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Haze Visibility Enhancement: A Survey and
Quantitative Benchmarking

Yu Li, Shaodi You, Michael S. Brown, and Robby T. Tan

Abstract—This paper provides a comprehensive survey of
methods dealing with visibility enhancement of images taken
in hazy or foggy scenes. The survey begins with discussing
the optical models of atmospheric scattering media and image
formation. This is followed by a survey of existing methods,
which are grouped to multiple image methods, polarizing filters
based methods, methods with known depth, and single-image
methods. We also provide a benchmark of a number of well
known single-image methods, based on a recent dataset provided
by Fattal [1] and our newly generated scattering media dataset
that contains ground truth images for quantitative evaluation.
To our knowledge, this is the first benchmark using numerical
metrics to evaluate dehazing techniques. This benchmark allows
us to objectively compare the results of existing methods and to
better identify the strengths and limitations of each method.

Index Terms—Scattering media, visibility enhancement, dehaz-
ing, defogging

I. INTRODUCTION

FOG and haze are two of the most common real world phe-
nomena caused by atmospheric particles. Images captured

in foggy and hazy scenes suffer from noticeable degradation of
contrast and visibility (Figure 1). Many computer vision and
image processing algorithms suffer from the visibility degra-
dation, since most of them assume clear scenes under good
weather. Addressing this problem via so-called “dehazing” or
“defogging” algorithms is therefore of practical importance.

The degradation in hazy and foggy images can be physically
attributed to floating particles in the atmosphere that absorb
and scatter light in the environment [2]. This scattering and
absorption reduces the direct transmission from the scene to
the camera and adds another layer of the surrounding scattered
light, known as airlight [3]. The attenuated direct transmission
causes the intensity from the scene to be weaker, while the
airlight causes the appearance of the scene to be washed out.

In the past two decades, there has been significant progress
in methods that use images taken in hazy scenes. Early work
by Cozman and Krotkov [4] and Nayar and Narasimhan [5],
[6] use atmospheric cues to estimate depth. Since then, a
number of methods have been introduced to explicitly enhance
visibility, which can be grouped into four categories: multi-
image based methods (e.g. [7], [8], [9]), polarizing filter based
methods (e.g. [10], [11]), methods using known depth or
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Fig. 1. Several examples of images showing the visual phenomena of
atmospheric particles. Most of them exhibit significant visibility degradation.

geometrical information (e.g. [12], [13], [14]) and single image
methods (e.g. [15], [16], [1], [17], [18]).

The first contribution of this paper is to provide a detailed
survey on methods focusing on scattering-media visibility
enhancement. Our survey provides a holistic view on most
of the existing methods. Starting with a brief introduction of
the atmospheric scattering optics in Section II, in Section III
we provide a chronological survey of visibility enhancement
methods in atmospheric scattering media. Particular emphasize
is placed on the last category of single-image methods as
they offer the most flexibility by not requiring additional
information.

As part of this survey, we also provide a quantitative bench-
marking of a number of the single-image methods. Obtaining
quantitative results is challenging as it is difficult to capture
ground truth examples for where the same scene has been
imaged with and without scattering particles. The work by
Fattal [1] synthesized a dataset of by using natural images
which associate depth maps that can be used to simulate
the spatially varying attenuating in haze and fog images. We
have generated an additional dataset using a physically-based
rendering to simulate environments with scattered particles.
Section IV provides the results of the different methods using
both on Fattal’s dataset [1] and also our newly generated
benchmark dataset.

Our paper is concluded in Section V with a discussion on
the current state of image dehazing methods and the findings
from the benchmark results. In particular, we discuss current
limitations with existing methods and possible avenues for
research for future methods.

II. ATMOSPHERIC SCATTERING MODEL

Haze is a common atmospheric phenomenon resulting from
air pollution such as dust, smoke and other dry particles that
obscure the clarity of the sky. Sources for haze particles
include farming, traffic, industry, and wildfire. As listed in
Table I, the particle size varies from 10−2 − 1µm and the
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TABLE I
WEATHER CONDITION AND THE PARTICLE TYPE, SIZE AND DENSITY.

Weather Particle type 
Particle radius 

(𝝁𝒎) 
Density (𝒄𝒎−𝟑) 

Clean air Molecule 10−4 1019 

Haze Aerosol 10−2 − 1 10 − 103 

Fog Water droplets 1 − 10 10 − 100 

We follow the definition of Hidy [19].

Incident light

Intensity distribution 

of scattered light

(a) Single particle scattering

(b) Unite volume scattering
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Fig. 2. (a) Single particle scattering; (b) Unit volume scattering and (c) Light
attenuation over distance raised by scattering.

density varies from 10 − 103 per cm3. The particles cause
visibility degradation and also color shift. Depending on the
view-angle with respect to the sun and the types of the
particles, haze may appear brownish or yellowish [20].

Unlike haze, fog (or mist) is caused by water droplets and/or
ice crystals suspended in the air close to the earth surface [21].
As listed in Table I, the particle size varies from 1 − 10µm
and the density varies from 10− 100 per cm3. Generally, fog
particles do not have their own color, and thus their color
appearance depends mostly on the surrounding light colors.

A. Optical Modeling

As illustrated in Figure 2(a), when a ray of light hits a
particle, the particle will scatter the light to all directions with
magnitudes depending on particle size, shape and incident
light wavelengths. Since the directions of scattered rays are
moving away from the particle, they are known as outbound
rays or out-scattering rays. Accordingly, they are rays from all
directions that hit a particle, and this is known as inbound rays
or in-scattering rays. As well exploited by Minnaert [22], for a
given particle type and incident light wavelength, the outbound
light intensity can be modeled as a function between the angle
of inbound and outbound light. In this paper, we are more
interested in the statistical properties over a large number of
particles. Thus, considering the particle density (Table I), and
that each particle can be considered as an independent particle,

we can have the statistical relationship between inbound light
intensity E and outbound light intensity I [3]):

I(θ, λ) = βp,x(θ, λ)E(λ), (1)

where βp,x(θ, λ) is called the angular scattering coefficient.
The subindices of β, with p indicating its dependency on
particle type and density, and x indicates the dependency
spatially. By integrating Eq. (1) over all spherical directions,
we obtain the total scattering coefficient:

I(λ) = βp,x(θ)E(λ). (2)

Direct Transmission If we assume a particle medium consists
of a small chunk with thickness dx, and a parallel light ray
passes through every sheet, as illustrated in Figure 2(c) , then
the change in irradiance at location x is expressed as:

dE(x, λ)

E(x, λ)
= −βp,x(λ)dx. (3)

Integrating this equation between x = 0 and x = d gives us:
E(d, λ) = E0(λ)e−β(λ)d , where E0 is the irradiance. The
formula is known as the Beer-Lambert law.

For non-parallel rays of light, which occur more commonly
for outdoor light, factoring in the inverse square law the
equation becomes:

E(d, λ) =
I0(λ)e−β(λ)d

d2
(4)

where I0 is the intensity of the source, assumed to be a
point [3]. Moreover, as mentioned in [6], for overcast sky
illumination, the last equation can be written as:

E(d, λ) =
gL∞(λ)ρ(λ)e−β(λ)d

d2
, (5)

where L∞ is the light intensity at the horizon, ρ is the re-
flectance of a scene point, and g is the camera gain (assuming
the light has been captured by a camera).

Airlight As illustrated in Fig. 3.a, besides light from a source
(or reflected by objects) that pass through the medium and
are transmitted towards the camera, there is environmental
illumination in the atmosphere scattered by the same particles
also towards the camera. The environmental illumination can
be generated by direct sunlight, diffuse skylight, light reflected
from the ground, and so on. This type of scattered light
captured in the observer’s cone of vision is called airlight [3].

Denote the light source as I(x, λ), follow the unit volume
scattering equation (Eq. (2) and Eq. (3)), we have:

dI(x, λ) = dV kβp,x(λ), (6)

where dV = dωx2 is a unit volume in the perspective cone.
kβp,x(λ) is the total scattering coefficient. k is a constant
representing the environmental illumination along the camera’s
line of sight. As with the mechanism for direct transmission
in Eq.(4), this light source dI passes through a small chunk
of particles, and the outgoing light is expressed as:

dE(x, λ) =
dI(x, λ)e−β(λ)x

x2
, (7)



3

d𝜔

d𝑥

𝑑

𝑥

Air light
Scene reflection

(a) Imagery model

𝑅(𝒙, 𝜆)

Captured image 𝐼(𝒙, 𝜆)

(b) Formula of illumination components

𝐼 𝒙, 𝜆 = 𝐷 𝒙, 𝜆 + 𝐴 𝒙, 𝜆

= 𝑡 𝒙, 𝜆 𝑅 𝒙, 𝜆 + 𝐿∞ 1 − 𝑡 𝒙, 𝜆

= 𝑒−𝛽 𝜆 𝑑(𝒙) 𝑅 𝒙, 𝜆 + 𝐿∞ 1 − 𝑒−𝛽 𝜆 𝑑(𝒙)

Captured image Clear sceneTransmission map Air light

Fig. 3. Visibility degradation problem in computer vision and computational
imaging. (a) Imagery model: with the existence of atmospheric scattering
media, light captured by a perspective camera have two components: one is
the scene reflection attenuated by the scattering media (direct transmission),
the other is the air-light (sunlight, diffused skylight and diffused ground
light) scattered by media. (b) Formula and visual example of illumination
components. Images are from [23].

where x2 is due to the inverse square law of non-parallel rays
of light. Therefore, the total radiance at distance d from the
camera can be obtained by integrating dL = dE

dω :

L(d, λ) = L∞
(

1− e−β(λ)d
)
, (8)

where L∞ = σ, since when d = ∞, namely for an object at
the horizon, then L(d =∞, λ) = σ.

Image Formation As illustrated in Fig. 3.b, By combining the
direct transmission (Eq.(5)) and airlight (Eq.(8)) and assuming
that the incoming light intensity to a camera is linearly
proportional to the camera’s pixel values, the scattered light
in the atmosphere captured by the camera can be modeled as:

I(x) = Lρ(x)e−βd(x) + L∞(1− e−βd(x)). (9)

The first term is the direct transmission, and the second term
is the airlight. The term I is the image intensity as an RGB
color vector 1, while x is the 2D image spatial location.
The term L∞ is the atmospheric light that is assumed to be
globally constant and independent from location x. The term
L represents the atmospheric light, the camera gain, and the
squared distance, L = L∞g/d2. The term ρ is the reflectance

1That is to say we have three sets of equations for wavelength λ at red,
green and blue channel separately.

of an object, β is the atmospheric attenuation coefficient, and
d is the distance between an object and the camera. The term
β is assumed to independent from wavelengths, which is a
common assumption as we are dealing with particles that the
size is larger compared with the wavelength of light, such
as, fog, haze, aerosol, etc. [3]. Moreover, β is independent
from the spatial image location for homogeneous distribution
of atmospheric particles.

In this paper, we denote scene reflection as:

R(x) = Lρ(x), (10)

which the estimation of its values is the ultimate goal of
dehazing or visibility enhancement, since they indicate the
scene that are not affected by medium particles. The term
A(x) represents the airlight, thus

A(x) = L∞(1− e−βd(x)). (11)

Function t(x) represents the transmission, as t(x) = e−βd(x).
Hence, the scattering model in Eq.(9) can be written as:

I(x) = D(x) + A(x), (12)

where D(x) = R(x)t(x), the direct transmission.
The above scattering model assumes the images are three

channel RGB images. For gray images, we can write a similar
formula by transforming the color vectors to scalar variables:

I(x) = D(x) +A(x), (13)

where D(x) = t(x)R(x), with R(x) = Lρ(x), and, A(x) =
L∞(1− e−βd(x)).

III. SURVEY

In this section, we survey a number of existing researches
on vision through atmospheric media. Specifically, methods
on depth estimation and/or visibility enhancement. As listed
in Table II, we categorize these methods into five categories
according to there input and output: (1) depth estimation,
(2) multi-images based dehazing, (3) polarizing filters based
dehazing, (4) dehazing using known depth, and (5) single
image dehazing. For each category, the discussion is done
chronologically to show the development of the techniques
over time. Since single-image enhancement methods have
received the greatest attention recently in the computer vision
community, they make up the largest portion of this survey.

A. Early Work in Depth Estimation

Cozman-Krotkov 1997 [4] is one of the earliest methods
to analyze image of scenes captured in scattering media. The
goal in this work is to extract scene depth exploiting the
presence of the atmospheric scattering effects. Based on the
scattering model in Eq.(9), this approach first obtains the
atmospheric light, L∞, by averaging the sky intensity regions.
Then, assuming the reflection of the objects in the scene, R,
is provided, the transmission can be obtained using:

e−βd(x) =
I(x)− L∞
R(x)− L∞

. (14)
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TABLE II
AN OVERVIEW OF EXISTING WORKS ON VISION THROUGH ATMOSPHERIC SCATTERING MEDIA.

Method Category Known Parameters (Input) Estimating (Output) Key idea

Cozman – Krotkov 1997 Depth estimation
Single grayscale image I(x)

Scene reflection R(x)

Transmission t(x);

depth d(x);
Direct solving

Nayar – Narasimham 1999

Method 1
Depth estimation

Two grayscale images I(x) with different 

scattering coefficients 𝛽1, 𝛽2
t(x),  d(x) Comparing different 𝛽

Nayar – Narasimham 1999

Method 2
Depth estimation

Single grayscale image I(x)

Atmospheric light 𝐿∞

t(x),  d(x)
Direct solving

Nayar – Narasimham 1999

Method 3
Depth estimation Single RGB image I(x)

t(x),  d(x) ,

Air light: A(x),
Dichromatic model

Nayar – Narasimham 2000 Multi-images
Two RGB images I(x)

with different weather conditions 𝛽1, 𝛽2
t(x),  d(x) Iso – depth: Comparing different 𝛽; colour decomposition

Nayar – Narasimham 2003a Multi-images
Two grayscale or RGB images I(x) with 

different weather conditions 𝛽1, 𝛽2

t(x), d(x), A(x) and 

Scene reflection R(x)
Iso – depth

Caraffa-Tarel 2012 Multi-images Stereo Cameras d(x), R(x)
Depth from scattering; Depth from stereo; 

Spatial smoothness

Li et al. 2015 Multi-images Monocular video t(x),  d(x), R(x)
Depth from monocular video; 

Depth from scattering; Photoconsistency

Schechner et al. 2001 Polarizing Filter

Two images with different polarization 

under same weather condition

Image with sky region presented

A(x), t(x), d(x), R(x)
Assuming direct transmission D(x) has insignificant 

polarization 

Schartz et al. 2006 Polarizing Filter
Two images with different polarization 

under same weather condition

Image with sky region presented

A(x), t(x), d(x), R(x)
Direct transmission D(x) has insignificant polarization 

A(x) and D (x) are statistically independent

Oakley – Satherley 1998 Known Depth
Single grayscale image I(x)

Depth d(x)

Atmospheric light: 𝑳∞
Scattering coefficient: 𝛽

R(x)

Mean square optimization

Colour of the scene is uniform

Nayar – Narasimham 2003b

Method 1
Known Depth

Single RGB image I(x)

User specified less hazed and more 

hazed regions

R(x) Dichromatic model

Nayar – Narasimham 2003b

Method 2

Known Depth
Single RGB image I(x)

User specified vanishing point, min 

depth and max depth

R(x) Dichromatic model

Hautiere et al. 2007 Known Depth
Single image I(x)

Scene of flat ground
𝑳∞, R(x) Depth from calibrated camera

Kopf et al. 2008 Known Depth
Single image I(x)

Known 3D model
t(x), R(x)

Transmission estimation using averaged texture

from same depth

Tan 2008 Single image Single RGB image I(x) 𝑳∞, t(x), R(x)

Brightest value assumption for Atmospheric light 𝐿∞
estimation; Maximal contrast assumption for Scene reflection 

R(x) estimation

Fattal 2008
Single image

Single RGB image I(x) 𝑳∞, t(x), R(x)
Shading and transmission are locally and statistically 

uncorrelated

He et al. 2009 Single image Single RGB image I(x) 𝑳∞, t(x), R(x)
Dark channel: outdoor objects in clear weather have at least 

one colour channel that is significantly dark

Tarel – Hautiere 2009 Single image Single RGB image I(x) 𝑳∞, t(x), R(x)
Maximal contrast assumption;

Normalized air light is upper-bounded

Kratz – Nishino 2009 Single image Single RGB image I(x) t(x), R(x)
Scene reflection R(x) and Air light A(x) are statistically 

independent; Layer separation

Ancuti-Ancuti 2010 Single image Single RGB image I(x) A(x), R(x)
Gray-world colour constancy;

Global contrast enhancement

Meng et al. 2013 Single image Single RGB image I(x) 𝑳∞, t (x), R(x) Dark channel for transmission t(x)

Tang et al. 2014 Single image Single RGB image I(x) t (x), R(x) Machine learning of transmission t(x) 

Fattal 2014 Single image Single RGB image I(x) 𝑳∞, t (x), R(x)
Colour line: small image patch has uniform colour and depth 

but different shading

Cai et al. 2016 Single image Single RGB image I(x) t (x), R(x) Learning of t(x) in CNN framework

Berman et al. 2016 Single image Single RGB image I(x) t (x),  R(x) Non-local haze line; finite colour approximation
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However, the absolute depth, d(x), will still be unknown since
the value of β is unknown. To resolve this, we need two pixels
that have the same value of β to obtain the relative depth, such
that:

d(xi)

d(xj)
=

log
(
I(xi)−L∞
R(xi)−L∞

)

log
(
I(xj)−L∞
R(xj)−L∞

) , (15)

where xi 6= xj . If we have a reference point in the input image
whose depth is known, then we can obtain the absolute depth
of every pixel in the image. Note that, R is given from an
image of exactly the same scene taken in a clear day, though
of course, it is a considerably rough approximation; since even
in a clear day, an outdoor image is always affected by medium
particles, particularly for faraway objects.

Nayar-Narasimhan 1999 [5] and later [6] propose three d-
ifferent algorithms to estimate depth from hazy scenes. Unlike
[4], however, this work does not assume that the reflection, R,
of the scene without the effects of haze is provided. The first
of the three algorithms employs only the direct transmission to
estimate the relative depths of light sources from two images
taken under different scattering coefficients at nighttime. The
idea is to apply the logarithm to the ratio of the pixel intensities
of the two input images (where the airlight is assumed to be
ignorable at nighttime). Given gray images of nighttime where
only the light sources are visible, we compute:

K(x) =
I1(x)

I2(x)
=
D1(x)

D2(x)
= e−(β1−β2)d(x), (16)

where index 1, 2 indicates the first and second images. The
term D is the direct transmission (Eq.(13)). The relative depth
from two pairs of pixels can be obtained by:

logK(xi)

logK(xj)
=
d(xj)

d(xj)
. (17)

This relative depth is not for the entire image, but only for the
light source regions.

The second algorithm is to estimate the absolute depth from
a single airlight image. It assumes that the atmospheric light,
L∞, and achromatic airlight, A(x), are given:

log

(
L∞ −A(x)

L∞

)
= −βd(x). (18)

The problem with this algorithm is with regards obtaining the
airlight, which is discussed in the third algorithm.

The third algorithm treats the problem of depth estimation
as a color decomposition of the scattering model (Eq.(9)). The
method decomposes the input images into the chromaticity of
the direct attenuation and the chromaticity of the airlight; the
latter is identical to the chromaticity of the atmospheric light.
Chromaticity is generally defined as a normalized color, where
R/(R + G + B), and G/(R + G + B). This is a unit color
vector and can be used to convert the model of Eq.(9) into a
chromaticity based formulation:

I(x) = p(x)D̂(x) + q(x)Â(x), (19)

where D̂ and Â are the chromaticity values of the direct
transmission and the airlight. The terms p and q are the mag-
nitude of the direct transmission and the airlight, respectively.

The paper calls the equation the dichromatic scattering model,
where the word dichromatic is borrowed from [24] due to the
similarity of the models.

In the RGB space, the two chromaticity vectors (the direct
transmission chromaticity and airlight chromaticity) will create
a plane. The same idea had been discussed in [24][25] for the
dichromatic model of specular highlights. Accordingly, given
a pixel and the two chromaticity values, we can immediately
calculate the magnitude of the airlight, which consequently
gives us the absolute depth map by employing Eq.(18). In
this algorithm, the chromaticity of the direct transmission is
assumed to be given from a clear day image of exactly the
same scene, and the airlight chromaticity is computed from a
known atmospheric light.

B. Multiple Images

Narasimhan-Nayar 2000 [7] extends the analysis of the
dichromatic scattering model of [5] in Eq.(19) by using
multiple images of the same scene taken in different haze
density. The method works by supposing there are two images
taken from the same scene, which share the same color of
atmospheric light, but different colors of direct transmission.
From this, two planes can be formed in the RGB space that
intersect to each other. In their work [7] utilizes the intersec-
tion to estimate the atmospheric light chromaticity, Â, which is
similar to Tominaga and Wandell’s method [26] for estimating
a light color from specular reflection. The assumption that
the images of the same scene have different colors of direct
transmission, however, might produce inaccurate estimation
since, in many cases, the colors of the direct transmission of
the same scene are similar.

The method then introduces the concept of iso-depth, which
is the ratio of the direct transmission magnitudes under two d-
ifferent weather conditions. Referring to Eq.(19), and applying
it to two images, we have:

p2(x)

p1(x)
=
L∞2

L∞1
e−(β2−β1)d(x), (20)

where p is the magnitude of the direct transmission. From this
equation, we can infer that if two pairs of pixels have the same
ratio, then they must have the same depth: p2(xi)

p1(xi)
=

p2(xj)
p1(xj)

.
To calculate these ratios, the method provides a solution by
utilizing the analysis of the planes formed in the RGB space
by the scattering dichromatic model in Eq.(19).

Having obtained the ratios for all pixels, the method pro-
ceeds with the estimation of the scene structure, which is
calculated by:

(β2 − β1)d(x) = log

(
L∞2

L∞1

)
− log

(
p2(x)

p1(x)

)
. (21)

To be able to estimate the depth, the last equation requires the
knowledge of the values of L∞1 and L∞2, which are obtained
by solving the following linear equation:

c(x) = L∞2 −
p2(x)

p1(x)
L∞1, (22)

where c is the magnitude of a vector indicating the distance
between the origin of vector I1 to the origin of vector I2 in
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the direction of the airlight chromaticity in RGB space. While,
p2(x)
p1(x) is the ratio, which had been computed.

For the true scene color restoration, employing the estimated
atmospheric light, the method computes the airlight magnitude
of Eq.(19) using:

q(xi) = L∞
(

1− e−βd(xi)
)
, (23)

where:

βd(xi) = βd(xj)

(
d(xi)

d(xj)

)
, (24)

and d(xi)
d(xj)

is computable using Eq.(21). βd(xj) is a chosen
reference point. This is obtained by assuming there is at least a
pixel that the true value of the direct transmission, D, is known
(e.g. a black object); since, in this case I(x) = A(x), and
βd(x) can be directly computed. The method also proposes
how to find such a pixel automatically. Note that, knowing
the value of q(xi) in Eq.(23) enables us to dehaze the images
straightforward manner.

Narasimhan-Nayar 2003 In a subsequent publication,
Narasimhan and Nayar [8] introduce a technique that work
for gray or colored images: contrast restoration of iso-depth
regions, atmospheric light estimation, and contrast restoration.

In the contrast restoration of iso-depth regions, the method
forms an equation that assumes the depth segmentation is
provided (e.g. manually by the user) and the atmospheric light
is known:

ρ(xi) = 1−


∑

j

1−
∑

j

ρ(xj)


 L∞ − I(xi)∑

j(L∞ − I(xj))
, (25)

where the sums are over the same depth regions. As can be
seen in the equation, ρ(xi) can be estimated up to a linear
factor

∑
j ρ(xj). By setting ρmin = 0 and ρmax = 1 and

adjusting the value
∑
j ρ(xj), the contrast of regions with the

same depth can be restored.
To estimate the atmospheric lights, the method utilizes two

gray images of the same scene yet different atmospheric lights.
Based on the scattering model in Eq.(9), scene reflectance, ρ,
is eliminated. The two equations representing the two images
can be transformed into:

I2(x) =

[
L∞2

L∞1
e−(β2−β1)d(x)

]
I1(x) + (26)

[
L∞2

(
1− e−(β2−β1)d(x)

)]
,

where index 1, 2 indicate image 1 and 2, respectively. From
the equation, a two dimensional space can be formed, where
I1 is the x-axis, and I2 is the y-axis. For pixels representing
objects that have the same depth, d, yet different reflectance,
ρ, will form a line. As a result, if we have different depths,
then there will be a few different lines, which intersect at
(L∞1, L∞2). The lines that represent pixels with the same
depth can be detected using the Hough transform. As for the
contrast restoration or dehazing, the method is the same as
that proposed in Narasimhan and Nayar’s multiple images
method [7].

Caraffa-Tarel 2013 [27] introduces a dehazing method
that includes depth estimation based on stereo cameras. The

motivation is that both airlight and disparity from stereo can
indicate the scene depths. The goal of the method is to estimate
the depth and restored visibility. To achieve the goal, the
objective function for the data term is composed of two main
factors, the stereo and fog data terms:

Edata =
∑

x

αEdatastereo(x) + (1− α)Edatafog (x), (27)

where α is the weighting factor, and

Edatastereo(x) = fs

(
IL(x, y)− IR (x− δ(x, y), y)

σs

)
(28)

Edatafog (x) = |IL(x, y)−RL(x, y)e−β
b

δ(x,y)

+L∞(1− e−β b
δ(x,y) )|2

|IR(x, y)−RR(x, y)e−β
b

δ(x,y)

+L∞(1− e−β b
δ(x,y) )|2, (29)

where indexes L,R indicate the left and right images, respec-
tively. Function fs relates to the distribution of noise with
variance σs. The term δ is the stereo disparity, and b relates
to camera parameters such as baseline and focal length.

Aside from the data terms, the method utilizes prior terms,
which is basically the spatial smoothness term for the esti-
mated disparity, δ, and the estimated RL. The optimization
is done by decoupling estimation of the stereo and fog terms.
Specifically, it first minimizes the fog term by holding δ fixed
(where δ is initialized in the first iteration). Then, having RL

and RR, it minimizes the stereo term to obtain δ. This is done
iteratively until convergence. While this paradigm is reason-
able, this work does not address whether the minimization of
the fog term can produce better R, and in turn whether the
minimization of the stereo can produce better δ. As such, it is
not entirely clear whether the decoupling process can support
each other.

Li et al. 2015 [9] jointly estimates scene depth and en-
hance visibility in a foggy video, which unlike Caraffa-Tarel’s
method [27] uses a monocular video. Following the work of
Zhang et al. [28], it estimates the camera parameters and the
initial depth of the scene, which is erroneous particularly for
dense fog regions due to the photoconsistency problem in the
data term. In clear scenes, photoconsistency can be achieved
by measuring the RGB distance between a pixel in one frame
and its estimated corresponding pixel in another frame, how-
ever it will be inaccurate when the region is affected by dense
fog. Indeed, any existing defogging methods can be used to
help improve the intensity values, yet the paper claims existing
methods are intended to handle a single image, and when
applied to a video sequence, the results will be inconsistent
from frame to frame, causing the photoconsistency term to
be unstable. To resolve the problem, Li et al.’s method [9]
introduces a new photoconsistency term:

Ep(dn) =
1

|N (n)|
∑

n′∈N (n)

∑

x

‖În′(x)− In′(ln→n′(x, dn(x)))‖, (30)

where ln→t′(x, dn(x) projects the pixel x with inverse depth
dn(x) in frame n to frame n′. The intensity, În′(x) =
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(In(x)−L∞)πn→n′ (x,tn(x))
tn(x) +L∞, is a synthetic intensity val-

ue obtained from the transmission, tn, which is computable by
knowing dn (note that, in the paper, the scattering coefficient
β and the atmospheric light, L∞, are estimated separately).
The projection function πn→n′(x, tn(x)) computes the corre-
sponding transmission in the n′-th frame for the pixel x in the
n-th frame with transmission tn(x). The denominator N (t)
represents the neighboring frames of frame n and |N (n)| is
the number of neighboring frames. By having β(x) estimated
separately, tn(x) depends only on dn(x), and thus dn is the
only unknown in the last equation. The whole idea in the
photoconsistency term here is to generate a synthetic intensity
value of each pixel from known depth, d , atmospheric
light, L∞, and the particle scattering coefficient, β. Note
that, the paper assumes β and L∞ are uniform across the
video sequence. Therefore, if those three values are correctly
estimated, the generated synthetic intensity values must be
correct.

Aside from the photoconsistency term, the method also uses
Laplacian smoothing as the transmission smoothness prior.
The whole framework is an integrated framework, where after
a few iterations, the outcomes are estimated depth maps and
defogged images.

C. Polarizing Filter

Schechner et al. 2001 addresses the issue appeared in
the work of Narasimhan and Nayar [7], where it requires
at least two images of the same scene taken under different
particle densities (i.e. we have to wait until the fog density
changes considerably). Unlike [7], Schecher et al.’s [10] uses
multiple images captured using polarizing filters, which does
not require the fog density to change.

The main assumption employed in this polarized-based
method is that the direct transmission has insignificant polar-
ization, and thus the polarization of the airlight dominates the
observed light. Based on this, the maximum intensity occurs
when airlight passes the through the filter. This can be obtained
when:

Imax(x) = D(x)/2 +Amax(x), (31)

where D and A are the direct transmission and the airlight,
respectively. The minimum intensity (i.e. when the filter can
block the airlight at its best) is when:

Imin(x) = D(x)/2 +Amin(x). (32)

Adding up the two states of the polarization, we obtain:
I(x) = Imax(x) + Imin(x). Based on this, the method esti-
mates the atmospheric light from a sky region and computes
its degree of polarization:

P =
Lmax
∞ − Lmin

∞
Lmin∞ + Lmax∞

, (33)

and then, estimate the airlight for every pixel:

A(x) =
Imax(x)− Imin(x)

P
. (34)

Based on the airlight, the method computes the transmission:
e−βd(x) = 1 − A(x)

L∞
, and finally obtains the dehazing result

R(x) = [I(x)−A(x)] eβd(x). To obtain the maximum and
the minimum intensity values, the filter needs to be rotated
either automatically or manually.

Shwartz et al. 2006 [11] uses the same setup proposed by
Schechner et al.’s [10] but removes the assumption that sky
regions are present in the input image. Instead, this method
estimates the color of the airlight and of the direct transmission
by applying independent component analysis (ICA):

[
A
D

]
= W

[
Imax

Imin

]
(35)

W =

[
1/P −1/P

(P − 1)/P (P + 1)/P

]
. (36)

In this case, the challenge lies in estimating W given
[Imax, Imin]T to produce D and A accurately.

The method claims that while the airlight and direct trans-
mission are in fact statistically not independent and certain
transformations such as a wavelet transformation can relax the
dependence. The method therefore transforms the input data
using a wavelet transformation, solves the ICA problem by
using an optimization method in the wavelet domain. Aside
from P , the method also needs to estimate L∞, which is done
by labeling certain regions manually to have two pixels that
have the same values of the direct transmission yet different
values of the airlight.

D. Known Depth

Oakley-Satherley 1998 [12] is one of the early methods
dealing with visibility enhancement in a single foggy image.
The enhancement is done in two stages: parameter estimation
followed by contrast enhancement. The basic idea of the
parameter estimation is to employ the sum of squares method
to minimize an error function, between the image intensity
and some parameters of the physical model, by assuming the
reflectance of the scene can be approximated by a single value
representing the mean of the scene reflectance. With these
assumptions, the minimization is done to estimate three global
parameters: the atmospheric light (L∞), the mean reflectance
of the whole scene ρ̄, and the scattering coefficient, β:

Err =
M∑

x

(
I(x)− L∞

(
1 + (ρ̄− 1)e−βd(x)

))2

. (37)

The last equation assumes that L = L∞. Having estimated
the three global parameters by minimizing function Err, the
airlight is then computed using:

A(x) = L∞(1− e−βd(x)). (38)

Consequently, the end result is obtained by computing:

R(x) =

(
Lmax

(
I(x)−A(x)

L∞
eβd(x)

)) 1
2.2

, (39)

where Lmax is a constant depending on the maximum gray
level of the image display device, and 1

2.2 is to compensate
the gamma correction.
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The main drawbacks of this method are the assumption that
the depth of the scene is known, and the mean reflectance for
the whole image is used in the minimization and in computing
the airlight. The latter is acceptable if the color of the scene
is somehow uniform, which is not the case for general scenes.
Tan and Oakley’s [29] extended the work of Oakley and
Satherley [12] to handle color images by taking into account
a colored scattering coefficient and colored atmospheric light.

Narasimhan-Nayar 2003 [30] proposes several methods
based on a single input image; however due to the ill-posed
nature of the problem, the methods requires some user interac-
tion. The first method requires the user to select a region with
less haze and a region with more haze of the same reflection
as the first one’s. From these the two inputs, the approach
estimates the dichromatic plane and dehaze pixels that have the
same color as the region with less haze. This method assumes
the pixels represent scene points that have the same reflection.
The second method asks the user to indicate the vanishing
point and to input the maximum and minimum distance from
the camera. This information is used to interpolate the distance
to estimate the clear scene in between. The interpolation is
a rough approximation, since depth can be layered and not
continuous. To resolve layered scenes, the third method is
introduced, which requires depth segmentation that can be
done through satellite orthographic photos of buildings.

Hautiere et al. 2007 [13] proposes a method to dehaze a
scene from a single image that assumes a flat world (i.e. only
flat ground without trees or other objects) and known camera
properties including its height from the ground. These assump-
tions are necessary to estimate the attenuation factor and the
depth, which are expressed as:

d =
a

y − yh
, if v > vh, (40)

where a = Hα
cos2 θ . The term H is the height of the camera, y

is the y-axis of the image coordinates, θ is the angle between
the optical axis of the camera and the horizon line. yh is the
horizon line. The term α = f/w, with f is the focal length
and w is the height of a pixel. Hence, d in the scattering model
(Eq.(9)) is replaced by a

y−yh . By taking the derivative of the
model with regard to y, we obtain:

d2I

dy2
= βψ(y)e

−β a
y−yh

(
βa

y − yh
− 2

)
, (41)

where ψ(y) = a(R−L∞)
(y−yh)3 . Setting d2I

dy2 = 0 produces:

β =
2(yi − yh)

a
. (42)

If we can find the value of yi, which is the inflection point in
the vertical axis of the image, then we can obtain the value
of β since the method assumes we can know the horizon line,
yh, from the input image. By knowing yi and β we obtain:

L∞ = Ii +
yi − yh

2

dI

dy |y=yi

, (43)

R = Ii −
(
1− e−βdi

)(yi − yh
2e−βdi

)
dI

dy |y=yi

, (44)

where R indicates the reflection of the ground.

To find the inflection point location, yi, the method utilizes
the median intensity of each line of a vertical band, which
should be only located at the homogeneous area and the sky.

To relax the flat world assumption, which does not apply to
trees, vehicles, houses, or any objects in the scene, the method
employs depth heuristics, such as a cylindrical scene. Due to
all these constraints, the method works in its full potential for
scenes dominated by flat planes (e.g. rural road scenes).

Kopf et al. 2008 [14] attempts to overcome the dehazing
problem by utilizing the information provided by an exact 3D
model of the input scene and the corresponding model textures
(obtained from Landsat data). The main task is to estimate the
transmission, exp(−βd(x)), and the atmospheric light, L∞.

Since, it has the 3D model of the scene, it can collect
the average model texture intensity of certain depths (Îh(x))
from the Landsat data and the corresponding average haze
intensity (Îm(x)) of the same depths from the input image.
The two average intensity values can be used to estimate the
transmission assuming L∞ is known:

t(x) =
Îh − L∞
CÎm − L∞

, (45)

where C is a global correction vector. By comparing this
equation with Eq.(14), we see that CÎm attempts to substitute
R, the scene reflectance without the influence of haze. In this
method, C is computed from:

C =
Fh

lum(Fh)
/

Fm
lum(Fm)

, (46)

where Fh is the average of Ih(x) with z < zF with zF is set
to 1600 meters, and Fm is the average of the model texture.
The function lum(c) is the luminance of a color c.

The method suggests that L∞ is estimated by collecting the
average background intensity for pixels whose depth is more
than a certain distance (> 5000m) from both the input image
and the model texture image.

E. Single-Image Methods

Tan 2008 . A milestone in single-image visibility enhance-
ment was made with the publications of Tan [15] and Fattal
[16] that can automatically dehaze a single image without
additional information such as known geometrical information
or user input. Given an input image, Tan’s method [15]
estimates the atmospheric light, L∞ from the brightest pixels
in the input image, and normalize the color of the input image,
from I to Ĩ by dividing I by the chromaticity of L∞, element-
wise. The chromaticity of L∞ is the same as Â in Eq.(19).
By doing this, the airlight A, can be transformed from color
vectors into scalars, A. Hence, the visibility enhancement
problem can be solved if we know the scalar value of the
airlight, A, for every pixel:

eβd(x) =

∑
c L2c

A(x)
∑
c L2c

, (47)

R̃(x) =


Ĩ(x)−A(x)




1
1
1




 eβd(x), (48)
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where c represents the index of RGB channels, and R̃ is the
light normalized color of the scene reflection, R. The values
of A range from 0 to

∑
c L2c. The key idea of the method is

to find a value of A(x) from that range that maximizes the
local contrast of R̃(x). The local contrast is defined as:

Contrast(R̃(x)) =
S∑

x,c

|∇R̃c(x)|, (49)

where S is a local window whose size is empirically set to
5 × 5. It was found that the correlation between the airlight
and the contrast is convex.

The problem can be casted into a Markov Random Field
(MRF) framework and optimized using graphcuts to estimate
the values of the airlight across the input image. The method
works for both color and gray images and was shown able
to handle relatively thick fog. One of the drawbacks of the
method is the appearance of halos around depth discontinuity
due to the local-window based operation. Another drawback is
that when the input regions have no textures, the quantity of
local contrast will be constant even when the airlight value
changes. Prior to the 2008 publication, Tan et al.[31] had
introduced a fast single dehazing method that uses a color
constancy method [32] to estimate the color of the atmospheric
light, and utilizes the Y channel of the Y IQ color space as
an approximation to do the dehazing.

Fattal 2008 [16] is based on the idea that the shading and
transmission functions are locally and statistically uncorrelat-
ed. From this, the work derives the shading and transmission
functions from Eq.(9):

l−1(x) =
1− IA(x)/||L∞||

+
η

||L∞||
, (50)

t(x) = 1− IA(x)− ηIR′(x)

||L∞||
, (51)

where l(x) is the shading function and t(x) is the transmission
function. The definitions of IA and IR′ is as follows:

IA(x) =
〈I(x),L∞〉
||L∞||

, (52)

IR′(x) =
√
||Ix||2 − I2

A(x). (53)

Assuming L∞ can be obtained from the sky regions, η
is estimated by assuming the shading and the transmission
functions are statistically uncorrelated over a certain region
Ω. This implies that CΩ(l−1, t) = 0, where function CΩ is
the sample covariance. Hence, η can be defined based on
CΩ(l−1, t) = 0:

η(x) =
CΩ (IA(x), h(x))

CΩ (IR′(x), h(x))
, (54)

where h(x) = (||L∞||− IA(x))/IR′(x). Obtaining the values
of t(x) and L∞ will eventually solve the estimation of the
scene reflection, R(x).

The success of the method relies on whether the statistical
decomposition of shading and transmission can be optimum,
and whether they are truly independent. Moreover, while it
works for haze, the approach was not tried on foggy scenes.

He et al. 2009. The work in [17], [33] observed an interest-
ing phenomenon of outdoor natural scenes with clear visibility.
They found that most outdoor objects in clear weather have at
least one color channel that is significantly dark. They argue
that this is because natural outdoor images are colorful (i.e. the
brightness varies significantly in different color channels) and
full of shadows. Hence, they define a dark channel as:

Rdark = min
y∈Ω(x)

(
min

c∈{R,G,B}
Rc(y)

)
. (55)

Because of the observation that, Rdark → 0, He et
al. c̃itehe2009 refer to this as the dark channel prior.

The dark channel prior is used to estimate the transmission
as follows. Based on Eq.(9), we can express:

Ic(x)

Lc∞
= t(x)

Rc(x)

Lc∞
+ 1− t(x). (56)

Assuming that we work on a local patch, Ω(x) and t(x) are
constant within the patch, t̃(x), then we can be written as:

min
y∈Ω(x)

(
min
c

Ic(x)

Lc∞

)
= t̃(x) min

y∈Ω(x)

(
min
c

Rc(x)

Lc∞

)

+1− t̃(x), (57)

and consequently, due to the dark channel prior:

t̃(x) = 1− min
y∈Ω(x)

(
min
c

Ic(x)

Lc∞

)
, (58)

where L∞ is obtained by picking the top 0.1 % brightest
pixels in the dark channel. Finally, to have a smooth and robust
estimation of t(x) that can avoid the halo effects due to the
use of patches, the method employs the closed-form solution
of matting [34].

Tarel-Hautiere 2009 . One of the drawbacks of the previous
methods [15] [16] [17] [33] is the computation time. The
methods cannot be applied for real time applications, where
the depths of the input scenes change from frame to frame.
Tarel and Hautiere [35] introduce a fast visibility restoration
method whose complexity is linear to the number of image
pixels. Inspired by the contrast enhancement [15], they ob-
served that the value of the normalized airlight, A(x) (where
the illumination color is now pure white), is always less than
W (x), where W (x) = minc(Ĩ

c(x)). Note that, Ĩc is the pixel
intensity value of color channel c after the light normalization.
Since it takes time to find the optimum value of A(x), the idea
of estimating A(x) rapidly is based on a heuristic method:

M(x) = medianΩ(x)(W )(x), (59)
S(x) = M(x)−medianΩ(x)(|W −M |)(x), (60)
A(x) = max (min(pS(x),W (x), 0) , (61)

where Ω(x) is a patch centered at x, and p is a constant value,
chosen empirically. The last equation means 0 ≤ A(x) ≤
W (x). The method utilizes a bilateral filter or median filter to
help produce a smooth estimation of the airlight A(x).

Kratz-Nishino 2009 [36] and later [37] offer a new perspec-
tive on the dehazing problem. This work poses the problem
in the framework of a factorial MRF [38], which consists of
a single observation field (the input hazy image), and two
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separated hidden fields (the albedo and the depth fields). Thus,
the idea of the method is to estimate the depth and albedo by
assuming that the two are statistically independent. First, it
transforms the model in Eq.(9) to:

log

(
1− Ic(x)

Lc∞

)
= log(1− ρc(x))− d̃(x), (62)

Ĩc(x) = Cc(x) +D(x), (63)

where c is the index of the color channel, Cc(x) = log(1 −
ρc(x)), and D(x) = −d̃(x), and d̃(x) = βd(x). Hence, in
terms of the factorial MRF, Ĩc is the observed field, and
Cc and D are the two separated hidden fields. Each node
in the MRF will connect to the corresponding node in the
observed field and to its neighboring nodes within the same
field. The goal is then to estimate the value of Cc for all color
channels and the depth, D. The objective function consists of
the likelihood and the priors Cc and D. The prior of Cc is
based on the exponential power distribution of the chromaticity
gradients (from natural images); while the prior of D is
manually selected from a few different models, depending on
the input scene (e.g. either cityscape, terrain, etc.). To solve the
decomposition problem, the method utilizes an EM algorithm
that decouples the estimation of the two hidden fields. In each
step, graphcuts is used to optimize the values, resulting in a
high computational cost. To make the iteration more efficient
a good initializations are required. The initialization for the
depth is done by computing:

Dinit(x) = max
c∈R,G,B

(Ĩc(x)), (64)

which means that the depth are initialized from the brightest in
the color channel, which is the upper bound of the depth. This
last equation is in essence the same as the dark channel prior
[17] [33], and the paper [37] offers a different interpretation
of the dark channel prior from the viewpoint of depth, namely,
the dark channel prior works because it is computed from the
upper-bound of the depth and not because nature has many
shadows or varying colors, which is the reasoning of He et
al. [33].

Ancuti-Ancuti 2010. The works [39] [40] propose a method
based on image fusion. First, the method splits the input
image into two components: a white-balanced image, I1, by
using the gray-world color constancy method [41], and a
global contrast enhanced image, I2 , which is calculated by
I2(x) = γ(I(x) − Ī), where Ī is the average intensity of the
whole input image and γ is a weighting factor. From both I1

and I2, the weights in terms of the luminance, chromaticity,
and saliency are calculated. Based on the weights, the output
of the dehazing algorithm is

w̃1(x)I1 + w̃2(x)I2, (65)

where w̃k is the normalized weights with index k is either 1
or 2, such that wk(x) = wkl w

k
cw

k
s and w̃k = wk/

∑2
k=1 w

k.

The subscripts l, c, s represent luminance, chromaticity and
saliency, respectively. The weights’ definitions are as follows:

wkl (x) =

√
1

3

∑

c∈R,G,B
(Ikc (x)− Lk(x))

2
, (66)

wkc (x) = exp

(
−
(
Sk(x)− Skmax

)2

2σ2

)
, (67)

wks (x) = ||Ikω(x)− Ikµ ||, (68)

where Lk(x) is the average of the intensity in the three color
channels. The term S is the saturation value (e.g. the saturation
in the HSI color space). The term σ is set 0.3 as default. The
term Smax is a constant, where for the HSI color space, it
would be 1. The term Ikµ is the arithmetic mean pixel value
of the input, and Ikω is the blurred input image. The method
produces good results, however the reasoning behind using
the two images (I1 and I2) and the three weights are not fully
explained and need further investigation. The fusion approach
was also applied to underwater vision [42].

Meng et al. 2013 [23] extends the idea of the dark channel
prior in determining the initial values of transmission, t(x),
by introducing its lower bound. According to Eq.(9), t(x) =
(Ac − Ic(x))/(Ac −Rc(x)). As a result, the lower bound of
the transmission, denoted as tb(x) can be defined as:

tb(x) =
Ac − Ic(x)

Ac − Cc0
, (69)

where Cc0 is a small scalar value. Since Cc0 is smaller or
equal than Rc(x), then tb(x) ≤ t(x). To anticipate a wrong
estimation of A, such as when the value of Ac is smaller than
Ic, the second definition of tb(x) is expressed as:

tb(x) =
Ac − Ic(x)

Ac − Cc1
, (70)

where Cc1 is a scalar value, larger than the possible values of
Ac and Ic. Combining the two definitions, we obtain:

tb(x) = min

(
max

c∈R,G,B

(
Ac − Ic(x)

Ac − Cc0
,
Ac − Ic(x)

Ac − Cc1

)
, 1

)
.

(71)

Assuming the transmission is constant for a
local patch, the estimated transmission becomes
t̃(x) = miny∈Ωx maxz∈Ωy tb(z). The method employs a
regularization formulation to obtain more robust values of the
transmission for the entire image.

Tang et al. 2014 [43], unlike the previous methods, intro-
duces a learning-based method. The method gathers multiscale
features such as, dark channel [33], local maximum contrast
[15], hue disparity, and local maximum saturation, and uses the
random forest regressor [44] to learn the correlation between
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the features and the transmission, t(x). The features related to
the transmission are defined as follows:

FD(x) = min
y∈Ω(x)

min
c∈R,G,B

Ic(y)

Ac
,

FC(x) = max
y∈Ω(x)

√√√√ 1

3|Ω(y)|
∑

z∈Ω(y)

||I(y)− I(z)||2,

FH(x) = |H(Isi(x))−H(I(x))|,

FS(x) = max
y∈Ω(x)

(
1− minc I

c(y)

maxc Ic(y)

)
, (72)

where Isi = max[Ic(x), 1− Ic(x)]. For the learning process,
synthetic patches are generated from given haze-free patches,
fixed white atmospheric light, and random transmission values,
where the haze-free images are taken from the Internet. The
paper claims that the most significant feature is the dark
channel feature, however, other features also play important
roles, particularly when the color of an object is the same that
of the atmospheric light.

Fattal 2014 [1] introduces another approach based on
color lines. This method assumes that small image patches
(e.g. 7×7) have a uniformly colored surface and the same
depth, yet different shading. Hence, the model in Eq.(9) can
be written as:

I(x) = l(x)R̂ + (1− t)L∞, (73)

where l(x) is the shading, and R(x) = l(x)R̂. Since the
equation is a linear equation, in the RGB space the pixels of
a patch will form a straight line (unless when the assumptions
are violated, e.g. when patches containing color or depth
boundaries). This line will intersect with another line formed
by (1 − t)L∞. Since L∞ is assumed to be known, then by
having the intersection, (1−t) can be obtained. To obtain t(x)
for the entire image, the method has to scan the pixels, extract
patches, and find the intersections. Some patches might not
give correct intersections, however if the majority of patches
do, then the estimation can be correct. Patches containing
object color identical to the atmospheric light color will not
give any intersection, as the lines will be parallel. A Gaussian
Markov random field (GMRF) is used to do the interpolation.

Sulami et al.’s method [45] uses the same idea and as-
sumptions of the local color lines to estimate the atmospheric
light, L∞, automatically. First, it estimates the color of the
atmospheric light by using a few patches, minimal two patches
of different scene reflections. It assumes the two patches
provide two different straight lines in the RGB space, and
the atmospheric light’s vector which starts from the origin
must intersects with the two straight lines. Second, knowing
the normalized color vector, it tries to estimate the magnitude
of the atmospheric light. The idea is to dehaze the image
using the estimated normalized light vector, then to minimize
the distance between the estimated shading and the estimated
transmission for the top 1 % brightness value found at each
transmission level.

Cai et al. 2016 [46] proposes a learning based framework
similar to [43] that trains a regressor to predict the transmission
value t(x) at each pixel (16× 16) from its surrounding patch.

TABLE III
SINGLE IMAGE DEHAZING METHODS WE COMPARED. PROGRAMMING

LANGUAGE-M:MATLAB,P:PYTHON,C:C/C++. THE AVERAGE RUNTIME IS
TESTED ON IMAGES OF RESOLUTION 720× 480 USING A DESKTOP WITH
XEON E5 3.5GHZ CPU AND 16GB RAM. WE USE THE CODE FROM THE

AUTHORS, EXCEPT THOSE WITH MARKER *:WE IMPLEMENTED THE
METHODS BY OURSELVES, †: WE DIRECTLY USE THE RESULTS FROM THE

AUTHOR.

Methods Pub. venue Code Runtime(s)
Tarel 09 [35] ICCV 2009 M 12.8

Ancuti 13 [40] TIP 2013 M* 3.0
Tan 08 [15] CVPR 2008 C 3.3

Fattal 08 [16] ToG 2008 M† 141.1
He 09 [17] CVPR 2009 M* 20

Kratz 09 [36] ICCV 2009 P 124.2
Meng 13 [23] ICCV 2013 M 1.0
Fattal 14 [1] ToG 2014 C† 1.9

Berman 16 [18] CVPR 2016 M 1.8
Tang 14 [43] CVPR 2014 M* 10.4
Cai 16 [46] arXiv 2016 M* 1.7

Unlike [43] that used hand crafted feature, Cai et al. [46] ap-
plied a convolutional neural network (CNN) based architecture
with special network design (See [46] for the architecture). The
network, termed DehazeNet, are conceptually formed by four
sequential operations (feature extraction, multi-scale mapping,
local extremum and non-linear regression), that consists of
3 convolution layers, a max-pooling, a Maxout unit and a
Bilateral Rectified Linear Unit (BReLU, a nonlinear activation
function extended from standard ReLU [47]). The training set
used is similar to that in [43], namely they gathered haze
free patches from Internet to generate hazy patches using
the hazy imaging model with random transmissions t and
assuming white atmosphere light color (L∞ = [1 1 1]>). Once
all the weights in the network are obtained from the training,
the transmission estimation for a new hazy image patch is
simply forward propagation using the network. To handle the
block artifact caused by the patch based estimation, guided
filtering [48] is used to refine the transmission map.

Berman et al. 2016 [18] proposes an algorithm based
on a new, non-local prior. This is a departure from existing
methods (e.g. [15], [17], [23], [1], [43], [46] etc.) that use patch
based transmission estimation. The algorithm by [18] relies
on the assumption that colors of a haze-free image are well
approximated by a few hundred distinct colors, that form tight
clusters in RGB space and pixels in a cluster are often non-
local (spread in the whole images). The presence of haze will
elongate the shape of each cluster to a line in color space as the
pixels may be affected by different transmission coefficients
due to their different distances to the camera. The lines, termed
haze-line, is informative in estimating the transmission factors.
In their algorithm, they first proposed a clustering method to
group the pixels and each cluster becomes a haze-line. Then
the maximum radius of each cluster is calculated and used to
estimate the transmission. A final regulation step is performed
to enforce the smoothness of the transmission map.

IV. QUANTITATIVE BENCHMARKING

In this section, we benchmark some visibility enhancement
methods. Our focus is on recent single-image based meth-
ods. Compared with other approaches, single-image based



12

approach is more practical and thus have more potential
applications. By benchmarking the methods in this approach,
we consider it will be beneficial, since one can know the
comparisons of the methods quantitatively.

To compare all methods quantitatively we need to test on
dataset with ground truth. Ideally, similar to what Narasimhan
et al. [49] had done, the dataset should be created from real
atmospheric scenes taken over a long period of time to have
all possible atmospheric conditions ranging from light mist to
dense fog with various backgrounds of scenes. While it may be
possible, it is not trivial at all, since it has to be done in certain
time and locations where fog and haze are present frequently
and the scene, the illumination should keep fixed (which means
clouds and sunlight distribution should be about the same).
Unfortunately, these conditions rarely meet. Moreover, it is
challenging to have a pixel-wise ground truth of a scene
without the effect of particles even in a clear day, particularly
for distant objects, as significant amount of atmospheric par-
ticles are always present. These reasons motivated us to use
synthesised data. We first perform dehazing evaluations on
a recent dataset provided by Fattal [1]. Moreover we create
another dataset with physics based rendering technique for
the evaluation. In the following sections, we will describe
the details of the dataset and present the results of different
dehazing methods on these datasets.

We compare 11 dehazing methods in total including most
representative dehazing methods published in major venues,
as listed in Table III. We use the code from the authors for
evaluation if the source codes are available. We also implement
[40], [17], [43], [46] by strictly following the pipeline and
parameter settings described in the paper. For [16] and [1],
we directly use the results provided along the dataset [1].
Following the convention in the dehazing papers, we simply
use the first author’s name with year of publication (e.g. Tan
08) to indicate each method.

A. Evaluation on Fattal’s Dataset [1]

Fattal’s dataset [1] 2 has 11 haze images generated using real
images with known depth maps. Assuming a spatially constant
scattering coefficient β, the transmission map can be generated
by applying the direct attenuation model, and the synthesized
haze image can be generated using the haze model Eq. (12).
One example of the synthesized images is shown in Figure 5.

As mentioned in Sec 2.3, there are generally three major
steps in dehazing: (1) estimation of the atmospheric light, (2)
the estimation of the transmission (or the airlight), and (3)
the final image enhancement that imposes a smooth constraint
of the neighboring transmission. A study of the atmospheric
light color estimation in dehazing can be found in [45]. In our
benchmarking, our focus is on evaluating the transmission map
estimation and final dehazing results. We therefore directly use
ground truth atmospheric light color provided in the dataset
for all dehazing methods.

Transmission map evaluation Table IV lists the mean ab-
solute difference (MAD) of the estimated transmissions (ex-

2http://www.cs.huji.ac.il/∼raananf/projects/dehaze cl/results/index comp.
html

cluding sky regions) of each method to the ground truth
transmission. Note that, two methods, Tarel 09 [35] and
Ancuti 13 [40], are not included, as they do not require
the transmission estimation. The three smallest errors for
each image are highlighted. As can be seen, there is no one
method can be outstanding for all cases. The recent method
Fattal 14 [1] and Berman 16 [18] can obtain more accurate
estimation of the transmission for most cases. The early work
of Tan 08 [15] gives less precise estimation. Another early
work Fattal 08 [16] is not stable and it obtains accurate
estimation on a few cases (e.g. flower2, reindeer) while obtains
largest error on some other cases (e.g. church, road1).

We plot the average MAD over all 11 cases in Figure 4.
It is noticed that in general, latest methods perform better
in the transmission estimation. The method of Fattal 14 [1]
and Berman 16 [18] rank at the top place, while the two
learning based method Tang 14 [43] and Cai 16 [46] are at
the second place. However, we noticed in our experiments that
the learning based methods heavily rely on the white balance
step with correct atmospheric light color. Once there are small
errors in atmospheric light color estimation, their performance
drops quickly. This indicates the learned models are actually
overfilled to the case of white balanced haze images as in the
training process it always assume pure white atmosphere light
color. He 09 [17]’s results also are at a decent rank place. This
demonstrates that dark channel prior is an effective prior in
the transmission estimation.

We further test the mean signed difference (MSD) on the
transmission estimation results (excluding sky regions) as
MSD = 1

N

∑
i(t̃i − ti), where i is the pixel index, N is the

total number of pixels, t̃ is the estimated transmission, and
t is the ground truth transmission. By doing so, we can test
whether a method overestimates (positive signed difference) or
underestimates (negative signed difference) the transmission,
which can not be revealed using the previous MAD metrics.
The MSDs are listed in Table V and the average MSDs are
plotted in Figure 4. It is observed that Tan 08 [15] mostly
underestimate the transmission, as a result it obtains over-
saturated dehaze results. Fattal 08 [16], on the contrary, likely
overestimate the transmission, leading to a results with haze
still presented in the output. The two methods He 09 [17] and
Meng 13 [23] also slightly underestimate the transmission
due to the fact they essentially predict the lower bound of
transmission.

Dehazing results evaluation We evaluate the dehazing re-
sults. The mean absolute difference (MAD) of each method
(excluding sky regions) to the ground truth clean image are
listed in Table VI and the dehazing results on church case
are shown in Figure 5. In Table VI, the three smallest errors
for each image are highlighted. Again, there is no one method
can be outstanding for all cases. It is clear that the observed
non-model based methods Tarel 09 [35] and Ancuti 13 [40]
obtain largest error in the recovery. The visual qualities of
their results are also rather inferior compared with other
methods (as can be seen in Figure 5). This shows that only
image contrast enhancement operation without the haze image
model Eq. (12) cannot achieve satisfactory results. Among the
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rest model based methods, the latest methods Meng 13 [23],
Tang 14 [43], Fattal 14 [1], Cai 16 [46], Berman 16 [18], and
also He 09 [17] generally perform better than early dehazing
methods Tan 08 [15], Fattal 08 [16], and Kratz 09 [36].
Especially Fattal 14 [1] and Berman 16 [18] are the best two
methods that can provide dehazing results that are the most
close to the ground truth. This quantification ranking reflects
well the visual quality as the example shown in Fig 5.

Evaluation with various haze levels Additionally, we test
the performance of each method for different haze levels. In
Fattal’s dataset [1], he provides a subset of images (lawn1,
mansion, reindeer, road1) that are synthesized with three
different haze level by control the scattering coefficient β. As
β increases, denser haze effects will appear. We measure the
transmission estimation error and final dehazing error using
the mean absolute difference and the average results over all
scenes are plotted in Figure 6.

It is clearly observed that Fattal 14 [1] stably stand out in
achieving less errors in both transmission estimation and final
dehazing at different haze levels. Fattal 08 [16] works well
only at low haze levels and the performance drops at medium
and high haze levels. Looking at the transmission results, we
can see Tan 08 [15], He 09 [17], and Meng 13 [23]’s estima-
tion becomes more accurate when haze level increases. This
demonstrates the priors of these three methods are correlated
with haze such that these priors can tell more information
with more haze. The difference is that He 09 [17], and Meng
13 [23] can achieve much smaller transmission errors than Tan
08 [15], showing the superiority of dark channel prior [17]
and boundary constrain [23] against the local contrast [15] for
this task. This can be explained by the fact that with heavier
haze, the contribution of the airlight A(x) increases, where
dark channel prior and boundary constraint assumption can fit
more.

Berman 16 [18] can achieve the least transmission estima-
tion error at medium haze level but the error increases at both
low and heavy haze levels. This may reveal one limitation
of Berman 16 [18] that the haze lines formed from non local
pixels work well only at certain haze levels. In near clean (low
haze level) or heavily hazy scenarios, the haze lines found may
not be reliable. The two learning methods, Tang 14 [43] and
Cai 16 [46], predict the transmission decently well. For the
final dehaze results, most methods obtain large error in heavy
haze except He 09 [17] and Fattal 14 [1].

B. Evaluation on our Dataset

Unlike the Fattal’s dataset that are generated using image
with the haze image model Eq. (12), we generate our dataset
using a physically based rendering technique (PBRT) that uses
the Monte Carlo ray tracing in a volumetric scattering medium
[50]. We render five sets of different scenes under different
haze level of different types, namely swarp, house, building,
island, villa. Our scenes are created using freely available 3D
models. All five scenes contains large depth variation from a
few meters to about 2, 000 meters. We assume a uniform haze
density in the space and use homogeneous volumes in our
rendering. For each of the five scenes, we render six images.

The first one is rendered with no participating media and is
considered as the ground truth. The remaining five images
are rendered with increasing haze level, namely, by evenly
increasing the absorption coefficient σa and the scattering
coefficient σs. Figure 7 shows two sets of our generated
synthetic data (building, island). As can be seen, the visibility
of the scene, especially further away objects, decreases when
the haze level increases. The whole dataset will be available
via a project website.

We have evaluated 9 methods on our dataset (Fattal 08 [16]
and Fattal 14 [1]’s results are not available on our dataset).
We quantify the visibility enhancement outputs by comparing
them with their respective ground truths. The quantitative
measurement is done by using the structural similarity index
(SSIM) [51]. While MAD directly measure the closeness of
the output to the ground truth pixel by pixel, SSIM is more
consistent with human visual perception, especially in the
cases of dehazing for heavier haze level. SSIM is a popular
choice to compute the structure similarity of two images in
image restoration tasks. Unlike MAD, a higher value in SSIM
indicate a better match as it is a similarity measurement.

Figure 8 shows the performance of each method in term of
SSIM. It is observed that again latest methods Tang 14 [43],
Cai 16 [46], and Berman 16 [18] generally performed better
than others. He 09 [17] also performs very well, especially in
heavier haze levels. This is consistent with our experiment in
Section IV-A.

C. Qualitative results on real images

We have also list three qualitative examples of the dehazing
results on real hazy images by different methods (more visual
comparisons can be found in the previous dehazing paper
e.g. [1], [18]). The visual comparison here confirms our
findings in the previous benchmarking that Fattal 14 [1]
and Berman 16 [18] are the best two methods that can
consistently provide excellent dehazing results. Some early
methods like Kratz 09 [36], Tarel 09 [35], Ancuti 13 [40]
exhibit noticeable limitations in the dehazing results (e.g. over-
saturation, boundary artifacts, color shift). The He 09 [17]
and Meng 13 [23] also performs well and obtain similar
results as they essentially both predict the lower bound of
the transmission. The results of the learning based method
Tang 14 [43] and Cai 16 [46] can produce appealing results
in general but usually tend to leave haze in results.

V. SUMMARY AND DISCUSSION

Summary This paper has provided a thorough survey
of major methods of visibility enhancement in hazy/foggy
scenes. Various modalities such as multiple images, known
approximated depth, stereo, and polarizing filters have been
introduced to tackle the problem. Special emphasis was placed
on single-image methods where significant image cues have
been explored to enhance visibility, such as local contrast [15],
shading-transmission decomposition [16], dark channel prior
[17], line intersection [1] etc.. The tenet of all the methods
is to use scene cues to estimate light transmission and to
unveil scene reflection based on the estimated transmission.
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TABLE IV
THE MEAN ABSOLUTE DIFFERENCE OF TRANSMISSION ESTIMATION RESULTS ON FATTAL’S DATASET [1]. THE THREE SMALLEST VALUES ARE

HIGHLIGHTED.

Methods Church Couch Flower1 Flower2 Lawn1 Lawn2 Mansion Moebius Reindeer Road1 Road2
Tan 08 [15] 0.167 0.367 0.216 0.294 0.275 0.281 0.316 0.219 0.372 0.257 0.186

Fattal 08 [16] 0.377 0.090 0.089 0.075 0.317 0.323 0.147 0.111 0.070 0.319 0.347
Kratz 09 [36] 0.147 0.096 0.245 0.275 0.089 0.093 0.146 0.239 0.142 0.120 0.118

He 09 [17] 0.052 0.063 0.164 0.181 0.105 0.103 0.061 0.208 0.115 0.092 0.079
Meng 13 [23] 0.113 0.096 0.261 0.268 0.140 0.131 0.118 0.228 0.128 0.114 0.096
Tang 14 [43] 0.141 0.074 0.044 0.055 0.118 0.127 0.096 0.070 0.097 0.143 0.158
Fattal 14 [1] 0.038 0.090 0.047 0.042 0.078 0.064 0.043 0.145 0.066 0.069 0.060
Cai 16 [46] 0.061 0.114 0.112 0.126 0.097 0.102 0.072 0.096 0.095 0.092 0.088

Berman 16 [18] 0.047 0.051 0.061 0.115 0.032 0.041 0.080 0.153 0.089 0.058 0.062

TABLE V
THE MEAN SIGNED DIFFERENCE OF TRANSMISSION ESTIMATION RESULTS ON FATTAL’S DATASET [1].

Methods Church Couch Flower1 Flower2 Lawn1 Lawn2 Mansion Moebius Reindeer Road1 Road2
Tan 08 [15] 0.013 -0.339 -0.117 -0.268 -00.083 -0.089 -0.301 -0.160 -0.358 -0.148 -0.117

Fattal 08 [16] 0.376 0.088 0.088 0.071 0.317 0.323 0.143 0.073 0.063 0.312 0.327
Kratz 09 [36] -0.006 0.010 -0.220 -0.267 0.003 -0.013 -0.114 -0.236 -0.083 -0.030 0.067

He 09 [17] -0.035 -0.045 -0.162 -0.180 -0.091 -0.086 -0.041 -0.208 -0.105 -0.054 -0.047
Meng 13 [23] -0.112 -0.003 -0.259 -0.266 -0.139 -0.130 -0.101 -0.223 -0.086 -0.109 -0.089
Tang 14 [43] 0.133 0.054 -0.008 -0.046 0.059 0.067 0.089 -0.051 0.013 0.094 0.123
Fattal 14 [1] -0.019 0.086 -0.021 -0.019 0.063 0.045 0.002 -0.105 0.006 0.005 -0.015
Cai 16 [46] -0.002 0.086 -0.096 -0.118 0.012 0.017 -0.028 -0.070 0.044 0.001 0.023

Berman 16 [18] 0.009 -0.014 -0.051 -0.115 -0.008 -0.013 -0.076 -0.152 -0.059 -0.041 -0.021

Fig. 4. The average performance of different dehazing methods on Fattal’s dataset [1].

Furthermore, there are two principle properties of the trans-
mission estimation: the estimation of the atmospheric light
(both its color and intensity) and the smoothness constraint of
the transmission.

We have also conducted the first quantitative benchmark for
most representative single image dehazing methods. Our pri-
mary finding from the benchmark is that recent works [1],[18]
generally performs better in the dehazing tasks. Machine
learning based methods [43], [46] can also get decent results,
but their performance are likely to be affected by the white
balancing step. Therefore we still recommend the prior based
methods [1],[18] over the learning based methods [43], [46]
in practical use for robustness. We also found that the popular
dark channel prior [17] is an effective prior in dehazing,
especially for denser haze levels.

For the dataset used in the benchmark, we picked a dataset
from Fattal [1] and also our newly introduced synthetic dataset
which provides ground truth clean image and haze images
with different haze levels. We hope the community can take
benefit of our dataset by being able to assess new methods
more objectively and to find new problems in the field.

Discussion When fog is considerably thick, the problem
of visibility enhancement becomes harder. This is because
scene reflection is “buried” further underneath the airlight
(A) and transmission (t). Considering the scattering model
in Eq.(9), when the scattering coefficient β is large, i.e. in
a thick foggy scene, the transmission (t = e−βd) is small.
Consequently, the airlight (A = (1− t)L∞) is dominated by
the atmospheric light, L∞, and thus the veiling component
takes up more portion in the image intensity. Also, since
the transmission is small, the contribution of scene reflection
in the image intensity becomes reduced significantly, due
to the multiplication of R with a fractionally small value
of t. The combined airlight and transmission components
hide the underlying scene reflection information in the image
intensities.

Based on this, some questions might arise: how do we know
whether the information of scene reflection is too minuscule
to be recovered? How thick is fog that we cannot extract the
scene reflection any longer? Answering such questions are
important theoretically, since then we can know the limit of
visibility enhancement in bad weather. Furthermore, in thick
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TABLE VI
THE MEAN ABSOLUTE DIFFERENCE OF FINAL DEHAZING RESULTS ON FATTAL’S DATASET [1]. THE THREE SMALLEST VALUES ARE HIGHLIGHTED.

Methods Church Couch Flower1 Flower2 Lawn1 Lawn2 Mansion Moebius Reindeer Road1 Road2
Tan 08 [15] 0.109 0.139 0.098 0.134 0.146 0.146 0.154 0.131 0.150 0.111 0.139

Fattal 08 [16] 0.158 0.055 0.028 0.022 0.116 0.123 0.071 0.039 0.034 0.135 0.165
Kratz 09 [36] 0.099 0.060 0.155 0.161 0.055 0.059 0.085 0.155 0.083 0.073 0.088

He 09 [17] 0.036 0.038 0.078 0.080 0.056 0.057 0.034 0.121 0.061 0.051 0.052
Tarel 09 [35] 0.173 0.112 0.130 0.120 0.146 0.161 0.113 0.143 0.179 0.148 0.176

Ancuti 13 [40] 0.188 0.078 0.276 0.219 0.128 0.144 0.109 0.189 0.145 0.135 0.142
Meng 13 [23] 0.052 0.060 0.114 0.106 0.055 0.055 0.048 0.096 0.065 0.052 0.054
Tang 14 [43] 0.087 0.048 0.017 0.019 0.072 0.078 0.053 0.031 0.053 0.088 0.106
Fattal 14 [1] 0.025 0.053 0.019 0.015 0.035 0.033 0.022 0.076 0.034 0.033 0.038
Cai 16 [46] 0.042 0.069 0.045 0.049 0.061 0.0652 0.040 0.043 0.053 0.057 0.065

Berman 16 [18] 0.032 0.031 0.022 0.045 0.026 0.031 0.049 0.081 0.045 0.040 0.042

Input Tarel 09 [35] Ancuti 13 [40] Tan 08 [15] Fattal 08 [16] Kratz 09 [36]

Tang 14 [43] He 09 [17] Cai 16 [46] Meng 13 [23] Fattal 14 [1] Berman 16 [18]

Fig. 5. Final haze removal results on the church case.

Fig. 6. Comparisons of the results for different haze levels.

foggy scenes, due to absorption and scattering to directions
other than the line of sight, image blur will be present more
prominently and it is not modeled in the two flux scattering
model.

Another issue to note here is the gamma correction or tone-
curve applied to most images captured by cameras. Although
many methods do not explicitly mention the assumption of
linearity between the flux of incoming light and the pixel
intensity values, based on the scattering model (Eq.9), there
is a clear linear model. This that the correlation between
the image intensity (I) and the remaining parameters is not
truly linear as described in the model due to the non-linear
intensity manipulation applied onboard the cameras. While for
the purpose of visibility enhancement this might not be an
issue, for physically correct scene reflection recovery, proper
gamma correction and camera color transformation might need
to consider.
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