognised as being an occlusion.

(b) The cost function Ecp encourages neigh-
bouring planes to be coplanar in 3D, assuming
that both are subsections of a larger plane.
This only occurs when the configuration is
not recognised as being convex, concave or
occlusion.

(c) The cost function Ecl encourages a pair of
non-neighbouring planes which have collinear
edges in the image, to also have corresponding
collinear edges in the 3D reconstruction.

Figure 3: Intuitive illustrations of the first 3 pairwise top-down configuration costs. The red arrow indicates the direction the plane should
move to reduce each cost.

The inner brackets of this equation (r>j αj−r>i αi) quan-
tifies the difference in inverse depths between two ray and
plane intersections. To simplify the remaining pairwise
costs, we define a function

D (r,αi,αj) = r>αi − r>αj , (16)

to compute this difference of intersections (note that unlike
Equation (15) this encodes the difference in intersections
for the same ray with both planes).

5.3. Coplanarity

Similarly to this, the absence of any strong edge (either
convex, concave or occlusion) indicates that neighbouring
superpixels are part of a larger plane in 3D. Human-made
urban scenes often contain large planar surfaces. This
assumption is similar to, but less restrictive than, the
full Manhattan world assumption. We can encode this as
another top-down cue to aid the reconstruction, illustrated
in Figure 3b. The resulting energy is based on the fractional
depth change, arising from misalignment of the pair of
neighbouring superpixels. This change is summed over the
whole area of the two superpixels:

Ecp (si, sj) = γcp
∑

xr∈si

ψ
(√

didjD (r,αj ,αi)
)

+

γcp
∑

xr∈sj

ψ
(√

didjD (r,αj ,αi)
)
,

(17)

where γcp is an indicator function for coplanar superpixels,
detected from the scene interpretation as described above.

5.4. Collinearity

Another constraint provided by the weak Manhattan-
world assumption is the collinearity constraint. This says

that if a pair of lines are collinear in the image, then they
are likely to be parts of a repeating structure (such as a row
of windows or bricks in urban environments) and thus they
should also be collinear in the 3D reconstruction. This idea
is shown in Figure 3c. The figure illustrates an important
property of the collinearity cue: the two superpixels do not
need to be adjacent to each other. Unlike the other pairwise
cues, collinearity can encode long range relationships.

It should be noted that for this assumption to hold, we
must also make a second assumption: that a straight line
segment in the image relates to a straight line segment in
the 3D world. This does not necessarily hold (for example if
the edge’s curvature is restricted to a planar subspace, and
the camera centre also lies within that subspace). However,
these cases are negligible in practice, and so it is reasonable
to assume a priori that a straight line in 2D corresponds
to a straight line in 3D.

A similar argument can be made about the validity
of the collinearity cue. It is technically possible for lines
which are collinear in 2D to be only parallel (not collinear)
in 3D. However, this can only happen if the lines are offset
from each other directly away from the camera (i.e. the
two lines span a planar subspace which includes the camera
centre). Again this situation is negligible in practice.

In order to formalize the collinearity constraint we note
that the superpixel segmentation used to extract planar
primitives already detects areas of significant gradient (i.e.
line segments). Thus 2D lines ē are extracted from the
boundaries of all superpixels in the image (note these are
not line segments, but infinitely long lines). The set of
pixels along each 2D line which also lie on the boundary
of superpixel si, are referred to as Ni,ē (no intersection
means the set Ni,ē is empty and the cost simplifies to zero).
Given these points, which are collinear in 2D, we can then

7



400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Figure 4: Intuitive illustration of the Eed cost function as defined
in Equation (19), which encourages the reconstruction to obey the
recognised convexity and concavity configurations. The left subfigure
illustrates 2 planes (i and j) with a concave relationship. The right
subfigure shows a corresponding convex scenario. Rays which inter-
sect plane i can also be intersected with an extrapolated (shown as
transparent) plane j. The relative magnitudes of A and B depend
on the level of concavity.

quantify their degree of collinearity in 3D as:

Ecl (si, sj) =
∑

xr∈Ni,ē

ψ
(√

didjD (r,αj ,αi)
)

+

∑
xr∈Nj,ē

ψ
(√

didjD (r,αj ,αi)
)
.

(18)

5.5. Edge categories

One final constraint arises directly from the scene inter-
pretation, specifically from the extracted convex/concave
edge classification. If such an edge lies between two neigh-
bouring superpixels si and sj , we force the angle between
these superpixels to agree with the edge class. This princi-
ple is illustrated in Figure 4. The concavity/convexity of

the boundary is indicated by sin(φ)(d̂j −di) where φ is the
angle between the ray r and the ray through the superpixel
boundary. The sign indicates the class (convex or concave),
while the magnitude is proportional to the angle between
the two oriented planes. The resulting energy is defined as:

Eed (si, sj) =
∑

xr∈si

ψed (sin(φi)D (r,αj ,αi)) +

∑
xr∈sj

ψed (sin(φj)D (r,αj ,αi)) .
(19)

It should be noted that a different scoring function ψed

is used here. In addition to the robust cost function, an
initial linear mapping is performed between the estimated
concavity/convexity probabilities. This allows us to exploit
the probabilistic nature of the scene interpretation, such
that the edge categorisation confidence is accounted for.

6. Optimisation

We integrate these unary and pairwise cues into a single
cost function over the plane primitives:

E =
∑
si∈S

Ebc(si) + Egc(si) + Ece(si) + Etr(si) + Esn(si)+∑
si∈S

∑
sj∈S

Ecn(si, sj)+Ecp(si, sj)+Ecl(si, sj)+Eed(si, sj) ,

(20)

which is minimised to obtain the optimal plane parameters

α = arg min
ᾱ

E (ᾱ) . (21)

To balance the contribution of all the independent cost
functions, each energy is weighted with an appropriate
weight. These weights are applied at the same time as the
scoring functions ψ and are aggregated in a weighting vector
υ. These weights are learned from example data. First a
superpixel segmentation is performed, and planes are fit to
the ground truth depths for each segment. These ground
truth plane parameters are referred to as α∗. We can then
optimise the weights to minimise the difference between
the predicted plane parameters and the ground truth:

υ = arg min
ῡ

∣∣∣∣α∗ − arg min
ᾱ

E (ᾱ|ῡ)

∣∣∣∣ . (22)

similar to [59].
With the proposed formulation, all the energies are

linear in these α parameters, except for the cost function ψ
(which is actually applied by the robust optimiser) and the
image lookups in Section 4.1. These are linearised via a first-
order Taylor expansion. This formulation is similar to a
derivation of the optical flow constraint from the brightness
constancy constraint in motion estimation [60, 61]. The
linearity of the problem then allows a very efficient solution
using sparse linear programming.

To illustrate how the image lookups (and thus the
resulting match functions) are linearised in terms of α, we
illustrate the linearisation of the Brightness Constancy cost
(introduced in Equation (6))

Ebc (si) =
∑

xr∈si

ψ (Ir (xr)− It (H (xr|αi))) , (23)

however, it extends trivially to the other matching costs.
As mentioned at the end of Section 4, this equation

omits the conversion from 3 element homogeneous pixel
positions (x) to 2D image locations (x̃). We now include
a conversion

x̃ = G(x) (24)

into the cost function explicitly

Ebc (si) =
∑

xr∈si

ψ (Ir (G (xr))− It (G (H (xr|αi)))) .

(25)
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The lookup in the reference image (Ir) does not depend
on α and so does not need to be linearised. For the target
image (It) lookup, we perform a Taylor expansion and drop
all terms of quadratic order or higher. If we have a current
estimate α0, we can perform the Taylor expansion around
this and obtain the parameter update ∆α:

It
(
G
(
H
(
xr
i |α0

i + ∆α
)))
≈ It

(
G
(
H
(
xr
i |α0

i

)))
+ J∆α ,

(26)
where J is the Jacobian of the combined function.

The function being approximated can be viewed as
the composition of 3 functions (It, G and H). Thus, we
can compute J in closed form using the total derivative
chain rule,

J = JI(G (H (xr
i |αi))) JG(H (xr

i |αi)) JH(xr
i ) . (27)

In other words, J is the matrix product of the three Ja-
cobians (JI , JG and JH) for the composed sub-functions,
with each Jacobian being evaluated at the location output
by its preceding sub-function.

To define the first sub-Jacobian (JH ∈ R3×3), remember
that the H function is defined as the application of 3 matrix
multiplications to the pixel position. First the inverse of
the calibration matrix for the reference camera, second the
homography matrix induced by the plane, and finally the
intrinsic matrix for the target camera

H (xr|αi) = KtHiK
-1
r xr = xt . (28)

The matrix Hi is defined as Hi = R + tα>i and is the only
part of the equation which depends on α. As such, the
sub-jacobian JH in terms of α is given by

JH(xr) = Ktt(K-1
r xr)> , (29)

the intrinsics of the target camera, and the outer product
of the camera baseline with the normalised homogeneous
pixel position.

The second sub-Jacobian (JG ∈ R2×3) is the simplest,
given by

JG(xt) =

[
1
w 0 − u

w2

0 1
w − v

w2

]
(30)

where u, v, w are the elements of xt.
The final sub-Jacobian JI ∈ R1×2 encodes how the

image intensity varies as a result of changes in the pixel
position, and is constructed from the x and y gradients of
the target image.

JI(x̃t
i) = It∆(x̃t

i) (31)

Given these definitions, we can substitute the approxi-
mation of Equation (26) into Equation (25):

Ebc (si) =
∑

xr
i∈si

ψ
(

Ir
(
G(xr

i )
)
− It

(
G(H(xr

i |α0
i ))
)

−JIJGJH∆α
)
.

(32)

This cost function is linear in terms of ∆α (ignoring for a
moment the robust penalty function ψ).

Now all cost functions can be expressed in a form that
is linear in terms of α. If the robust penalty function ψ is
defined as the `1 norm, this becomes a linear Least Absolute
Deviation regression problem. This can be equivalently
formulated as a linear programming problem by introducing
slack variables. Reformulating into a linear program also
allows us to introduce the additional constraints that all
planes must be in front of the camera

r>αi > 0, ∀r ∈ si . (33)

Further constraints could be included, such as enforcing a
depth limit, however we did not find this to be necessary.

Due to the linear approximation described above, we
iteratively solve this problem such that αn+1 = αn + ∆α,
which is repeated until convergence. In practice we find that
the approach generally converges after only 3 iterations.

7. Evaluation

The proposed approach is initially evaluated on the
recent Middlebury 2014 dataset [51]. This dataset consists
of 33 pairs of high definition (≈6 megapixels each) stereo
images. In addition, 3 different resolution modes are pro-
vided (marked as F, H and Q for full, half and quarter
resolution, respectively), rendering this an extremely large
scale dataset, with around 350 megapixels of image data.
The performance of the various techniques is computed
for fully dense estimates, including occluded regions. The
default settings for the Middlebury evaluation are to ig-
nore occluded regions using the “nonocc” mask. However,
failures in these regions are common and can cause major
problems in many applications such as robotic navigation
and augmented reality. Extrapolation in occluded regions
is also an area where a holistic understanding of the scene
may prove extremely valuable. We tabulate the average
and RMS error in terms of disparity levels to give an idea
of overall accuracy. In addition we tabulate the 99th per-
centile error (referred to as A99 in the Middlebury2014
benchmark), which provides an indication of the quantity
and magnitude of outliers in the reconstruction. This can
be seen as a measure of robustness (i.e. catastrophically
incorrect interpretations of the scene). Lower is better for
all performance measures. The system was implemented in
Matlab, and all runtime measurements ran on a single Intel
Sandy Bridge core at 2.4 GHz and required a maximum of
4 GB of memory.

One advantage of the proposed framework is that there
are few free parameters. The optimal weightings υ for the
various energy terms are learned. The older Middlebury
2006 [55] dataset was used for this purpose, as both the
training and testing sets of Middlebury 2014 are used for
evaluation. A matching threshold λ of 0.5 was employed for
the CNN triangulation. The initial superpixel segmentation
was performed using the efficient graph-based approach of
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Technique Mode RMS Err. (px) Avg.Err. (px) A99 (px) Time (s)
CoR [62]

Q

27.2 11.1 131 9
CoR + HLSC 26.1 10.5 113 118
MC-CNN [63] 34.0 11.7 160 16
MC-CNN + HLSC 34.5 14.4 148 142
Mesh Stereo [64] 32.3 13.1 156 572
Mesh Stereo + HLSC 31.5 13.2 139 742
CoR [62]

H

27.6 9.9 126 38
CoR + HLSC 25.7 9.6 112 1352
MC-CNN [63] 36.4 11.7 176 148
MC-CNN + HLSC 39.0 15.0 174 1483
Mesh Stereo [64] 42.0 20.4 166 1067
Mesh Stereo + HLSC 42.4 21.4 162 2856
CoR [62]

F
26.7 9.6 123 262

CoR + HLSC 25.5 9.4 115 9162
CoR + HLSC Test H 38.9 12.8 175 1972

Table 1: Performance of the unified framework, when including High Level Scene Cues (HLSC) with 3 state-of-the-art approaches to bottom-up
matching. Bold numbers indicate the best score within that resolution mode.

Technique RMS Err. (px) Avg.Err. (px) A99 (px) Time (s)
CoR [62] 3.41 0.98 16.8 17
CoR + HLSC 3.69 1.32 17.5 352
MC-CNN [63] 3.51 0.99 15.8 133
MC-CNN + HLSC 4.42 1.48 19.8 354
Mesh Stereo [64] 6.93 2.98 36.4 378
Mesh Stereo + HLSC 6.69 2.46 32.2 528

Table 2: Performance of the unified framework, when including High Level Scene Cues (HLSC) with 3 state-of-the-art approaches on the
KITTI dataset [52]. Bold numbers indicate the best score.

Felzenszwalb and Huttenlocher [65], for which the default
segmentation threshold of 40 was used. The training data
for the top-down cues was taken from the NYU depth
dataset of urban indoor scenes [58].

7.1. The value of high level scene cues

First we examine the value of the proposed framework to
integrating high-level cues into stereo reconstruction. The
approach is integrated into a number of leading bottom-up
stereo reconstruction algorithms:

MC-CNN (Matching Cost Convolutional Neural
Network) [63] where deep learning techniques were
employed to develop a stereo matching cost function
which is then refined via semi-global matching. This
is implemented in parallel on the GPU, which makes it
extremely fast but unfortunately prevents it running
on the Full resolution benchmark (due to limitations
on GPU memory).

Mesh Stereo [64], a technique designed to produce
3D triangular meshes of the environment, primarily
for view interpolation. The technique is implemented
in C++ but again due to the scaling of memory usage
it cannot be run on the Full resolution benchmark.

CoR (Consensus of Regions) [62] which performs si-
multaneous optimisation and outlier detection across
scales, using a semiglobal matching cost.

The results are presented in Table 1, with bold numbers
indicating the best score within the operating mode. The
results show that integrating high level scene cues into
stereo reconstruction provides significant improvements in
the robustness of the obtained reconstructions. As mea-
sured by the A99 score, occurrences of unrealistic scene
interpretations and outliers is significantly reduced in every
operating mode for every evaluated technique. On average
the A99 improvement was around 11 % (ranging up to 15 %
for Mesh Stereo). We also see smaller gains in terms of re-
construction accuracy (measured by the average and RMS
errors), of up to 5 %. The runtimes when integrating high
level scene cues obviously include the runtimes for the base
technique, and add a fairly constant overhead regardless of
the technique. The additional overhead is insignificant for
techniques such as Mesh stereo, but for GPU accelerated
techniques such as MC-CNN it is more noticeable. The last
row of the table shows the performance on the test data.
These results are slightly lower than on the training data
(despite no learning actually being performed on this data).
This is likely due to a bias towards larger disparities in the
test data (the average disparity limit is 330 on the training

10



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

Res. Adirondack ArtL Jadeplant Motorcycle MotorcycleE Piano PianoL Pipes

RMS Err.
(px)

Q 13.8 / 2 22.4 / 2 75.8 / 2 26.6 / 2 27.0 / 2 11.9 / 1 17.0 / 1 37.4 / 3
H 11.8 / 5 22.0 / 9 76.7 / 2 24.9 / 10 25.0 / 9 10.4 / 2 18.0 / 3 34.0 / 9
F 13.1 / 2 19.7 / 4 80.3 / 2 25.5 / 6 25.5 / 5 10.5 / 3 13.5 / 2 30.5 / 5

Avg. Err.
(px)

Q 4.58 / 2 11.7 / 2 37.6 / 2 8.16 / 2 8.23 / 2 4.87 / 1 7.90 / 1 17.0 / 4
H 3.35 / 5 9.7 / 9 35.0 / 7 6.85 / 10 6.87 / 9 3.92 / 4 7.30 / 3 13.8 / 12
F 3.38 / 2 7.9 / 5 36.0 / 3 7.01 / 6 6.95 / 5 3.70 / 2 5.64 / 1 11.3 / 5

A99
(px)

Q 65.4 / 2 76.1 / 1 280 / 1 141 / 2 141 / 2 41.4 / 1 66.3 / 1 155 / 3
H 58.5 / 2 86.1 / 7 311 / 2 139 / 11 137 / 9 35.3 / 1 93.3 / 6 146 / 8
F 65.9 / 2 81.0 / 4 321 / 2 144 / 6 143 / 5 36.2 / 2 47.5 / 1 142 / 5

Res. Playroom Playtable PlaytableP Recycle Shelves Teddy Vintage Average

RMS Err.
(px)

Q 24.7 / 2 28.7 / 1 12.2 / 2 19.1 / 4 20.5 / 2 9.0 / 2 50.8 / 3 26.1 / 2
H 32.1 / 10 37.4 / 5 11.3 / 6 15.9 / 10 22.0 / 11 11.1 / 6 47.0 / 13 25.7 / 7
F 29.5 / 6 29.0 / 2 11.7 / 4 14.6 / 4 19.5 / 3 16.5 / 7 50.5 / 7 25.5 / 4

Avg. Err.
(px)

Q 8.5 / 2 10.0 / 1 4.97 / 2 5.21 / 2 10.9 / 2 3.76 / 2 13.6 / 1 10.5 / 2
H 10.1 / 10 16.6 / 8 3.90 / 6 3.55 / 7 11.7 / 11 3.02 / 7 14.6 / 7 9.6 / 6
F 9.7 / 6 14.7 / 2 3.61 / 4 3.36 / 3 12.7 / 7 4.68 / 6 15.4 / 4 9.4 / 3

A99
(px)

Q 122 / 2 158 / 1 55.3 / 2 87.6 / 4 90.1 / 2 44.5 / 2 217 / 3 113 / 2
H 192 / 10 162 / 4 51.5 / 5 68.0 / 7 92.6 / 11 43.6 / 4 44 / 5 112 / 7
F 175 / 7 129 / 2 49.5 / 2 64.1 / 3 82.2 / 4 78.0 / 7 182 / 6 115 / 4

Table 3: The performance for all resolution benchmarks on all sequences. The error value is listed alongside the ranking on that sequence (out
of 5, 14 and 8 for the Q, H and F benchmarks respectively).

data and 440 on the test data). This is confirmed by the
rankings compared to the rest of the leaderboard. Despite
the drops in performance of the proposed technique, the
ranking does not change for average or RMS error, and
only changes slightly for the A99 error.

When contrasting the different algorithms CoR is gen-
erally the most accurate technique both with and without
integration in the proposed framework. However, MC-CNN
is competitive at the lowest resolutions, where CoR has
fewer observations to support the automatic outlier rejec-
tion. Of the three techniques, Mesh stereo is generally
the least accurate. However, this is unsurprising as the
technique primarily focuses on supporting realistic novel
viewpoints, rather than refining the input viewpoints. It
is interesting to note that this focus does not lead to an
improvement in realism or reduction in gross outliers (mea-
sured by A99) compared to the other techniques. This is
contrary to expectations, as outliers are likely to have a
significant effect on interpolated viewpoints.

Table 2 repeats the evaluation on the KITTI dataset [52],
which contains around 200 outdoor urban environments
viewed from a vehicle. The findings are similar, again CoR
generally performs the best, although MC-CNN is closer
in this case, and actually outperforms CoR in terms of
A99 score. In this case the High Level Scene Cues make
the most significant difference to Mesh Stereo. However,
the observed improvement in robustness is slightly more
modest than for the Middlebury dataset and performance
decreases slightly for CoR. This is likely due to the sparse
ground truth for the KITTI dataset (collected via LIDAR)
which covers only around 30 % of the scene. The sparse
ground truth slightly biases the evaluation away from areas

of common reconstruction errors, such as occlusion bound-
aries.

We now examine the performance of the proposed frame-
work in detail on each sequence from the Middlebury 2014,
for each resolution mode. To aid clarity, we include only
the top performing variant of the proposed integrated tech-
nique above (CoR + HLSC) which also enables us to
perform the remaining evaluations even in Full mode. In
Table 3, it can be seen that including high level scene cues
helps make the algorithm particularly robust, leading to the
top ranking in terms of A99 score on the majority of scenes.
This helps reduce outliers in areas of low texture informa-
tion such as uniformly painted surfaces, which are common
in urban environments. It is particularly illuminating to
note the performance of the proposed technique in the
special scenarios (denoted with suffixes). For example the
dataset contains 2 scenes (ArtL and PianoL) which include
lighting changes between the two views. There is also one
scene (MotorcycleE ) with a significantly different exposure
level in the second view. The proposed technique proves
to be extremely resilient to these challenging inconsisten-
cies compared to the traditional bottom-up reconstruction
approaches. For example, performance on the Motorcycle
sequence with and without the exposure change are roughly
the same, which leads to a consistent improvement in the
ranking across all the error measures, because compet-
ing approaches are more adversely affected. The lighting
change on the Piano sequence causes a 20 % performance
drop in our algorithm, however this is again lower than the
drop experienced by competing techniques, and actually
leads to a moderate increase in ranking. The final scene
suffix P indicates “perfect” camera calibration. Although
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Technique RMS Err. (px) Avg.Err. (px) A99 (px) Time (s)
Top-down (ours) 163.6 / 7 155.3 / 7 279 / 7 68 / 4
Bottom-up (ours) 27.8 / 3 11.6 / 3 151 / 3 83 / 5
Full HLSC (ours) 26.1 / 2 10.5 / 2 113 / 2 118 / 6

Table 4: The performance of the proposed system when including different types of cues. The ranks are out of 7.

Omitted energy RMS Err. (px) Avg.Err. (px) A99 (px) Time (s)

B
o
tt
o
m
-u
p Ebc 39.2 20.5 168 91

Egc 33.5 12.8 146 94
Ece 32.3 11.9 134 81
Etr 49.9 23.1 178 121

T
o
p
-d
ow

n

Esn 28.5 13.6 125 105
Eco 26.5 13.8 142 106
Ecp 26.7 12.8 143 98
Ecl 27.4 10.6 118 109
Eed 28.0 10.9 123 95

- 26.1 10.5 113 118

100% 150% 200%

         Relative err. increase

RMS

A99

Table 5: Evaluation of the performance of the proposed system when each cue is removed in turn.

this significantly improves the accuracy of the proposed
technique, it has little effect on its ranking, suggesting that
the gains in accuracy mostly come from the bottom-up
system which our technique is integrated with. Because
the High Level Scene Cues are based on a holistic under-
standing of the scene contents, it makes sense that they
would exhibit a reduced sensitivity to calibration errors.

In Figure 5 a number of randomly chosen example recon-
structions are shown for the Full resolution (6 megapixel)
mode of Middlebury 2014. A number of results on the
KITTI dataset are also shown in Figure 6. As mentioned
above, the ground truth for the KITTI dataset does not
cover the whole images. For this reason the ground truth
images in the last column are dilated to facilitate compari-
son with the estimated results. Figure 7 allows a qualitative
comparison of the reconstructions with and without High
Level Scene Cues, by showing the signed error images side
by side. It is clear from these results that the benefits of
High Level Scene Cues are most prominent in ambiguous
areas such as at depth discontinuities. This is particularly
evident surrounding the foremost armrest in Adirondack
and around the Chimney in Teddy.

7.2. Examination of subsystems

In Table 4 we evaluate the contribution of different
types of cues within the proposed framework. Using only
top-down reasoning with no matching proves to be signifi-
cantly faster, however the quality of the estimate is poor
as finer details are no longer modelled. This is probably
because the scene interpretation used to provide the top-
down cues is prone to oversmoothing. It is interesting to
note that as a consequence, the decrease in robustness
(increasing the A99 error by a factor of 3) is significantly
lower than the loss of accuracy (increasing the RMS er-

ror by a factor of 10). When the technique exploits only
bottom-up matching cues, the reconstruction is of higher
quality. However, the combination of both the bottom-up
and top-down cues performs the best, with around 10 %
improvement in all error measures. This demonstrates the
complementary nature of the different cues, particularly
improving robustness by resolving ambiguities.

In Table 5 we expand on this evaluation, by testing the
contribution of every individual energy term from Equa-
tion (20). In all cases, removing an energy term causes
an increase in the error, meaning that each term encodes
useful information for 3D reconstruction, and none of the
terms are redundant. To aid visualisation, the increase
in error when a cue is removed are plotted visually next
to the table. In general we see that the bottom-up terms
in the top half of the table have a significant affect on
accuracy, with Etr and Ebc contributing most strongly to
both the RMS and Average error measures. We also note
that the top-down terms in the bottom half of the table
have a disproportionately large effect on the reconstruction
robustness (the yellow bars are longer than the blue for
top-down cues, and shorter for bottom-up cues). For in-
stance, while the census transform cost (the least important
of the bottom-up cues) is more important than all of the
top-down costs in terms of RMS error, it has only average
importance in terms of the A99 measure. The connected
and coplanar structure costs prove to be the most valuable
of the top-down cues.

We also explore the repeatability of the surface normal
estimation system. The agreement of the surface normals
estimated in the 2 views was quantified by

RIrn (xr) · Itn (x̃t) + 1

2
, (34)
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Figure 5: Randomly chosen Full resolution reconstructions from the Middlebury 2014 dataset. One input image (left), the output of our
algorithm (middle) and the ground truth reconstruction (right). From top to bottom: Adirondack, ArtL, Piano, Pipes, PlaytableP, Recycle.

13



742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Figure 6: Randomly chosen examples from the KITTI dataset. Input image (left), the output of our algorithm (middle) and the ground truth
reconstruction (right, dilated). From top to bottom the frames scenes are: 1, 19, 18, 23, 26.

Figure 7: Signed error images for the baseline technique (centre) and when including using High Level Scene Cues (right). From top to bottom
the scenes are: Adirondack, Teddy, PlaytableP and Recycle
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estimated surface normals.

where x̃t is the corresponding pixel in the target image
according to the ground truth disparity map. In other
words, the dot product of the 2 normal vectors in the
target co-ordinate frame, normalised between 0 and 1.

The distribution across all pixels from all scenes in the
Middlebury 2014 training set is displayed in Figure 8. The
average consistency across viewpoints is 0.982, with almost
nothing below 0.95. This implies that the large scale of the
dataset renders the data driven scene understanding cues
extremely reliable in the multiview scenario, even though
they are only trained from monocular data.

To measure the sensitivity of the overall reconstruction
framework to this, we also computed the correlation be-
tween the surface normal agreement and the disparity error
(again over all pixels in the training sequences). The re-
sulting correlation coefficient was -0.08, indicating a slight
anti-correlation (i.e. increased surface normal agreement
indicates a reduction in disparity error). This is reasonable
as matching estimated surface normals is one of the inputs
to the system, however the sensitivity proves very slight
due to the influence of other cues.

In Figure 9 we examine the effect of the stereo baseline
on the performance of the proposed system. The Middle-
bury 2014 and KITTI datasets are poorly suited for this
evaluation as there is little variation in baseline, and the
change in scene clutter between different scenarios has a
far more significant effect on performance. Instead we use
the Middlebury 2003 dataset which includes a larger array
of cameras. We can then use different pairs of images to
simulate stereo pairs with different baselines, but all view-
ing the same scene. The results show that an extremely
narrow baseline is the most detrimental, and that good
performance can be obtained for a wide range of baselines.
However, there is an eventual decay in performance when
the baseline becomes too large.

We also evaluate the effect of varying the superpixel
segmentation threshold in Figure 10 to vary the size of the
superpixels used on the Quarter Resolution benchmark.
Higher thresholds lead to a smaller numbers of larger su-
perpixels, and can significantly improve the runtime of the
algorithm. However, the effect on accuracy is negligible
for thresholds of 40 and over. Below 40, the superpixels
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Figure 9: Performance against varying stereo baseline.

are often poorly constrained due to their small size, and
accuracy suffers. For an in-depth evaluation of different
superpixel segmentation schemes and densities, we refer
the reader to [37].

8. HCI stereo evaluation

The evaluation criteria used by the Middlebury and
KITTI benchmarks have been the standard performance
measures in the field for many years. However, there are
many applications of stereo reconstruction for which these
metrics are not suitable. For example robotic navigation
applications are often unable to cope with catastrophic
mistakes or “outliers” in the scene geometry. The fine
grained accuracy of “inlier” regions is generally irrelevant
in these situations. The field of Augmented Reality also
has similar requirements. Outliers in the reconstruction
can prove extremely disorienting for the user, while inaccu-
racies in fine details are generally not noticeable. This is
a particularly important application area given the rapid
development of specialist consumer-level hardware.

To address these concerns, there has been recent work
by Honauer et al . [8] on alternative “geometry-aware” per-
formance analysis for stereo reconstruction. This evaluation
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Figure 10: Behaviour of the approach with different segmentation
thresholds. Top - Plots of the 3 accuracy characteristics. Bottom -
plots of the tradeoff (speed and number of planes). Note that both
subfigures display two Y scales.

protocol provides a better indication of how techniques per-
form in a wide range of different stereo applications. In
particular, the HCI stereo evaluation focusses on three areas
which are traditionally challenging for stereo reconstruction:
Depth discontinuities, Planar surfaces and Thin structures.
For each of these, three error metrics are proposed.

To evaluate depth discontinuities, the first metric is
fuzziness (Dfuz) which measures the “sharpness” of edges
(i.e. whether the depth map smoothly transitions from
foreground to background due to oversmoothing). The
remaining two performance measures are foreground fatten-
ing (Dfat) and foreground thinning (Dthin) which measure
the algorithm’s biases towards over or under-estimating
the size of foreground regions.

The first two metrics for planar surfaces are similar.
Bumpiness (Pbump) measures the deviation of the recon-
structed surface from a perfectly smooth plane, ignoring
errors in its position. Offset (Pdist) measures any bias
in the systems positioning of planes (i.e. the accuracy of
the location for planar surfaces). Finally misorientation
(Pmis) measures how well the system is able to estimate
the orientation of planar surfaces (ignoring errors in their
position).

For evaluating thin structures, the first error measure

Figure 11: Evaluation of the proposed technique in terms of the HCI
stereo metrics [8] averaged over the Middlebury 2014 dataset. For all
errors, lower values indicate better performance.

is detail fattening (Tfat) similar to Dfat. The final two
metrics look at the distribution of structure, in the case
of detail thinning (where part of the thin structure is
included in the background). Porosity (Tpor) quantifies the
amount of the thin structure which is not covered by any
part of the estimate, penalising large gaps in the estimate.
Finally Fragmentation (Tfrag) measures the tendency for
a single thin structure to be split into multiple separate
structures. For further details of the performance measures
(and illustrative examples) please see [8].

The sparse ground truth of the KITTI dataset makes it
very difficult to extract thin structures or planar surfaces.
As such, the geometry-aware evaluation could only be per-
formed on the Middlebury 2014 training set. As suggested
by the benchmark, performance is shown geometrically
as a radar plot in Figure 11. For clarity, we focus the
evaluation on the top two techniques from the previous
section (CoR and MC-CNN), both run on the largest reso-
lution they are capable of. Note that for all errors, lower
numbers (i.e. closer to the centre of the radar) indicate
better performance. It should be noted that 3 “pixel based”
performance measures are also included in [8]. However,
these are equivalent to the standard Middlebury/KITTI
metrics, and for clarity are not duplicated here.

Clearly the use of top-down scene cues produces re-
constructions with significant improvement across all the
HCI metrics. The fuzziness of depth discontinuities is only
slightly improved, and may be constrained by the quality of
the superpixel segmentation step. Specifically, if the image
is high resolution or the superpixels are particularly small,
it is possible that depth discontinuities may be extracted
as separate superpixels which connect the foreground and
background. The quality of reconstructed planar surfaces
is significantly improved. This is primarily due to the copla-
narity cost Ecp which combines multiple planar primitives
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Figure 12: Examination of challenging imaging scenarios on the HCI stereo metrics. Each subfigure shows the performance on a single scene
from the Middlebury14 dataset.

into larger planar structures if deemed appropriate by the
scene reasoning.

It is interesting to observe the relationship between
the three thin structure metrics. CoR seems to have more
problems with fattening of these structures (and fattening
of depth discontinuities) but as a result it doesn’t lose the
structures and performs very well in terms of fragmentation
and porosity. Conversely, MC-CNN underestimates or
misses thin structures, leading to a very low Tfat (and
Dfat) score and very high Tpor and Tfrag (and Dthin)
scores. The inclusion of scene understanding cues helps to
balance this relationship, providing generally low scores for
all three thin structure metrics.

Figure 12 looks at the detailed results on a number
of scenes from the dataset, in order to explore how the
HCI stereo metrics behave in challenging scenarios. The
PlaytableP and Playtable scenes compare perfect and im-
perfect camera calibrations respectively. The Piano and
PianoL scenes quantify the effect of consistent and inconsis-
tent lighting (between the stereo pair). It is very interesting

to note that these challenges have a very different effect on
the HCI metrics than they do on the standard Middlebury
metrics discussed under Table 3.

Inconsistent lighting was found to have a pronounced
effect on the standard pixelwise metrics in Table 3 causing
drops in performance of around 20 % across all techniques.
However, in terms of the HCI metrics, errors introduced by
lighting inconsistency are less pronounced. Indeed when
using high level scene cues, the effect of lighting changes is
almost imperceptible. Conversely, the quality of the camera
calibration was found to have little impact on performance
of the pixelwise metrics, but it has a significant impact
on the HCI metrics. In particular, the quality of depth
discontinuities is significantly improved when the proposed
technique is given a perfect calibration.

9. Conclusions

These results demonstrate conclusively that in computer
vision, as with the human vision system, understanding
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and top-down reasoning about the scene is a vital compo-
nent for providing feasible and robust 3D reconstructions.
The combination of bottom-up and top-down visual cues
helps to significantly improve the robustness of obtained
reconstructions. This is important as, in the case of uncer-
tain scene geometry, a realistic failure (based on the types
of scenes that occur in the real world) is preferable to a
catastrophic failure with unrealistic artifacts. For example
in robotics and autonomous system applications, a single
catastrophic scene artifact may cause significant difficul-
ties during path planning, whereas a more realistic failure
would generally have little effect on the chosen path.

In addition we have shown that a joint framework, based
on oriented planar primitives, is a highly effective repre-
sentation to unify bottom-up and top-down reconstruction
techniques. We have also provided examples of integrating
a wide variety of information sources.

Although this approach increases robustness and pre-
vents catastrophic failures, the use of planar primitives
makes it impossible to accurately model curved surfaces.
Approximating a smooth surface using a piece-wise linear
function necessarily leads to residual errors. In a similar
vein, the use of superpixels may lead to lower accuracy in
areas of fine detail. The result is that the major gains in
robustness may also cause a slight reduction in fine-grained
accuracy. In the future it may be valuable to explore hybrid
or multi-stage techniques to overcome this limitation.

Other possible future work includes the extension of
the proposed cue weight learning (Section 6) to include an
initial recognition of the environment type (indoor, outdoor
urban, forest etc.). The weightings used could then be spe-
cialised for different environments. This idea could also be
applied to the problem of temporal stereo reconstruction,
where estimation of the optimal cue weightings could be
performed online as the sequence progresses. It may also be
interesting to investigate the incorporation of “recognition
meets reconstruction” techniques into the proposed frame-
work. These cues have proven very valuable for limited
application domains in the literature, but no work has yet
looked at use of the inter-relationships between recognised
entities. However, without additional work it is not clear
what the best way to integrate these cues would be.
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