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Abstract

Superpixels group perceptually similar pixels to create visually meaningful entities while heavily reducing the number of
primitives for subsequent processing steps. As of these properties, superpixel algorithms have received much attention
since their naming in 2003 [I]. By today, publicly available superpixel algorithms have turned into standard tools in
low-level vision. As such, and due to their quick adoption in a wide range of applications, appropriate benchmarks are
crucial for algorithm selection and comparison. Until now, the rapidly growing number of algorithms as well as varying
experimental setups hindered the development of a unifying benchmark. We present a comprehensive evaluation of 28
state-of-the-art superpixel algorithms utilizing a benchmark focussing on fair comparison and designed to provide new

= insights relevant for applications. To this end, we explicitly discuss parameter optimization and the importance of strictly

enforcing connectivity. Furthermore, by extending well-known metrics, we are able to summarize algorithm performance
independent of the number of generated superpixels, thereby overcoming a major limitation of available benchmarks.
Furthermore, we discuss runtime, robustness against noise, blur and affine transformations, implementation details as
well as aspects of visual quality. Finally, we present an overall ranking of superpixel algorithms which redefines the state-
of-the-art and enables researchers to easily select appropriate algorithms and the corresponding implementations which
themselves are made publicly available as part of our benchmark at davidstutz.de/projects/superpixel-benchmark/\
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Since the introduction of the first superpixel algorithms
around 2009, they have been applied to many important
problems in computer vision: tracking [10, [II], stereo and
occlusion [12, [13], 3D-reconstruction [I4], saliency [15] [16],
object detection [I7, 18] and object proposal detection

1. Introduction

Introduced by Ren and Malik in 2003 [I], superpixels

group pixels similar in color and other low-level properties.
’ In this respect, superpixels address two problems inherent
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(Nl to the processing of digital images [I]: firstly, pixels are

merely a result of discretization; and secondly, the high
number of pixels in large images prevents many algorithms
. « from being computationally feasible. Ren and Malik intro-
duce superpixels as more natural entities — grouping pixels
.>2 which perceptually belong together while heavily reducing
a the number of primitives for subsequent algorithms.
Superpixels have been been used in a wide range of ap-
plications — even before the term “superpixel” was coined.
As early as 1988, Mester and Franke [2] present segmen-
tation results similar to superpixels. Later, in 1997, early
versions of the watershed algorithm were known to produce
superpixel-like segments [3]. In the early 2000s, Hoiem et
al. [4, [B] used the segmentation algorithms of [6] and [7]
to generate oversegmentations for 3D reconstruction and
occlusion boundaries. Similarly, the normalized cuts al-
gorithm was early adopted for oversegmentation [I] and
semantic segmentation [§]. In [4 5] and [9], superpixels
have been used to extract meaningful features for subse-
quent tasks — extensive lists of used features are included.

[19, 20], depth recovery [21] and depth estimation [22] 23],
semantic segmentation [8, [24], indoor scene understand-
ing [25 [26] 27], optical flow [28], scene flow [29], clothes
parsing [30, [31] and as basis for convolutional neural net-
works [32], [16] to name just a few. Superpixels have also
been adopted in domain specific applications such as med-
ical image segmentation [33] 34, B5] or medical image re-
trieval [36]. Moreover, superpixels have been found useful
for dataset annotation [30, [37]. Finally, several superpixel
algorithms (among others [38], [39] and [40]) have been
adapted to videos and image volumes — a survey and com-
parison of some of these so-called supervoxel algorithms
can be found in [41].

In view of this background, most authors do not make
an explicit difference between superpixel algorithms and
oversegmentation algorithms, i.e. superpixel algorithms are
usually compared with oversegmentation algorithms and
the terms have been used interchangeably (e.g. [42 43|
44]). Veksler et al. [45] distinguish superpixel algorithms
from segmentation algorithms running in “oversegmenta-
tion mode”. More recently, Neubert and Protzel [46] dis-
tinguish superpixel algorithms from oversegmentation al-
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gorithms with respect to their behavior on video sequences.
In general, it is very difficult to draw a clear line be-
tween superpixel algorithms and oversegmentation algo-
rithms. Several oversegmentation algorithms were not in-
tended to generate superpixels, nevertheless, some of them
share many characteristics with superpixel algorithms. We
use the convention that superpixel algorithms offer control
over the number of generated superpixels while segmenta-
tion algorithms running in “oversegmentation mode” do
not. This covers the observations made by Veksler et al.
and Neubert and Protzel.

In general, most authors (e.g. [42] [47, [39, [43]) agree on
the following requirements for superpixels:

— Partition. Superpixels should define a partition of the
image, i.e. superpixels should be disjoint and assign a
label to every pixel.

— Connectivity. Superpixels are expected to represent con-
nected sets of pixels.

— Boundary Adherence. Superpixels should preserve image
boundaries. Here, the appropriate definition of image
boundaries may depend on the application.

— Compactness, Regularity and Smoothness. In the ab-
sence of image boundaries, superpixels should be com-
pact, placed regularly and exhibit smooth boundaries.

— Efficiency. Superpixels should be generated efficiently.

— Controllable Number of Superpixels. The number of gen-
erated superpixels should be controllable.

Some of these requirements may be formulated implic-
itly, e.g. Liu et al. [47] require that superpixels may not
lower the achievable performance of subsequent process-
ing steps. Achanta et al. [39] even require superpixels to
increase the performance of subsequent processing steps.
Furthermore, the above requirements should be fulfilled
with as few superpixels as possible [47].

Contributions. We present an extensive evaluation
of 28 algorithms on 5 datasets regarding visual quality,
performance, runtime, implementation details and robust-
ness to noise, blur and affine transformations. In partic-
ular, we demonstrate the applicability of superpixel al-
gorithms to indoor, outdoor and person images. To en-
sure a fair comparison, parameters have been optimized on
separate training sets; as the number of generated super-
pixels heavily influences parameter optimization, we ad-
ditionally enforced connectivity. Furthermore, to evaluate
superpixel algorithms independent of the number of su-
perpixels, we propose to integrate over commonly used
metrics such as Boundary Recall [48], Undersegmentation
Error [42], [39] [44] and Explained Variation [49]. Finally,
we present a ranking of the superpixel algorithms consid-
ering multiple metrics and independent of the number of
generated superpixels.

Outline. In Section [2] we discuss important related
work regarding the comparison of superpixel algorithms
and subsequently, in Section [3] we present the evaluated
superpixel algorithms. In Section |4 we discuss relevant
datasets and introduce the used metrics in Section Then,
Section [6] briefly discusses problems related to parameter

optimization before we present experimental results in Sec-
tion [} We conclude with a short summary in Section

2. Related Work

Our efforts towards a comprehensive comparison of avail-
able superpixel algorithms is motivated by the lack thereof
within the literature. Notable publications in this regard
are [43], [39], [44], and [46]. Schick et al. [43] introduce
a metric for evaluating the compactness of superpixels,
while Achanta et al. [39] as well as Neubert and Protzel
[44] concentrate on using known metrics. Furthermore,
Neubert and Protzel evaluate the robustness of superpixel
algorithms with respect to affine transformations such as
scaling, rotation, shear and translation. However, they do
not consider ground truth for evaluating robustness. More
recently, Neubert and Protzel [46] used the Sintel dataset
[50] to evaluate superpixel algorithms based on optical flow
in order to assess the stability of superpixel algorithms in
video sequences.

Instead of relying on an application independent eval-
uation of superpixel algorithms, some authors compared
the use of superpixel algorithms for specific computer vi-
sion tasks. Achanta et al. [39] use the approaches of [8] and
[51] to assess superpixel algorithms as pre-processing step
for semantic segmentation. Similarly, Strassburg et al. [52]
evaluate superpixel algorithms based on the semantic seg-
mentation approach described in [9]. Weikersdorfer et al.
[63] use superpixels as basis for the normalized cuts algo-
rithm [54] applied to classical segmentation and compare
the results with the well-known segmentation algorithm
by Arbeldez et al. [55]. Koniusz and Mikolajczyk [56], in
contrast, evaluate superpixel algorithms for interest point
extraction.

In addition to the above publications, authors of su-
perpixel algorithms usually compare their proposed ap-
proaches to existing superpixel algorithms. Usually, the
goal is to demonstrate superiority with regard to specific
aspects. However, used parameter settings are usually not
reported, or default parameters are used, and implemen-
tations of metrics differ. Therefore, these experiments are
not comparable across publications.

Complementing the discussion of superpixel algorithms
in the literature so far, and similar to [43], [39] and [44],
we concentrate on known metrics to give a general, ap-
plication independent evaluation of superpixel algorithms.
However, we consider minimum/maximum as well as stan-
dard deviation in addition to metric averages in order as-
sess the stability of superpixel algorithms as also consid-
ered by Neubert and Protzel [44], [46]. Furthermore, we
explicitly document parameter optimization and strictly
enforce connectivity to ensure fair comparison. In contrast
to [44], our robustness experiments additionally consider
noise and blur and make use of ground truth for evalu-
ation. Finally, we render three well-known metrics inde-
pendent of the number of generated superpixels allowing
us to present a final ranking of superpixel algorithms.



3. Algorithms

In our comparison, we aim to discuss popular algo-
rithms with publicly available implementations alongside
less-popular and more recent algorithms for which imple-
mentations were partly provided by the authors. To ad-
dress the large number of superpixel algorithms, we find
a rough categorization of the discussed algorithms help-
ful. Based on the categorization by Achanta et al. [39]
— who presented (to the best of our knowledge) the first
and only categorization of superpixel algorithms — we cate-
gorized algorithms according to their high-level approach.
We found that this categorization provides an adequate ab-
straction of algorithm details, allowing to give the reader
a rough understanding of the different approaches, while
being specific enough to relate categories to experimen-
tal results, as done in Section For each algorithm, we
present the used acronym, the reference and its number of
citationsﬂ In addition, we provide implementation details
such as the programming language, the used color space,
the number of parameters as well as whether the number of
superpixels, the compactness and the number of iterations
(if applicable) are controllable.

Watershed-based. These algorithms are based on
the waterhed algorithm (W) and usually differ in how the
image is pre-processed and how markers are set. The num-
ber of superpixels is determined by the number of mark-
ers, and some watershed-based superpixel algorithms offer
control over the compactness, for example WP or CW.

Name

‘W — Watershed

Reference (Google Scholar Citations) Color

Meyer [7], 1992 (234)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 1 Parameter v - B

Name

CW - Compact Watershed
Reference (Google Scholar Citations) Color
Neubert and Protzel [57], 2014 (11)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 2 Parameters v v B

Name
MSS — Morphological Superpixel Segmentation
Reference (Google Scholar Citations) Color

Benesova and Kottman [58], 2014 (4)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 5 Parameters v - B

Name

WP — Water Pixels

Reference (Google Scholar Citations) Color
Machairas et al. [59] [60], 2014 (5 + 8)

Superpixels Compactness Iterations

Implementation

Python; RGB; 2 Parameters v v -

Density-based. Popular density-based algorithms are
Edge-Augmented Mean Shift (EAMS) and Quick Shift
(QS). Both perform mode-seeking in a computed density
image; each pixel is assigned to the corresponding mode it
falls into. Density-based algorithms usually cannot offer

1 Google Scholar citations as of October 13, 2016.

control over the number of superpixels or their compact-
ness and are, therefore, also categorized as oversegmenta-
tion algorithms.

Name
EAMS — Edge-Augmented Mean Shift
Reference (Google Scholar Citations) Color

Comaniciu and Meer [61], 2002 (9631)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 2 Parameters - - -

Name
QS - Quick Shift
Reference (Google Scholar Citations) Color

Vedaldi and Soatto [62], 2002 (376)

Superpixels Compactness Iterations

Implementation

MatLab/C; Lab; 3 Parameters - - -

Graph-based. Graph-based algorithms treat the im-
age as undirected graph and partition this graph based on
edge-weights which are often computed as color differences
or similarities. The algorithms differ in the partitioning
algorithm, for example FH, ERS and POISE exhibit a
bottom-up merging of pixels into superpixels, while NC
and CIS use cuts and PB uses elimination [63].

Name

NC - Normalized Cuts

Reference (Google Scholar Citations) Color

! Ren and Malik [I], 2002 (996)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 3 Parameters v — —

Name

FH - Felzenswalb and Huttenlocher

Reference (Google Scholar Citations) Color

Felzenswalb et al. [6], 2004 (4144)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 3 Parameters - - B

Name

RW — Random Walks

Reference (Google Scholar Citations)

Grady et al. [64] [65], 2004 (189 + 1587)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 2 Parameters v - -

Name

i CIS — Constant Intensity Superpixels

Reference (Google Scholar Citations) Color
| Veksler et al. [45], 2010 (223)

Implementation Superpixels Compactness Iterations

C/C++; Gray; 4 Parameters v - v

Name

ERS- Entropy Rate Superpixels

Reference (Google Scholar Citations) Color
Liu et al.et al. [47], 2011 (216)

Superpixels Compactness Iterations

Implementation

C/C++; RGB; 3 Parameters v - B

Name

PB — Boolean Optimization Superpixels

Reference (Google Scholar Citations) Color
Zhang et al. [66], 2011 (36)

Superpixels Compactness Iterations

Implementation

C/C++; RGB; 3 Parameters

Name

POISE - Proposals for Objects from Improved

Seeds and Energies

Reference (Google Scholar Citations) Color

Humayun et al. [67], 2015 (3)

Superpixels Compactness Iterations

Implementation

MatLab/C; RGB; 5 Parameters v - -




Contour evolution. These algorithms represent su-
perpixels as evolving contours starting from inital seed pix-
els.

Name

TP — Turbo Pixels

Reference (Google Scholar Citations) Color
Levinshtein et al. [42], 2009 (559)

Superpixels Compactness Iterations

Implementation

MatLab/C; RGB; 4 Parameters v - -
Name
ERGC - Eikonal Region Growing Clustering
Reference (Google Scholar Citations) Color

Buyssens et al. [68], [69], 2014 (2 4 1)

Superpixels Compactness Iterations

Implementation

C/C++; Lab; 3 Parameters v v B

Name
VCCS - Voxel-Cloud Connectivity Segmentation
Reference (Google Scholar Citations) Color

N Papon et al. [76], 2013 (87)
Implementation Superpixels Compactness Iterations

C/C++; RGBD; 4 Parameters - v -

Name

preSLIC — Preemptive SLIC

Reference (Google Scholar Citations) Color
i Neubert and Protzel [57], 2014 (11)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 4 Parameters v v v

Name
LSC — Linear Spectral Clustering

Reference (Google Scholar Citations) Color

Li and Chen [77], 2015 (2)

Implementation

C/C++; Lab; 4 Parameters v v v

Superpixels Compactness Iterations

Path-based. Path-based approaches partition an im-
age into superpixels by connecting seed points through
pixel paths following specific criteria. The number of su-
perpixels is easily controllable, however, compactness usu-
ally is not. Often, these algorithms use edge information:
PF uses discrete image gradients and TPS uses edge de-
tection as proposed in [70].

We note that VCCS directly operates within a point
cloud and we, therefore, backproject the generated super-
voxels onto the image plane. Thus, the number of gener-
ated superpixels is harder to control.

Energy optimization. These algorithms iteratively
optimize a formulated energy. The image is partitioned
into a regular grid as initial superpixel segmentation, and
pixels are exchanged between neighboring superpixels with
regard to the energy. The number of superpixels is con-
trollable, compactness can be controlled and the iterations
can usually be aborted at any point.

Name

PF — Path Finder

Reference (Google Scholar Citations) Color
Drucker et al. [71], 2009 (18)

Superpixels Compactness Iterations

v — —

Implementation

Java; RGB; 2 Parameters

Name

TPS — Topology Preserving Superpixels Name

CRS — Contour Relaxed Superpixels

ll Reference (Google Scholar Citations) Color
i Dai et al. [72][73], 2012 (8 + 1)

Superpixels Compactness Iterations -
v Implementation

Reference (Google Scholar Citations) Color
Conrad et al. [78, [79], 2011 (14 + 4)

Superpixels Compactness Iterations

C/C++; YCrCb; 4 Parameters v v v

Implementation

MatLab/C; RGB; 4 Parameters

Name

Clustering-based. These superpixel algorithms are
SEEDS - Superpixels Extracted via Energy-

inspired by clustering algorithms such as k-means initial-
ized by seed pixels and using color information, spatial in-
formation and additional information such as depth (as for
example done by DASP). Intuitively, the number of gen-
erated superpixels and their compactness is controllable.
Although these algorithms are iterative, post-processing is
required in order to enforce connectivity.

Driven Sampling

Reference (Google Scholar Citations) Color
Van den Bergh et al. [80], 2012 (98)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 6 Parameters v - v

Name
CCS - Convexity Constrained Superpixels
Reference (Google Scholar Citations) Color

{ Tasli et al. [82] [83], 2013 (6 + 4)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 3 Parameters v v v

Name
SLIC - Simple Linear Iterative Clustering

Reference (Google Scholar Citations) Color
Achanta et al. [74] [39], 2010 (438 + 1843)

Superpixels Compactness Iterations

Name

ETPS - Extended Topology Preserving

Implementation

C/C++; Lab; 4 Parameters v v v .
Segmentation
Namo Reference (Google Scholar Citations) Color
DASP - Depth-Adaptive Superpixels Yao et al. [84], 2015 (6)
Reference (Google Scholar Gitations) Color Implementation Superpixels Compactness Iterations
Weikersdorfer et al. [53], 2012 (22) C/C++; RGB; 5 Parameters v v v

Implementation Superpixels Compactness Iterations

C/C++; RGBD; 5 Parameters v v v Wavelet-based. We found that Superpixels from Edge-

Nome Avoiding Wavelets (SEAW) [52] is not yet captured in the
VC - VCells discussed categories. In particular, it is not comparable to

Reference (Google Scholar Citations) Color : .
Wang and Wang [75]. 2012 (36) the algorithms discussed so far.

Superpixels Compactness Iterations

v —

Implementation

C/C++; Lab; 6 Parameters v

2We note that, as in [81], SEEDS actually provides a compact-
ness parameter. But the compactness parameter is not implemented
in the publicly available implementation.



Name

SEAW -
Wavelets

Superpixels from Edge-Avoiding

Reference (Google Scholar Citations) Color
Strassburg et al. [52], 2015 (0)

Superpixels Compactness Iterations

Implementation

MatLab/C; RGB; 3 Parameters v - -

3.1. Further Algorithms

While the above algorithms represent a large part of
the proposed superpixel algorithms, some algorithms are
not included due to missing, unnoticed or only recently
published implementationsﬂ These include [85] [86] [87]

88, 189] 190, 01, 92| 93, 194} (951, 96, (97, (98, 195} (99, [100].

4. Datasets

We chose five different datasets to evaluate superpixel
algorithms: two indoor datasets, two outdoor datasets and
one person dataset. We found that these datasets realis-
ticly reflect the setting of common applications ([30)] [25]
24] 22] 19l 27, [16], 26] to mention just a few applications
on the used datasets), while leveraging the availability of
large, pixel-level annotated datasets. However, we also
note that by focusing on natural images some application
domains might not be represented well — these include for
example specialized research areas such as medical imaging
where superpixels are also commonly used [33] [34, 36, [35].
Still, we believe that the experiments conducted on the
chosen datasets will aid algorithm selection in these cases,
as well. Furthermore, we expect the experiments to be
useful for similar but larger datasets (such as PASCAL
VOC [I01], ImageNet [102] or MS COCO [I03] to name
a few prominent ones). In addition, the selected datasets
enable us to draw a more complete picture of algorithm
performance going beyond the datasets commonly used
within the literature. Furthermore, both indoor datasets
provide depth information, allowing us to evaluate super-
pixel algorithms requiring depth information as additional
cue. In the following we briefly discuss the main aspects of
these datasets; Figure[[]shows example images and Table[]]
summarizes key statistics.

BSDS500 [55]. The Berkeley Segmentation Dataset 500
(BSDS500) was the first to be used for superpixel algo-
rithm evaluation (e.g. [1l 42]). It contains 500 images and
provides at least 5 high-quality ground truth segmenta-
tions per image. Therefore, we evaluate algorithms on
all ground truth segmentations and, for each image and
a given metric, choose the ground truth segmentation re-
sulting in the worst score for averaging. The images repre-
sent simple outdoor scenes, showing landscape, buildings,
animals and humans, where foreground and background
are usually easily identified. Nevertheless, natural scenes
where segment boundaries are not clearly identifiable con-
tribute to the difficulty of the dataset.

2 Visit |davidstutz.de/projects/superpixel-benchmark/| to in-
tegrate your algorithm into the comparison.
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Figure 1: Example images from the used datasets. From left to right:
BSDS500, SBD, NYUV2, SUNRGBD, and Fash. Black contours
represent ground truth and red rectangles indicate excerpts used for
qualitative comparison in FiguresE] andlﬁ Best viewed in color.

SBD [104]. The Stanford Background Dataset (SBD)
combines 715 images from several datasets [105} 106}, 10T}
[I07]. As result, the dataset contains images of varying size,
quality and scenes. The images show outdoor scenes such
as landscape, animals or street scenes. In contrast to the
BSDS500 dataset the scenes tend to be more complex, of-
ten containing multiple foreground objects or scenes with-
out clearly identifiable foreground. The semantic ground
truth has been pre-processed to ensure connected segments.

NYUV2 [108]. The NYU Depth Dataset V2 (NYUV2)
contains 1449 images including pre-processed depth. Sil-
berman et al. provide instance labels which are used to
ensure connected segments. Furthermore, following Ren
and Bo [109], we pre-processed the ground truth to re-
move small unlabeled regions. The provided ground truth
is of lower quality compared to the BSDS500 dataset. The
images show varying indoor scenes of private apartments
and commercial accomodations which are often cluttered
and badly lit. The images were taken using Microsoft’s
Kinect.

SUNRGBD [110]. The Sun RGB-D dataset (SUN-

RGBD) contains 10335 images including pre-processed depth.

The dataset combines images from the NYUV2 dataset
and other datasets [ITT], 112] with newly acquired images.
In contrast to the NYUV2 dataset, the SUNRGBD data-
set combines images from the following devices: Intel Re-
alSense, Asus Xtion and Microsoft Kinect vl and v2 — we
refer to [110] for details. We removed the images taken
from the NYUV2 dataset. The images show cluttered in-
door scenes with bad lighting taken from private apart-
ments as well as commercial accomodations. The provided
semantic ground truth has been pre-processed similarly to
the NYUV2 dataset.

Fash [30]. The Fashionista dataset (Fash) contains 685
images which have previously been used for clothes pars-
ing. The images show the full body of fashion bloggers
in front of various backgrounds. Yamaguchi et al. lever-
aged Amazon Mechanical Turk to acquire semantic ground
truth based on pre-computed segments ([30] suggests that
the algorithm in [55] has been used). The ground truth
has been pre-processed to ensure connected segments.
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BSDS500 SBD NYUV2 SUNRGBD Fash

Train 100 238 199 200 222
Test 200 477 399 400 463

Train | 481 x 321 316 x 240 608 x 448 658 x 486 400 x 600
Test 481 x 321 314 x 242 608 x 448 660 x 488 400 x 600

Sizdmages

Table 1: Basic statistics of the used datasets: the total number of
images, the number of training and test images and the size of the
images (averaged per dimension). The number of images for the
SUNRGBD dataset excludes the images from the NYUV2 dataset.
For the NYUV2 and SUNRGBD datasets, training and test images
have been chosen uniformly at random if necessary. Note that the
odd numbers used for the NYUV2 dataset are for no special reason.

5. Benchmark

Our benchmark aims to score the requirements for su-
perpixels discussed in Section [I} in particular boundary
adherence and compactness (note that connectivity is en-
forced during parameter optimization, see Section. As
these metrics inherently depend on the number of gener-
ated superpixels, we further extend these metrics to al-
low the assessment of superpixel algorithms independent
of the number of generated superpixels. Therefore, let

= {S;}I<, and G = {G;} be partitions of the same im-
age I : x, — I(xz,), 1 < n < N, where S represents a
superpixel segmentation and G a ground truth segmenta-
tion.

Boundary Recall (Rec) [4§] is the most commonly used
metric to asses boundary adherence given ground truth.
Let FN(G, S) and TP(G, S) be the number of false nega-
tive and true positive boundary pixels in S with respect
to G. Then Rec is defined as

P(G, S) O
TP(G, S) + FN(G, S)

Overall, high Rec represents better boundary adher-
ence with respect to to the ground truth boundaries, i.e.
higher is better. In practice, a boundary pixel in S is
matched to an arbitrary boundary pixel in G within a lo-
cal neighborhood of size (2r + 1) x (2r 4+ 1), with r being
0.0025 times the image diagonal rounded to the next inte-
ger (e.g. 7 =1 for the BSDS500 dataset).

Undersegmentation Error (UE) [42] 39, [44] measures
the “leakage” of superpixels with respect to G and, there-
fore, implicitly also measures boundary adherence. Here,
“leakage” refers to the overlap of superpixels with multiple,
nearby ground truth segments. The original formulation
by Levinshtein et al. [42] can be written as

Rec(G, S) =

(S5 06,00 18i1) = 1Gil
P Z G

where the inner term represents the “leakage” of super-
pixel S; with respect to G. However, some authors [39] 44]
argue that Equation penalizes superpixels overlapping
only slightly with neighboring ground truth segments and
is not constrained to lie in [0, 1]. Achanta et al. [39] suggest

UELeVm G S

to threshold the “leakage” term of Equation and only
consider those superpixels S; with a minimum overlap of
25 -19j|. Both van den Bergh et al. [81] and Neubert
and Protzel [44] propose formulations not suffering from
the above drawbacks. In the former,

UEBergn (G, S) Z|S - argmax|S NG, (3)

J

each superpixel is assigned to the ground truth segment
with the largest overlap, and only the “leakage” with re-
spect to other ground truth segments is considered. There-
fore, UERergn corresponds to (1 — ASA) — with ASA be-
ing Achievable Segmentation Accuracy as described below.
The latter,

UEne(G, S) =

Z > min{|S; NGil,|S; —

Gi S;NG;#0

Gil}, (4)

is not directly equivalent to (1 — ASA), however, UExp
and ASA are still strongly correlated as we will see later.
All formulations have in common that lower UE refers to
less “leakage” with respect to the ground truth, i.e. lower
is better. In the following we use UE = UEyp.

Explained Variation (EV) [49] quantifies the quality
of a superpixel segmentation without relying on ground
truth. As image boundaries tend to exhibit strong change
in color and structure, EV assesses boundary adherence
independent of human annotions. EV is defined as

s, 1851(1(S;) — u(1))?
>, U (@n) = p(I))?

where p(S;) and p(I) are the mean color of superpixel
S; and the image I, respectively. As result, EV quantifies
the variation of the image explained by the superpixels,
i.e. higher is better.

Compactness (CO) [43] has been introduced by Schick
et al. [43] to evaluate the compactness of superpixels:

EV(S) =

(5)

A(S5)

Co(G,5) =+ 18,17 (6)
Sj

P(S;)

CO compares the area A(S;) of each superpixel S
with the area of a circle (the most compact 2-dimensional
shape) with same perimeter P(S;), i.e. higher is better.

While we will focus on Rec, UE, EV and CO, fur-
ther notable metrics are briefly discussed in the following.
Achievable Segmentation Accuracy (ASA) [47] quantifies
the achievable accuracy for segmentation using superpixels
as pre-processing step:

ASA(G, S) ZmaxﬂS NGy} (7)

Intra-Cluster Variation (ICV) [58] computes the aver-
age variation within each superpixel:



Mean Distance to Edge (MDE) [58] refines Rec by also
considering the distance to the nearest boundary pixel
within the ground truth segmentation:

1
MDE(G, §) = + > dists(zn) (9)
zn €B(G)

where B(G) is the set of boundary pixels in G, and
distg is a distance transform of S.

5.1. Ezpressiveness and Chosen Metrics

Due to the large number of available metrics, we ex-
amined their expressiveness in order to systematically con-
centrate on few relevant metrics. We found that UE tends
to correlate strongly with ASA which can be explained by
Equations and , respectively. In particular, simple
calculation shows that ASA strongly resembles (1 — UE).
Surprisingly, UENp does not correlate with UEyeyin sug-
gesting that either both metrics reflect different aspects
of superpixels, or UEycyin unfairly penalizes some super-
pixels as suggested in [39] and [44]. Unsurprisingly, MDE
correlates strongly with Rec which can also be explained
by their respective definitions. In this sense, MDE does
not provide additional information. Finally, ICV does not
correlate with EV which may be attributed to the miss-
ing normalization in Equation when compared to EV.
This also results in ICV not begin comparable across im-
ages as the intra-cluster variation is not related to the
overall variation within the image. As of these considera-
tions, we concentrate on Rec, UE and EV for the presented

experiments. Details can be found in

5.2. Average Miss Rate, Average Undersegmentation Er-
ror and Average Unexplained Variation

As the chosen metrics inherently depend on the num-
ber of superpixels, we seek a way of quantifying the perfor-
mance with respect to Rec, UE and EV independent of K
and in a single plot per dataset. In order to summarize
performance over a given interval [Kpin, Kmax], we con-
sider MR = (1 — Rec), UE and UV = (1 — EV). Here, the
first corresponds to the Boundary Miss Rate(MR) and the
last, Unexplained Variation (UV), quantifies the variation
in the image not explained by the superpixels. We use
the area below these curves in [Kuin, Kmax] = [200, 5200]
to quantify performance independent of K. In Section
[7:2] we will see that these metrics appropriately summa-
rize the performance of superpixel algorithms. We de-
note these metrics by Average Miss Rate (AMR), Average
Undersegmentation Error (AUE) and Average Unexplained
Variation (AUV) — note that this refers to an average over
K. By construction (and in contrast to Rec and EV),

lower AMR, AUE and AUV is better, making side-by-side
comparison across datasets easy.

6. Parameter Optimization

For the sake of fair comparison, we optimized param-
eters on the training sets depicted in Table Unfortu-
nately, parameter optimization is not explicitly discussed
in related work (e.g. [43, B9, 44, [43]) and used parame-
ters are not reported in most publications. In addition,
varying runtimes as well as categorical and integer param-
eters render parameter optimization difficult such that we
had to rely on discrete grid search, jointly optimizing Rec
and UE, i.e. minimizing (1 — Rec) + UE. As Rec and
UE operate on different representations (boundary pixels
and superpixel segmentations, respectively), the additive
formulation ensures that algorithms balance both metrics.
For example, we observed that using a multiplicative for-
mulation allows superpixel algorithms to drive (1 — Rec)
towards zero while disregarding UE. We optimized param-
eters for K € {400, 1200, 3600} and interpolated linearly in
between (however, we found that for many algorithms, pa-
rameters are consistent across different values of K). Op-
timized parameters also include compactness parameters
and the number of iterations as well as the color space.
We made sure that all algorithms at least support RGB
color space for fairness. In the following, we briefly dis-
cuss the main difficulties encountered during parameter
optimization, namely controlling the number of generated
superpixels and ensuring connectivity.

6.1. Controlling the Number of Generated Superpizels

As discussed in Section[I] superpixel algorithms are ex-
pected to offer control over the number of generated super-
pixels. We further expect the algorithms to meet the de-
sired number of superpixels within acceptable bounds. For
several algorithms, however, the number of generated su-
perpixels is strongly dependent on other parameters. Fig-
ure [2] demonstrates the influence of specific parameters on
the number of generated superpixels (before ensuring con-
nectivity as in Section for LSC, CIS, VC, CRS and
PB. For some of the algorithms, such parameters needed
to be constrained to an appropriate value range even after
enforcing connectivity.

For oversegmentation algorithms such as FH, EAMS
and QS not providing control over the number of gener-
ated superpixels, we attempted to exploit simple relation-
ships between the provided parameters and the number
of generated superpixels. For EAMS and QS this allows
to control the number of generated superpixels at least
roughly. FH, in contrast, does not allow to control the
number of generated superpixels as easily. Therefore, we
evaluated FH for a large set of parameter combinations
and chose the parameters resulting in approximately the
desired number of superpixels.
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been omitted and scaled for clarity. A higher number of superpixels
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Figure 3: Rec and runtime in seconds ¢ on the training set of
the BSDS500 dataset when varying the number of iterations of:
SLIC; CRS; SEEDS; preSLIC; LSC; and ETPS. Most algo-
rithms achieve reasonable Rec with about 3 — 10 iterations. Still,
parameter optimization with respect to Rec and UE favors more it-
erations. Best viewed in color.
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Figure 4: Rec and CO on the training set of the BSDS500 data-
set when varying the compactness parameter of: SLIC; CRS; VC;
preSLIC; CW; ERGC; LSC; and ETPS. The parameters have
been omitted and scaled for clarity. High CO comes at the cost of
reduced Rec and parameter optimization with respect to Rec and
UE results in less compact superpixels. Best viewed in color.
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6.2. Ensuring Connectivity

Unfortunately, many implementations (note the differ-
ence between implementation and algorithm) cannot en-
sure the connectivity of the generated superpixels as re-
quired in Section Therefore, we decided to strictly
enforce connectivity using a connected components algo-
rithm, i.e. after computing superpixels, each connected
component is relabeled as separate superpixel. For some
implementations, this results in many unintended super-
pixels comprising few pixels. In these cases we additionally
merge the newly generated superpixels into larger neigh-
boring ones. However, even with these post-processing
steps, the evaluated implementations of CIS, CRS, PB,
DASP, VC, VCCS or LSC generate highly varying num-
bers of superpixels across different images.

6.3. Common Trade-Offs: Runtime and Compactness

Two other types of parameters deserve detailed discus-
sion: the number of iterations and the compactness param-
eter. The former controls the trade-off between runtime
and performance, exemplarily demonstrated in Figure [3]
showing that more iterations usually result in higher Rec
and higher runtime in seconds t. The latter controls the
trade-off between compactness and performance and Fig-
ure [4] shows that higher CO usually results in lower Rec.
Overall, parameter optimization with respect to Rec and
UE results in higher runtime and lower compactness.

7. Experiments

Our experiments include visual quality, performance
with respect to Rec, UE and EV as well as runtime. In
contrast to existing work [43] 39} [44] [43], we consider min-
imum/maximum and standard deviation of Rec, UE and
EV (in relation to the number of generated superpixels K)
and present results for the introduced metrics AMR, AUE
and AUV. Furthermore, we present experiments regard-
ing implementation details as well as robustness against
noise, blur and affine transformations. Finally, we give an
overall ranking based on AMR and AUE.

7.1. Qualitative

Visual quality is best determined by considering com-
pactness, regularity and smoothness on the one hand and
boundary adherence on the other. Here, compactness refers
to the area covered by individual superpixels (as captured
in Equation @), regularity corresponds to both the super-
pixels’ sizes and their arrangement; and smootness refers
to the superpixels’ boundaries. Figures [5] and [6] show re-
sults on all datasets. We begin by discussing boundary
adherence, in particular with regard to the difference be-
tween superpixel and oversegmentation algorithms, before
considering compactness, smoothness and regularity.

The majority of algorithms provides solid adherence to
important image boundaries, especially for large K. We
consider the woman image — in particular, the background
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Figure 5: Qualitative results on the BSDS500, SBD and Fash datasets. Excerpts from the images in Figure I are shown for K = 400 in
the upper left corner and K = 1200 in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. We judge
visual quality on the basis of boundary adherence, compactness, smoothness and regularity. Boundary adherence can be judged both on the
caterpillar image as well as on the woman image — the caterpillar’s boundaries are hard to detect and the woman'’s face exhibits small details.
In contrast, compactness, regularity and smoothness can be evaluated considering the background in the caterpillar and see images. Best
viewed in color.
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Figure 6: Qualitative results on the NYUV2 and SUNRGBD datasets. Excerpts from the images in Figure are shown for K = 400 in the
upper left corner and K = 1200 in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. NC, RW and
SEAW could not be evaluated on the SUNRGBD dataset due to exhaustive memory usage of the corresponding MatLab implementations.
Therefore, results for the NYUV2 dataset are shown. Visual quality is judged regarding boundary adherence, compactness, smoothness and
regularity. We also find that depth information, as used in DASP and VCCS, may help resemble the underlying 3D-structure. Best viewed
in color.

SLIC

Figure 7: The influence of a low, on the left, and high, on the right, compactness parameter demonstrated on the caterpillar image from
the BSDS500 datasets using SLIC and CRS for K ~ 400. Superpixel boundaries are depicted in black; best viewed in color. Superpixel
algorithms providing a compactness parameter allow to trade boundary adherence for compactness. Best viewed in color.
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— and the caterpillar image in Figure [f] Algorithms with
inferior boundary adherence are easily identified as those
not capturing the pattern in the background or the silhou-
ette of the caterpillar: FH, QS, CIS, PF, PB, TPS, TP
and SEAW. The remaining algorithms do not necessarily
capture all image details, as for example the woman’s face,
but important image boundaries are consistently captured.
We note that of the three evaluated oversegmentation al-
gorithms, i.e. EAMS, FH and QS, only EAMS demon-
strates adequate boundary adherence. Furthermore, we
observe that increasing K results in more details being
captured by all algorithms. Notable algorithms regard-
ing boundary adherence include CRS, ERS, SEEDS,
ERGC and ETPS. These algorithms are able to capture
even smaller details such as the coloring of the caterpillar
or elements of the woman’s face.

Compactness strongly varies across algorithms and a
compactness parameter is beneficial to control the degree
of compactness as it allows to gradually trade boundary
adherence for compactness. We consider the caterpillar
image in Figure[5] TP, RW, W, and PF are examples for
algorithms not providing a compactness parameter. While
TP generates very compact superpixels and RW tends to
resemble grid-like superpixels, W and PF generate highly
non-compact superpixels. In this regard, compactness de-
pends on algorithm and implementation details (e.g. grid-
like initialization) and varies across algorithms. For algo-
rithms providing control over the compactness of the gen-
erated superpixels, we find that parameter optimization
has strong impact on compactness. Examples are CRS,
LSC, ETPS and ERGC showing highly irregular super-
pixels, while SLIC, CCS, VC and WP generate more
compact superpixels. For DASP and VCCS, requiring
depth information, similar observations can be made on
the kitchen image in Figure [6] Inspite of the influence of
parameter optimization, we find that a compactness pa-
rameter is beneficial. This can best be observed in Fig-
ure [7] showing superpixels generated by SLIC and CRS
for different degrees of compactness. We observe that com-
pactness can be increased while only gradually sacrificing
boundary adherence.

We find that compactness does not necessarily induce
regularity and smoothness; some algorithms, however, are
able to unite compactness, regularity and smoothness. Con-
sidering the sea image in Figure [5| for CIS and TP, we
observe that compact superpixels are not necessarily ar-
ranged regularly. Similarly, compact superpixels do not
need to exhibit smooth boundaries, as can be seen for PB.
On the other hand, compact superpixels are often gener-
ated in a regular fashion, as can be seen for many algo-
rithms providing a compactness parameter such as SLIC,
VC and CCS. In such cases, compactness also induces
smoother and more regular superpixels. We also observe
that many algorithms exhibiting excellent boundary ad-
herence such as CRS, SEEDS or ETPS generate highly
irregular and non-smooth superpixels. These observations
also justify the separate consideration of compactness, reg-

BSDS500

1,000
log K

1,000
log K

Figure 8: CO on the BSDS500 and NYUV2 datasets. Considering
Figures [5| and @ CO appropriately reflects compactness. However,
it does not take into account other aspects of visual quality such as
regularity and smoothness. Therefore, we find that CO is of limited
use in a quantitative assessment of visual quality. Best viewed in
color.
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ularity and smoothness to judge visual quality. While
the importance of compactness, regularity and smoothness
may depend on the application at hand, these properties
represent the trade-off between abstraction from and sen-
sitivity to low-level image content which is inherent to all
superpixel algorithms.

In conclusion, we find that the evaluated path-based
and density-based algorithms as well as oversegmentation
algorithms show inferior visual quality. On the other hand,
clustering-based, contour evolution and iterative energy
optimization algorithms mostly demonstrate good bound-
ary adherence and some provide a compactness parameter,
e.g. SLIC, ERGC and ETPS. Graph-based algorithms
show mixed results — algorithms such as FH, CIS and PB
show inferior boundary adherence, while ERS, RW, NC
and POISE exhibit better boundary adherence. However,
good boundary adherence, especially regarding details in
the image, often comes at the price of lower compactness,
regularity and/or smoothness as can be seen for ETPS
and SEEDS. Furthermore, compactness, smoothness and
regularity are not necessarily linked and should be dis-
cussed separately.

7.1.1. Compactness

CO measures compactness, however, does not reflect
regularity or smoothness; therefore, CO is not sufficient
to objectively judge visual quality. We consider Figure
showing CO on the BSDS500 and NYUV2 datasets,
and we observe that CO correctly measures compactness.
For example, WP, TP and CIS, exhibiting high CO, also
present very compact superpixels in Figures[5|and [6] How-
ever, these superpixels do not necessarily have to be visu-
ally appealing, i.e. may lack regularity and/or smoothness.



This can exemplarily be seen for TPS, exhibiting high
compactness bur poor regularity, or PB showing high com-
pactness but inferior smoothness. Overall, we find that
CO should not be considered isolated from a qualitative
evaluation.

7.1.2. Depth

Depth information helps superpixels resemble the 3D-
structure within the image. Considering Figure[6] in par-
ticular both images for DASP and VCCS, we deduce that
depth information may be beneficial for superpixels to re-
semble the 3D-structure of a scene. For example, when
considering planar surfaces (e.g. the table) in both images
from Figure [6] for DASP, we clearly see that the super-
pixels easily align with the surface in a way perceived as
3-dimensional. For VCCS, this effect is less observable
which may be due to the compactness parameter.

7.2. Quantitative

Performance is determined by Rec, UE and EV. In
contrast to most authors, we will look beyond metric av-
erages. In particular, we consider the minimum/maximum
as well as the standard deviation to get an impression of
the behavior of superpixel algorithms. Furthermore, this
allows us to quantify the stability of superpixel algorithms
as also considered by Neubert and Protzel in [46].

Rec and UE offer a ground truth dependent overview
to assess the performance of superpixel algorithms. We
consider Figures [0a] and [0D] showing Rec and UE on the
BSDS500 dataset. With respect to Rec, we can easily
identify top performing algorithms, such as ETPS and
SEEDS, as well as low performing algorithms, such as
FH, QS and PF. However, the remaining algorithms lie
closely together in between these two extremes, showing
(apart from some exceptions) similar performance espe-
cially for large K. Still, some algorithms perform consis-
tently better than others, as for example ERGC, SLIC,
ERS and CRS. For UE, low performing algorithms, such
as PF or QS, are still easily identified while the remain-
ing algorithms tend to lie more closely together. Neverthe-
less, we can identify algorithms consistently demonstrating
good performance, such as ERGC, ETPS, CRS, SLIC
and ERS. On the NYUV2 dataset, considering Figures
and these observations can be confirmed except
for minor differences as for example the excellent perfor-
mance of ERS regarding UE or the better performance of
QS regarding UE. Overall, Rec and UE provide a quick
overview of superpixel algorithm performance but might
not be sufficient to reliably discriminate superpixel algo-
rithms.

In contrast to Rec and UE, EV offers a ground truth
independent assessment of superpixel algorithms. Con-
sidering Figure showing EV on the BSDS500 dataset,
we observe that algorithms are dragged apart and even
for large K significantly different EV values are attained.
This suggests, that considering ground truth independent
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metrics may be beneficial for comparison. However, EV
cannot replace Rec or UE, as we can observe when com-
paring to Figures [0a] and [Ob] showing Rec and UE on the
BSDS500 dataset; in particular QS, FH and CIS are per-
forming significantly better with respect to EV than re-
garding Rec and UE. This suggests that EV may be used
to identify poorly performing algorithms, such as TPS,
PF, PB or NC. On the other hand, EV is not necessar-
ily suited to identify well-performing algorithms due to the
lack of underlying ground truth. Overall, EV is suitable to
complement the view provided by Rec and UE, however,
should not be considered in isolation.

The stability of superpixel algorithms can be quantified
by min Rec, max UE and min EV considering the behavior
for increasing K. We consider Figures[9d] 0eand [91 show-
ing min Rec, max UE and min EV on the BSDS500 dataset.
We define the stability of superpixel algorithms as follows:
an algorithm is considered stable if performance mono-
tonically increases with K (i.e. monotonically increasing
Rec and EV and monotonically decreasing UE). Further-
more, these experiments can be interpreted as empirical
bounds on the performance. For example algorithms such
as ETPS, ERGC, ERS, CRS and SLIC can be consid-
ered stable and provide good bounds. In contrast, algo-
rithms such as EAMS, FH, VC or POISE are punished
by considering min Rec, max UE and min EV and cannot
be described as stable. Especially oversegmentation algo-
rithms show poor stability. Most strikingly, EAMS seems
to perform especially poorly on at least one image from the
BSDS500 dataset. Overall, we find that min Rec, max UE
and min EV appropriately reflect the stability of superpixel
algorithms.

The minimum/maximum of Rec, UE and EV captures
lower /upper bounds on performance. In contrast, the cor-
responding standard deviation can be thought of as the
expected deviation from the average performance. We
consider Figures[9g] [0h] and 01 showing the standard devia-
tion of Rec, UE and EV on the BSDS500 dataset. We can
observe that in many cases good performing algorithms
such as ETPS, CRS, SLIC or ERS also demonstrate
low standard deviation. Oversegmentation algorithms, on
the other hand, show higher standard deviation — together
with algorithms such as PF, TPS, VC, CIS and SEAW.
In this sense, stable algorithms can also be identified by
low and monotonically decreasing standard deviation.

The variation in the number of generated superpixels
is an important aspect for many superpixel algorithms.
In particular, high standard deviation in the number of
generated superpixels can be related to poor performance
regarding Rec, UE and EV. We find that superpixel al-
gorithms ensuring that the desired number of superpix-
els is met within appropriate bounds are preferrable. We
consider Figures [0]] and [0k} showing max K and std K for
K &~ 400 on the BSDS500 dataset. Even after enforcing
connectivity as described in Section we observe that
several implementations are not always able to meet the
desired number of superpixels within acceptable bounds.
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Figure 9: Quantitative experiments on the BSDS500 dataset; remember that K denotes the number of generated superpixels. Rec (higher is
better) and UE (lower is better) give a concise overview of the performance with respect to ground truth. In contrast, EV (higher is better)
gives a ground truth independent view on performance. While top-performers as well as poorly performing algorithms are easily identified,
we provide more find-grained experimental results by considering min Rec, max UE and min EV. These statistics additionally can be used
to quantity the stability of superpixel algorithms. In particular, stable algorithms are expected to exhibit monotonically improving min Rec,
max UE and min EV. The corresponding std Rec, std UE and std EV as well as max K and std K help to identify stable algorithms. Best

viewed in color.
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Figure 10: Quantitative results on the NYUV2 dataset; remember that K denotes the number of generated superpixels. The presented
experimental results complement the discussion in FigureEland show that most observations can be confirmed across datasets. Furthermore,

DASP and VCCS show inferior performance suggesting that depth information does not necessarily improve performance. Best viewed
in color.
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Among these algorithms are QS, VC, FH, CIS and LSC.
Except for the latter case, this can be related to poor per-
formance with respect to Rec, UE and EV. Conversely,
considering algorithms such as ETPS, ERGC or ERS
which guarantee that the desired number of superpixels is
met exactly, this can be related to good performance re-
garding these metrics. To draw similar conclusions for
algorithms utilizing depth information, i.e. DASP and
VCCS, the reader is encouraged to consider Figures
and showing max K and std K for K = 400 on the
NYUV2 dataset. We can conclude that superpixel algo-
rithms with low standard deviation in the number of gener-
ated superpixels are showing better performance in many
cases.

Finally, we discuss the proposed metrics AMR, AUE
and AUV (computed as the area below the MR = (1 —
Rec), UE and UV = (1 — EV) curves within the inter-
val [Kmin, Kmax] = [200,5200], i.e. lower is better). We
find that these metrics appropriately reflect and summa-
rize the performance of superpixel algorithms independent
of K. As can be seen in Figure showing #B AMR,
E AUE and E AUV on the BSDS500 dataset, most of
the previous observations can be confirmed. For example,
we exemplarily consider SEEDS and observe low AMR
and AUV which is confirmed by Figures [9a] and [0, show-
ing Rec and EV on the BSDS500 dataset, where SEEDS
consistently outperforms all algorithms except for ETPS.
However, we can also observe higher AUE compared to al-
gorithms such as ETPS, ERS or CRS wich is also consis-
tent with Figure 0b] showing UE on the BSDS500 dataset.
We conclude, that AMR, AUE and AUV give an easy-to-
understand summary of algorithm performance. Further-
more, AMR, AUE and AUV can be used to rank the dif-
ferent algorithms according to the corresponding metrics;
we will follow up on this idea in Section [7.7}

The observed AMR, AUE and AUV also properly re-
flect the difficulty of the different datasets. We consider
Figure [11] showing [ AMR, f8 AUE and [l AUV for all
five datasets. Concentrating on SEEDS and ETPS, we
see that the relative performance (i.e. the performance of
SEEDS compared to ETPS) is consistent across data-
sets; SEEDS usually showing higher AUE while AMR
and AUV are usually similar. Therefore, we observe that
these metrics can be used to characterize the difficulty and
ground truth of the datasets. For example, considering
the Fash dataset, we observe very high AUV compared to
the other datasets, while AMR and AUE are usually very
low. This can be explained by the ground truth shown in
Figure i.e. the ground truth is limited to the fore-
ground (in the case of Figure the woman), leaving
even complicated background unannotated. Similar argu-
ments can be developed for the consistently lower AMR,
AUE and AUV for the NYUV2 and SUNRGBD datasets
compared to the BSDS500 dataset. For the SBD dataset,
lower AMR, AUE and AUV can also be explained by the
smaller average image size.

In conclusion, AMR, AUE and AUV accurately reflect
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the performance of superpixel algorithms and can be used
to judge datasets. Across the different datasets, path-
based and density-based algorithms perform poorly, while
the remaining classes show mixed performance. However,
some iterative energy optimization, clustering-based and
graph-based algorithms such as ETPS, SEEDS, CRS,
ERS and SLIC show favorable performance.

7.2.1. Depth

Depth information does not necessarily improve per-
formance regarding Rec, UE and EV. We consider Fig-
ures [10a], [T0B] and [I0c| presenting Rec, UE and EV on the
NYUV2 dataset. In particular, we consider DASP and
VCCS. We observe, that DASP consistently outperforms
VCCS. Therefore, we consider the performance of DASP
and investigate whether depth information improves per-
formance. Note that DASP performs similar to SLIC,
exhibiting slightly worse Rec and slightly better UE and
EV for large K. However, DASP does not clearly outper-
form SLIC. As indicated in Section [3] DASP and SLIC
are both clustering-based algorithms. In particular, both
algorithms are based on k-means using color and spatial
information and DASP additionally utilizes depth infor-
mation. This suggests that the clustering approach does
not benefit from depth information. We note that a sim-
ilar line of thought can be applied to VCCS except that
VCCS directly operates within a point cloud, rendering
the comparison problematic. Still we conclude that depth
information used in the form of DASP does not improve
performance. This might be in contrast to experiments
with different superpixel algorithms, e.g. a SLIC variant
using depth information as in [92]. We suspect that regard-
ing the used metrics, the number of superpixels (K = 200)
and the used superpixel algorithm, the effect of depth in-
formation might be more pronounced in the experiments
presented in [92] compared to ours. Furthermore, it should
be noted that our evaluation is carried out in the 2D image
plane, which does not directly reflect the segmentation of
point clouds.

7.8. Runtime

Considering runtime, we report CPU tim(ﬂ excluding
connected components but including color space conver-
sions if applicable. We made sure that no multi-threading
or GPU computation were used. We begin by considering
runtime in general, with a glimpse on realtime applica-
tions, before considering iterative algorithms.

We find that some well performing algorithms can be
run at (near) realtime. We consider Figureshowing run-
time in seconds ¢ on the BSDS500 (image size 481 x 321)
and NYUV2 (image size 608 x 448) datasets. Concretely,
considering the watershed-based algorithms W and CW,

3 Runtimes have been taken on an Intel® Core™ i7-3770 @
3.4GHz, 64bit with 32GB RAM.
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Figure 11: AMR, AUE and AUV (lower is better) on the used datasets. We find that AMR, AUE and AUV appropriately summarize
performance independent of the number of generated superpixels. Plausible examples to consider are top-performing algorithms such as
ETPS, ERS, SLIC or CRS as well as poorly performing ones such as QS and PF. Best viewed in color.
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Figure 12: Runtime in seconds on the BSDS500 and NYUV2 data-
sets. Watershed-based, some clustering-based algorithms as well as
PF offer runtimes below 100ms. In the light of realtime applica-
tions, CW, W and PF even provide runtimes below 10ms. How-
ever, independent of the application at hand, we find runtimes below
1s beneficial for using superpixel algorithms as pre-processing tools.
Best viewed in color.
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Figure 13: Rec, UE and runtime in seconds ¢ for iterative algorithms
with K &~ 400 on the BSDS500 dataset. Some algorithms allow to
gradually trade performance for runtime, reducing runtime by several
100ms in some cases. Best viewed in color.
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we can report runtimes below 10ms on both datasets, cor-
responding to roughly 100fps. Similarly, PF runs at be-
low 10ms. Furthermore, several algorithms, such as SLIC,
ERGC, FH, PB, MSS and preSLIC provide runtimes
below 80ms and some of them are iterative, i.e. reduc-
ing the number of iterations may further reduce runtime.
However, using the convention that realtime corresponds
to roughly 30fps, this leaves preSLIC and MSS on the
larger images of the NYUV2 dataset. However, even with-
out explicit runtime requirements, we find runtimes be-
low 1s per image to be beneficial for using superpixel al-
gorithms as pre-processing tool, ruling out TPS, CIS,
SEAW, RW and NC. Overall, several superpixel algo-
rithms provide runtimes appropriate for pre-processing tools;
realtime applications are still limited to a few fast algo-
rithms.

Iterative algorithms offer to reduce runtime while grad-
ually lowering performance. Considering Figure show-
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ing Rec, UE and runtime in seconds ¢ for all iterative al-
gorithms on the BSDS500 dataset, we observe that the
number of iterations can safely be reduced to decrease run-
time while lowering Rec and increasing UE only slightly.
In the best case, for example considering ETPS, reducing
the number of iterations from 25 to 1 reduces the runtime
from 680ms to 58ms, while keeping Rec und UE nearly
constant. For other cases, such as SEEDSﬂ Rec decreases
abruptly when using less than 5 iterations. Still, runtime
can be reduced from 920ms to 220ms. For CRS and CIS,
runtime reduction is similarly significant, but both algo-
rithms still exhibit higher runtimes. If post-processing is
necessary, for example for SLIC and preSLIC, the num-
ber of iterations has to be fixed in advance. However, for
other iterative algorithms, the number of iterations may
be adapted at runtime depending on the available time.
Overall, iterative algorithms are beneficial as they are able
to gradually trade performance for runtime.

We conclude that watershed-based as well as some path-
based and clustering-based algorithms are candidates for
realtime applications. Iterative algorithms, in particular
many clustering-based and iterative energy optimization
algorithms, may further be speeded up by reducing the
number of iterations and trading performance for runtime.
On a final note, we want to remind the reader that the
image sizes of all used datasets may be relatively small
compared to today’s applications. However, the relative
runtime comparison is still valuable.

7.4. Influence of Implementations

We discuss the influence of implementation details on
performance and runtime for different implementations of
SEEDS, SLIC and FH. In particular, reSEEDS and
reFH are our revised implementations of SEEDS and
FH, respectively. Both implementations follow the al-
gorithm as described in the corresponding publications,
provide exactly the same parameters and are also imple-
mented in C/C++. Still, we tried to optimize the im-
plementations with respect to connectivity and kept them
as efficient as possible. reFH additionally uses a slightly
different graph data structure — we refer to the implemen-
tations for details; these will be made publicly available
together with the benchmark. Furthermore, we include vl-
SLIC, an implementation of SLIC as part of the VLFeat
library [114], and preSLIC [57], an accelerated version
of SLIC based on the original implementation. Both vl-
SLIC and preSLIC are also implemented in C/C++ as
their original counterparts.

We find that revisiting implementation details may be
beneficial for both performance and runtime. We con-
sider Figure [14] showing Rec, UE and runtime in seconds
t for the introduced implementations of SLIC, SEEDS

4 We note that we use the original SEEDS implementation
instead of the OpenCV [II3] implementation which is reported
to be more efficient, see http://docs.opencv.org/3.0-last-rst/
modules/ximgproc/doc/superpixels.html.
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Figure 14: Rec, UE and runtime in seconds ¢ on the BSDS500 dataset
for different implementations of SLIC, SEEDS and FH. In partic-
ular, reSEEDS and reFH show slightly better performance which
may be explained by improved connectivity. vISLIC, in contrast,
shows similar performance to SLIC and, indeed, the implementa-
tions are very similar. Finally, preSLIC reduces runtime by reduc-
ing the number of iterations spend on individual superpixels. Best
viewed in color.
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vISLIC

and FH on the BSDS500 dataset. For reSEEDS and
reFH, we observe improved performance which can be re-
lated to the improved connectivity. However, even very
similar implementations such as SLIC and vISLIC dif-
fer slightly in performance; note the lower Rec and higher
UE of vISLIC compared to SLIC. Overall, the differ-
ence in runtime is most striking, for example reSEEDS
and preSLIC show significantly lower runtime compared
to SEEDS and SLIC. reFH, in contrast, shows higher
runtime compared to FH due to a more complex data
structure.

As expected, implementation details effect runtime, how-
ever, in the presented cases, i.e. for SLIC, SEEDS and
FH, performance is also affected. Nevertheless, it still
needs to be examined whether this holds true for the re-
maining algorithms, as well. Furthermore, the experi-
ments suggest that improving connectivity helps perfor-
mance.

7.5. Robustness

Similar to Neubert and Protzel [44], we investigate the
influence of noise, blur and affine transformations. We
evaluated all algorithms for K =~ 400 on the BSDS500
dataset. In the following we exemplarily discuss salt and
pepper noise and average blurring.

Most algorithms are robust to salt and pepper noise;
blurring, in contrast, tends to reduce performance. We
consider Figureshowing Rec, UE and K for p € {0,0.04,
0.08,0.12,0.16} being the probability of a pixel being salt
or pepper. Note that Figure shows the number of su-
perpixels K before enforcing connectivity as described in
Section As we can deduce, salt and pepper noise only
slightly reduces Rec and UE for most algorithms. Some
algorithms compensate the noise by generating more su-
perpixels such as VC or SEAW while only slightly re-
ducing performance. In contrast, for QS the performance
even increases — a result of the strongly increasing number
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Figure 15: The influence of salt and pepper noise for p €
{0,0.04,0.08,0.12,0.16} being the probability of salt or pepper. Re-
garding Rec and UE, most algorithms are not significantly influence
by salt and pepper noise. Algorithms such as QS and VC compen-
sate the noise by generating additional superpixels. Best viewed
in color.
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Figure 16: The influence of average blur for k € {0,5,9,13,17} being
the filter size. As can be seen, blurring gradually reduces perfor-
mance — which may be explained by vanishing image boundaries. In
addition, for algorithms such as VC and QS, blurring also leads to
fewer superpixels being generated. Best viewed in color.
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of superpixels. Similar results can be obtained for Gaus-
sian additive noise. Turning to Figure[I6]showing Rec, UE
and K for k € {0,5,9,13,17} being the size of a box filter
used for average blurring. As expected, blurring leads to
reduced performance with respect to both Rec and UE.
Furthermore, it leads to a reduced number of generated
superpixels for algorithms such as QS or VC. Similar ob-
servations can be made for motion blur as well as Gaussian
blur.

Overall, most superpixel algorithms are robust to the
considered noise models, while blurring tends to reduce
performance. Although the corresponding experiments are
omitted for brevity, we found that affine transformations
do not influence performance.

7.6. More Superpizels

Up to now, we used AMR, AUE and AUV to summa-
rize experimental results for K € [200, 5200]. However, for
some applications, generating K > 5200 superpixels may
be interesting.

For K =~ 20000, superpixel algorithms can be used to
dramatically reduce the number of primitives for subse-
quent processing steps with negligible loss of information.
We consider Table |2 presenting Rec, UE, EV, runtime in



Rec

0.9998
0.9512
0.9959
0.9997
0.9999
0.9999
0.9988
0.9997
0.9482
0.9999
0.9999
0.9999
0.9989
0.9999
0.9980
0.9999

UE
0.0377
0.0763
0.0353
0.0339
0.0265
0.0297
0.0398
0.0340
0.04621
0.0223
0.0322
0.0316
0.0372
0.0359
0.0411
0.0311

EV
0.9238
0.8834
0.9792
0.9570
0.9587
0.9564
0.9477
0.9729
0.9631
0.9637
0.9362
0.9744
0.9171
0.958
0.9463
0.9793

K t
20078.2(0.0090
15171.5]0.0105
15988.6|7.617
17029.710.1633
24615.8 (4.7014
20000 |0.5935
15058.9(0.0531
18982.510.2267
10487.5(2.3174
17676.910.227
26319.80.0049
21312 |0.1217
25890.5|0.0894
17088.3]0.021
15502.710.6510
17227 |1.1657

W

PF

CIS
SLIC
CRS
ERS
PB
SEEDS
vC
CCs
CwW
ERGC
MSS
preSLIC
A\
ETPS

Table 2: Rec, UE, EV, K and runtime in seconds t for K ~ 20000
on the BSDS500 dataset including all algorithms able to generate
K > 5000 superpixels. The experiments demonstrate that nearly all
superpixel algorithms are able to capture the image content without
loss of information — with Rec ~ 0.99 and UE ~ 0.03 — while reducing
the number of primitives from 481 - 321 = 154401 to K = 20000.

seconds t and K for K ~ 20,000 on the BSDS500 data-
set. We note that some algorithms were not able to gen-
erate K > 5200 superpixels and are, therefore, excluded.
Similarly, we excluded algorithms not offering control over
the number of generated superpixels. We observe that ex-
cept for VC and PF all algorithms achive Rec > 0.99,
UE ~ 0.03, and EV > 0.9. Furthermore, the runtime of
many algorithms is preserved. For example W and CW
still run in below 10ms and the runtime for preSLIC and
SLIC increases only slightly. Obviously, the number of
generated superpixels varies more strongly for large K.
Overall, most algorithms are able to capture the image
content nearly perfectly while reducing 321 x481 = 154401
pixels to K ~ 20000 superpixels.

7.7. Ranking

We conclude the experimental part of this paper with
a ranking with respect to AMR and AUE- reflecting the
objective used for parameter optimization. Unfortunately,
the high number of algorithms as well as the low num-
ber of datasets prohibits using statistical tests to extract
rankings, as done in other benchmarks (e.g. [115, [116]).
Therefore, Table [3| presents average AMR and AUE, av-
erage ranks as well as the corresponding rank matrix. On
each dataset, the algorithms were ranked according to
AMR + AUE where lowest AMR + AUE corresponds to
the best rank, i.e. rank one. The corresponding rank ma-
trix represents the rank distribution (i.e. the frequencies
of the attained ranks) for each algorithm. We find that
the presented average ranks provide a founded overview
of the evaluated algorithms, summarizing many of the ob-
servations discussed before. In the absence of additional
constraints, Table [3| may be used to select suitable super-
pixel algorithms.
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8. Conclusion

In this paper, we presented a large-scale comparison
of superpixel algorithms taking into account visual qual-
ity, ground truth dependent and independent metrics, run-
time, implementation details as well as robustness to noise,
blur and affine transformations. For fairness, we system-
atically optimized parameters while strictly enforcing con-
nectivity. Based on the obtained parameters, we pre-
sented experiments based on five different datasets includ-
ing indoor and outdoor scenes as well as persons. In con-
trast to existing work [43], [39] [44] [46], we considered mini-
mum/maximum as well as the standard deviation in addi-
tion to simple metric averages. We further proposed Aver-
age Miss Rate (AMR), Average Undersegmentation Error
(AUE) and Average Unexplained Variation (AUV) to sum-
marize algorithm performance independent of the number
of generated superpixels. This enabled us to present an
overall ranking of superpixel algorithms aimed to simplify
and guide algorithm selection.

Regarding the mentioned aspects of superpixel algo-
rithms, we made several observations relevant for appli-
cations and future research. Considering visual quality,
we found that the majority of algorithms provides good
boundary adherence; some algorithms are able to capture
even small details. However, better boundary adherence
may influence compactness, regularity and smoothness.
While regularity and smoothness strongly depends on the
individual algorithms, a compactness parameter is ben-
eficial to trade-off boundary adherence for compactness.
Regarding performance, Boundary Recall (Rec) [48], Un-
dersegmentation Error (UE) [42] [39] 44] and Explained
Variation (EV) [49] provide a good overview but are not
sufficient to discriminate algorithms reliably. Therefore,
we used the minimum/maximum as well as the standard
deviation of these metrics to identify stable algorithms, i.e.
algoritms providing monotonically increasing performance
with regard to the number of generated superpixels. Fur-
thermore, we were able to relate poor performance to a
high standard deviation in the number of generated super-
pixels, justifying the need to strictly control connectivity.
Concerning runtime, we identified several algorithms pro-
viding realtime capabilities, i.e. roughly 30fps, and showed
that iterative algorithms allow to reduce runtime while
only gradually reducing performance. Implementation de-
tails are rarely discussed in the literature; on three exam-
ples, we highlighted the advantage of ensuring connectivity
and showed that revisiting implementations may benefit
performance and runtime. We further demonstrated that
generating a higher number of superpixels, e.g. roughly
20000, results in nearly no loss of information while reduc-
ing the high number of pixels to only ~ 20000 superpixels.
Finally, we experimentally argued that superpixel algo-
rithms are robust against noise and affine transformations
before providing a final ranking of the algorithms based
on the proposed metrics Average Miss Rate and Average
Undersegmentation Error.
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2.05 | 6.07 ETPS 1 h 0o o0 o0o0O0OGO0ODSOo0OSOo0OSOoOSoOooooooooo0oo0o0o0o0o0o0o00
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Table 3: Average AMR and AUE, average ranks and rank distribution for each evaluated algorithm. To compute average ranks, the algorithms
were ranked according to AMR + AUE (where lowest AMR + AUE corresponds to the best rank, i.e. 1) on each dataset separately. For all
algorithms (rows), the rank distribution (columns 1 through 28) illustrates the frequency a particular rank was attained over all considered
datasets. We note that we could not evaluate RW, NC and SEAW on the SUNRGBD dataset and DASP and VCCS cannot be evaluated

on the BSDS500, SBD and Fash datasets.

From the ranking in Table [3] we recommend 6 algo-
rithms for use in practice, thereby covering a wide range
of application scenarios: ETPS [84], SEEDS []0], ERS
[47, CRS [78, [[9], ERGC [68] and SLIC [74]. These
algorithms show superior performance regarding Bound-
ary Recall, Undersegmentation Error and Explained Vari-
ation and can be considered stable. Furthermore, they
are iterative (except for ERGC and ERS) and provide
a compactness parameter (except for SEEDS and ERS).
Except for ERS and CRS, they provide runtimes below
100ms — depending on the implementation — and preSLIC
[57], which we see as a variant of SLIC, provides realtime
capabilities. Finally, the algorithms provide control over
the number of generated superpixels (therefore, EAMS,
ranked 5th in Table |3| is not recommended), are able to
generate mostly connected superpixels and exhibit a very
low standard deviation in the number of generated super-
pixels.

Software. The individual implementations, together
with the used benchmark, are made publicly available at
davidstutz.de/projects/superpixel-benchmark/\
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Appendix A. Algorithms

Complementing the information presented in Section
[3l Table [AZ4] gives a complete overview of all algorithms.

Appendix B. Datasets

The BSDS500 dataset is the only dataset providing sev-
eral ground truth segmentations per image. Therefore,
we briefly discuss evaluation on the BSDS500 dataset in
detail. Furthermore, additional example images from all
used datasets are shown in Figure [B.17) and are used for
qualitative results in [Appendix E.1]

Assuming at least two ground truth segmentations per
image, Arbeldez et al. [55] consider two methodologies
of computing average Rec: computing the average Rec
over all ground truth segmentations per image, and sub-
sequently taking the worst average (i.e. the lowest Rec);
or taking the lowest Rec over all ground truth segmenta-
tions per image and averaging these. We follow Arbeldez
et al. and pick the latter approach. The same methodol-
ogy is then applied to UE, EV, ASA and UEfeyi, - In this
sense, we never overestimate performance with respect to
the provided ground truth segmentations.

Appendix C. Benchmark

In the following section we discuss the expressiveness
of the used metrics and details regarding the computation
of AMR, AUE and AUV.

Appendiz C.1. Ezxpressiveness and Correlation

Complementing Section[5.1] we exemplarily discuss the
correlation computed for SEEDS with K ~ 400 on the
BSDS500 dataset as shown in Table[C.Hl We note that the
following observations can be confirmed when considering
different algorithms. Still, SEEDS has the advantage of
showing good overall performance (see the ranking in Sec-
tion and low standard deviation in Rec, UE and EV.
We observe a correlation of —0.47 between Rec and UE
reflecting that SEEDS exhibits high Rec but compara-
bly lower UE on the BSDS500 dataset. This justifies the
choice of using both Rec and UE for quantitative compar-
ison. The correlation of UE and ASA is 1, which we ex-
plained with the respective definitions. More interestingly,
the correlation of UE and UEreyin is —0.7. Therefore, we
decided to discuss results regarding UEy,cyin, in more detail
in[Appendix E} Nevertheless, this may also confirm the ob-
servations by Neubert and Protzel [44] as well as Achanta
et al. [39] that UEpeyin unjustly penalizes large superpix-
els. The high correlation of —0.97 between MDE and Rec
has also been explained using the respective definitions.
Interestingly, the correlation decreases with increased K.
This can, however, be explained by the implementation of
Rec, allowing a fixed tolerance of 0.0025 times the image
diagonal. The correlation of —0.42 between ICV and EV
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Figure B.17: Example images from the used datasets. From left
ro right: BSDS500; SBD; NYUV2; SUNRGBD; and Fash. Black
contours represent ground truth and red rectangles indicate excerpts
used for qualitative comparison in Figures [E.18] and [E19 Best
viewed in color.

was explained by the missing normalization of ICV com-
pared to EV. This observation is confirmed by the decreas-
ing correlation for larger K as, on average, superpixels get
smaller thereby reducing the influence of normalization.

Appendiz C.2. Average Miss Rate, Average Undersegmen-
tation Error and Average Unexplained Vari-
ation

As introduced in Section AMR, AUE and AUV
are intended to summarize algorithm performance inde-
pendent of K. To this end, we compute the area below
the MR = (1 — Rec), UE and UV = (1 — EV) curves
within the interval [Kpin, Kmax] = [200,5200]. As intro-
duced before, the first corresponds to the Boundary Miss
Rate (MR) and the last is referred to as Unexplained Vari-
ation (UV). In particular, we use the trapezoidal rule for
integration. As the algorithms do not necessarily generate
the desired number of superpixels, we additionally consid-
ered the following two cases for special treatment. First, if
an algorithm generates more that Ky,ax superpixels (or less
than K,y ), we interpolate linearly to determine the value
for Kiax (Kmin). Second, if an algorithm consistently gen-
erates less that Kyax (or more than K,,;,,) superpixels, we
take the value lower or equal (greater or equal) and closest
10 Kmax (Kmin). In the second case, a superpixel algorithm
is penalized if it is not able to generate very few (i.e. Kpin)
or very many (i.e. Kyax) superpixels.

Appendix D. Parameter Optimization

We discuss the following two topics concerning param-
eter optimization in more detail: color spaces and con-
trolling the number of superpixels in a consistent manner.
Overall, we find that together with Section[6] the described
parameter optimization procedure ensures fair comparison
as far as possible.

Appendiz D.1. Color Spaces

The used color space inherently influences the perfor-
mance of superpixel algorithms as the majority of super-
pixel algorithms depend on comparing pixels within this
color space. To ensure fair comparison, we included the
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W% (| 1992 234 watershed C/C++ |- v v v V|1 v - —|-
EAMS| [61] 2002 9631 density MatLab/C| - M - v — -2 — — — v
NC| [ 2003 996 graph MatLab/C M- - - -3 v - |- -
FH [6] 2004 4144 graph C/C++ |- 4 -3 - - =
reFH » » C/CH+ |- & - — - —|3 - — |- -
RW | [64) 2004 189 + 1587 graph MatLab/C| - M - - - —|2 v — —|—- —
QS| [62] 2008 376 density MatLab/C| - v M - - - |3 - — —|—- -
PF| [7I] 2009 18 path Java - - - - -2V - —|- -
TP | [42] 2009 559 contour evolution MatLab/C|- M - - - - |4 v — —|—- -
CIS 2010 223 graph C/CH+ v - = = lavv |- -
SLIC | [74][39] 2010 438 + 1843 clustering C/CH+ |- v @I - - -4V V V|- -
vISLIC ” ” C/C++ |- - - - -4 VvV vV V|- -
CRS |78 [79] 2011 14 + 4 energy optimization C/C++ |v VvV M4 v v v
ERS| [47 2011 216 graph C/C++ |- - - = =3V — —|—- —|F~-
PB 2011 36 graph C/C++ g 3 v — -
DASP| [53] 2012 22 clustering C/C++ |- M - - = —|b vV V V|-V
SEEDS 2012 98 energy optimization C/C++ v 4 v 6 v v -~ —
reSEEDS ”? ” C/C++ |- v - Vv - |6 vV VvV V|- —|F~-
TPS|[2 73] 2012 8 + 1 path MatLab/C| - 8 - - — —|4 v — —|- v|F~-
vC 2012 36 clustering C/C++ |- v M - - —-|6 Vv - V|- -
CCS | [82183] 2013 6 + 4 energy optimization C/C++ |- v M - - - |3 vV v V|- - o
VCCS 76] 2013 87 clustering C/C++ |- 4 - - -4 - = V|V —|F~-
CW| [57] 2014 11 watershed C/C++ |- - - = |2V - V|- —|F~-
ERGC|[68][69] 2014 2+1 contour evolution C/C++ |- v M — - |3 vV — V|- —| =
MSS 2014 4 watershed C/C++ |- - - - |5 vV - —|—- -
preSLIC| [57] 2014 11 clustering C/C++ |- v I - - -4 v vV V|- —|F~-
WP | 59, [60] 2014 548 watershed Python |- M - - - -2 vV — V|- —|F~-
ETPS| [84 2015 6 energy optimization C/C4++ |- M - - - —|5 vV v V|- — >
LSC| [77] 2015 2 clustering C/CH+ |- v I - - -4V V V|- -
POISE| [67] 2015 3 graph MatLab/C|- M - - - - |5 vV — —|—- V
SEAW | [52] 2015 0 wavelet MatLab/C| - M - — — —|3 — — —|— —|f=

Table A.4: List of evaluated superpixel algorithms. First of all we present the used acronym (in parts consistent with [39] and [44]), the
corresponding publication, the year of publication and the number of Google Scholar citations as of October 13, 2016. We present a coarse
categorization which is discussed in Section@ We additionally present implementation details such as the programming language, supported
color spaces and provided parameters. The color space used for evaluation is marked by a square. Best viewed in color.

color space in parameter optimization. In particular, we
ensured that all algorithms support RGB color space and
considered different color spaces only if reported in the
corresponding publications or supported by the respective
implementation. While some algorithms may benefit from
different color spaces not mentioned in the correspond-
ing publications, we decided to not consider additional
color spaces for simplicity and to avoid additional overhead
during parameter optimization. Parameter optimization
yielded the color spaces highlighted in Table [A74]

Appendiz D.2. Controlling the Number of Generated Su-
perpizels

Some implementations, for example ERS and POISE,
control the number of superpixels directly — for example by
stopping the merging of pixels as soon as the desired num-
ber of superpixels is met. In contrast, clustering-based
algorithms (except for DASP), contour evolution algo-
rithms, watershed-based algorithms as well as path-based
algorithms utilize a regular grid to initialize superpixels.
Some algorithms allow to adapt the grid in both horizon-
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tal and vertical direction, while others require a Cartesian
grid. We expected this difference to be reflected in the
experimental results, however, this is not the case. We
standardized initialization in both cases.

Appendix E. Experiments

We complement Section [7] with additional experimen-
tal results. In particular, we provide additional qualitative
results to better judge the visual quality of individual su-
perpixel algorithms. Furthermore, we explicitly present
ASA and UEpeyin on the BSDS500 and NYUV2 datasets
as well as Rec, UE and EV on the SBD, SUNRGBD and
Fash datasets.

Appendiz E.1. Qualitative

We briefly discuss visual quality on additional examples

provided in Figures and Additionally, Figure
[E-20] shows the influence of the compactness parameter on

superpixel algorithms not discussed in Section [7.1]
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Figure E.18: Qualitative results on the BSDS500, SBD and Fash datasets; excerpts from the images in Figure are shown for K ~ 1200, in
the upper left corner, and K ~ 3600, in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. We observe
that with higher K both boundary adherence and compactness increases, even for algorithms not offering a compactness parameter. Best
viewed in color.
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Figure E.19: Qualitative results on the NYUV2 and SUNRGBD datasets; excerpts from the images in Figureare shown for K =~ 1200, in the
upper left corner, and K = 3600, in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. NC, RW and
SEAW could not be evaluated on the SUNRGBD dataset due to exhaustive memory usage of the corresponding MatLab implementations.
Therefore, results on the NYUV2 dataset are shown. Best viewed in color.
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CRS vISLIC SLIC

reSEEDS

LSC ERGC WP preSLIC CW CCS

ETPS

Figure E.20: The influence of a low, on the left, and high, on the
right, compactness parameter demonstrated on the caterpillar image
from the BSDS500 dataset for K = 400. Superpixel boundaries are
depicted in black; best viewed in color. For all shown algorithms,
the compactness parameter allows to gradually trade boundary ad-
herence for compactness. Best viewed in color.
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K =400|Rec |UE |UErevin |ASA|CO |EV |MDE|ICV
Rec 1 -0.47(-0.07 0.46 |-0.08(0.11 [-0.97 [-0.04
UE -0.47|1 0.11 -1 0.07 [-0.19]0.47 [0.25
UEvrevin [-0.07(0.11 |1 -0.1 [-0.01{-0.03]0.09 |0.05
ASA 0.46 |-1 -0.1 1 -0.07]0.18 |-0.47 |-0.24
CcO -0.08(0.07 |-0.01 -0.07|1 0.34 |0.06 |-0.05
EV 0.11 |-0.19(-0.03 0.18 |10.34 |1 -0.16 |-0.42
MDE -0.97(0.47 |0.09 -0.47(0.06 |-0.16|1 0.06
ICV -0.04(0.25 |0.05 -0.24(-0.05(-0.42|0.06 |1
CD 0.05 |0 0 0 -0.86(-0.45(-0.03 |0.21
K =400|Rec |UE |UEpevin |[ASA|CO |EV |MDE|ICV
Rec 1 -0.4 |-0.06 0.4 |-0.11{0.16 [-0.92 [-0.09
UE -0.4 |1 0.14 -1 -0.01]-0.22]0.45 |0.27
UEvrevin [-0.06(0.14 |1 -0.14(-0.07{-0.07|0.08 |0.09
ASA 0.4 |-1 -0.14 1 0.01 |0.21 |-0.45 |-0.27
CO -0.11(-0.01 |-0.07 0.01 |1 0.24 |0.12 |-0.15
EV 0.16 |-0.22(-0.07 0.21 |0.24 |1 -0.3 |-0.52
MDE -0.92(0.45 |0.08 -0.45(0.12 |-0.3 |1 0.15
ICV -0.09(0.27 |0.09 -0.27(-0.15(-0.52|0.15 |1
CD 0.13 |0 0.03 -0.01(-0.91{-0.31]-0.13 |0.15
K =400|Rec |UE |UEpevin|ASA |CO |EV |MDE|ICV
Rec 1 -0.26 [-0.05 0.28 [-0.08(0.12 |-0.66 |-0.1
UE -0.26 |1 0.16 -1 0.02 |-0.2 |0.41 |0.28
UELevin [-0.05(0.16 |1 -0.16|-0.02(-0.07|0.1 0.07
ASA 0.28 |-1 -0.16 1 -0.02(0.2 |-0.41 |[-0.28
CO -0.0810.02 |-0.02 -0.02 |1 0.19 |0.13 |-0.17
EV 0.12 |-0.2 [-0.07 0.2 (0.19 |1 -0.36 |-0.61
MDE -0.66(0.41 |0.1 -0.41]0.13 |-0.36|1 0.22
Icv -0.1 |0.28 |0.07 -0.28(-0.17(-0.6110.22 |1

Table C.5: Pearson correlation coefficient of all discussed metrics
exemplarily shown for SEEDS with K ~ 400, K ~ 1200 and K =
3600.

Most algorithms exhibit good boundary adherence, es-
pecially for large K. In contrast to the discussion in Sec-
tion focussing on qualitative results with K = 400
and K ~ 1200, Figures and also show results
for K ~ 3600. We observe that with rising K, most al-
gorithms exhibit better boundary adherence. Exceptions
are, again, easily identified: FH, QS, CIS, PF, PB, TPS
and SEAW. Still, due to higher K, the effect of missed im-
age boundaries is not as serious as with less superpixels.
Overall, the remaining algorithms show good boundary
adherence, especially for high K.

Compactness increases with higher K; still, a compact-
ness parameter is beneficial. While for higher K, super-
pixels tend to be more compact in general, the influence
of parameter optimization with respect to Rec and UE is
still visible — also for algorithms providing a compactness
parameter. For example, ERGC or ETPS exhibit more
irregular superpixels compared to SLIC or CCS. Com-
plementing this discussion, Figure shows the influ-
ence of the compactness parameter for the algorithms with
compactness parameter not discussed in detail in Section
[7d] It can be seen, that a compactness parameter allows
to gradually trade boundary adherence for compactness
in all of the presented cases. However, higher K also in-
duces higher compactness for algorithms not providing a
compactness parameter such as CIS, RW, W or MSS to



name only a few examples. Overall, compactness benefits
from higher K.

Overall, higher K induces both better boundary ad-
herence and higher compactness independent of whether a
compactness parameter is involved.

Appendiz E.2. Quantitative

The following experiments complement the discussion
in Section in two regards. First, we present additional
experiments considering both ASA and UEpeyin on the
BSDS500 and NYUV?2 datasets. Then, we consider Rec,
UE and EV in more details for the remaining datasets,
i.e. the SBD, SUNRGBD and Fash datasets. We begin
by discussing ASA and UEjein, , also in regard to the
observations made in Sections [5.1] and

As observed on the BSDS500 and NYUV2 datasets in
Section [7.2] Rec and UE can be used to roughly asses su-
perpixel algorithms based on ground truth. However, for
large K, these metrics are not necessarily sufficient to dis-
criminate between the superpixel algorithms. Considering
Figure[E.21] in particular with regard to Rec, we can iden-
tify algorithms showing above-average performance such
as ETPS and SEEDS. These algorithms perform well on
all three datasets. Similarly, PF, QS, SEAW and TPS
perform poorly on all three datasets. Regarding UE, in
contrast, top-performer across all three algorithms are not
identified as easily. For example, POISE demonstrates
low UE on the SBD and Fash datasets, while performing
poorly on the SUNRGBD dataset. Similarly, ERS shows
excellent performance on the SUNRGBD dataset, while
being outperformed by POISE as well as ETPS on the
SBD and Fash datasets. Overall, Rec and UE do not nec-
essarily give a consistent view on the performance of the
superpixel algorithms across datasets. This may also be
explained by the ground truth quality as already discussed
in Section [T.2l

The above observations also justify the use of EV to
judge superpixel algorithms independent of ground truth.
Considering Figure[E.21} in particular, with regard to EV,
we can observe a more consistent view across the data-
sets. Both, top-performing algorithms such as ETPS and
SEEDS, as well as poorly performing algorithms such as
PF, PB or TPS can easily be identified. In between these
two extremes, superpixel algorithms are easier to discrimi-
nate compared to Rec and UE. Furthermore, some super-
pixel algorithms such as QS, FH or CIS are performing
better compared to Rec or UE. This confirms the obser-
vations that ground truth independent assessment is ben-
eficial but cannot replace Rec or UE.

We find that ASA closely mimicks the behavior of (1 —
UE) while UEj,cyin may complement our discussion with an
additional viewpoint which is, however, hard to interpret.
We consider Figure showing UE, ASA and UEreyin
for both the BSDS500 and NYUV2 datasets. Focussing
on UE and ASA, we easily see that ASA nearly reflects
(1 — UE) while being a small constant off. In particu-
lar, all algorithms exhibit nearly the same behavior, while
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absolutely the algorithms show higher ASA compared to
(1 —UE). This demonstrates that ASA does not give new
insights with respect to the quantitative comparison of
superpixel algorithms. In contrast, the algorithms show
different behavior considering UEpeyin, . This is mainly
due to the unconstrained range of UEeyin (compared to
UE € [0, 1]). In particular, for algorithms such as EAMS
and FH, UEy,.i, reflects the behavior of max UE as shown
in Figure The remaining algorithms lie more closely
together. Still, algorithms such as ERS, SEEDS or PB
show better UE[cyin than UE (seen relatively to the re-
maining algorithms). In the case of EAMS and FH, high
UELevin may indeed be explained by the considerations
of Neubert and Protzel [44] arguing that UEpeyin unjustly
penalizes large superpixels slightly overlapping with multi-
ple ground truth segments. For the remaining algorithms,
the same argument can only be applied in smaller scale
as these algorithms usually do not generate large super-
pixels. In this line of throught, the excellent performance
of ERS may be explained by the employed regularizer for
enforcing uniform superpixel size. Overall, ASA does not
contribute to an insightful discussion, while UEy,qyi, may
be considered in addition to UE to complete the picture
of algorithm performance.

Appendiz E.3. Runtime

We briefly discuss runtime on the SBD, SUNRGBD
and Fash datasets allowing to get more insights on how
the algorithms scale with respect to image size and the
number of generated superpixels.

We find that the runtime of most algorithms scales
roughly linear in the input size, while the number of gen-
erated superpixels has little influence. We first remember
that the average image size of the SBD, SUNRGBD and
Fash datasets is: 314 x 242 = 75988, 660 x 488 = 322080
and 400 x 600 = 240000. For K ~ 400, W runs in roughly
1.9ms and 7.9ms on the SBD and SUNRGBD datasets,
respectively. As the input size for the SUNRGBD dataset
is roughly 4.24 times larger compared to the SBD data-
set, this results in roughly linear scaling of runtime with
respect to the input size. Similar reasoning can be ap-
plied to most of the remaining algorithms, especially fast
algorithms such as CW, PF, preSLIC, MSS or SLIC.
Except for RW, QS and SEAW we also notice that the
number of generated superpixels does not influence run-
time significantly. Overall, the results confirm the claim
of many authors that algorithms scale linear in the input
size, while the number of generated superpixels has little
influence.
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Figure E.21: Rec, UE and EV on the SBD, SUNRGBD and Fash datasets. Similar to the results presented for the BSDS500 and NYUV2
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datasets (compare Figures@and , Rec and UE give a roguh overview of algorithm performance with respect to ground truth. Concerning

Rec, we observe similar performance across the three datasets, while algorithms may show different behavior with respect to UE. Similarly,
EV gives a ground truth independent overview of algorithm performance where algorithms show similar performance across datasets. Best

viewed in color.
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Figure E.22: Runtime in seconds ¢ on the SBD, SUNRGBD and Fash datasets. The results allow to get an impression of how runtime of
individual algorithms scales with the size of the image. In particular, we deduce that most algorithm’s runtime scales linear in the input size,
while the number of generated superpixels does have little influence. Best viewed in color.
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Figure E.23: UE, ASA and UELcyin on the BSDS500 and NYUV2 datasets. We find that ASA does not provide new insights compared to
UE, as it closely reflects (1 — UE) except for a minor absolute offset. UEy,eyin , in contrast, provides a different point view compared to UE.
However, UE[,evin is harder to interpret and strongly varies across datasets. Best viewed in color.
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