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A B S T R A C T

This work introduces an unsupervised approach to scene analysis and anomaly detection in traffic video data, as
captured from static surveillance cameras. A hybrid local-global scheme is introduced, so as to capture both local
and global information, by extracting features in superpixel-generated spatiotemporal volumes, which are then
merged into regions with dynamically varying boundaries. The resulting regions’ shapes vary according to the
underlying motion in the scene, as captured by the superpixels. Representative descriptors are then calculated in
these regions, and multiple local Hierarchical Dirichlet Process (HDP) models are deployed in them, one for each
region, for the unsupervised characterization of normal and “abnormal” events. The extraction of meaningful
descriptors in these regions, instead of the whole frame, increases the resolution of the algorithm, while avoiding
noise induced artifacts, and thus resulting in the successful detection of a wide range of “anomalies”, both in the
local and global scales. Experiments on benchmark datasets containing various scenarios in traffic scenes prove
our method’s efficacy and generality, leading to higher accuracy than the current State of the Art (SoA), and at a
lower computational cost. Systematic quantitative experimental results and comparisons are provided on
benchmark datasets, setting up a valuable baseline for future comparisons and improvements.

1. Introduction

Video analysis from surveillance systems is becoming increasingly
important, as it can be used to discover and even avert abnormal and
potentially dangerous events, such as accidents, natural disasters, ter-
rorist acts etc. The manual analysis of surveillance videos is extremely
time consuming and cumbersome, making the automatic detection of
anomalous occurrences in videos of a long duration a necessity. The
automated analysis of videos of crowded scenes, such as traffic en-
vironments, is particularly useful due to the complexity of such en-
vironments and the difficulties encountered in monitoring them, even
for human observers. In this work, we address the problem of anomaly
detection and scene understanding in real world traffic scenarios. This
constitutes a difficult task, especially in real world traffic surveillance
applications, as “anomalous” events are not known beforehand.
Actually the purpose - and greatest challenge - of such monitoring is
precisely to detect “abnormal” events that are not explicitly defined. In
practice, anomalous events happen at unknown time instants, at un-
known spatial locations and are not known, so there is no prior de-
scription of their characteristics or relevant descriptors. Moreover, an
“anomaly” pattern in one video sequence may often be part of the
“normal” pattern of another. This is common in traffic videos, where a
particular vehicle’s motion places its own restrictions on the rest of the

scene. In order to address these issues, we define as “anomalies” the
events that have a low probability of occurrence based on earlier ob-
servations. In structured traffic video data, being examined by this
work, this can be interpreted as the set of all possible traffic violations.
In addition to the unknown nature of the events themselves, difficulties
arise due to scene diversity, occlusions, changes of illumination, ad-
verse weather conditions, and sensor noise. Finally, computational ef-
ficiency is an additional factor, as it has to be kept within reasonable
limits: in most applications, it is essential to detect suspicious events in
time, so that security personnel can handle the situation efficiently.

In this work, we propose a novel framework for scene understanding
and anomaly detection in traffic scenes, based on the deployment of
multiple topic models in a hybrid, local-global setup. A common pro-
blem in this area arises due to the switching between local and global
anomalies throughout the video. Most methods dealing with anomaly
detection in different kinds of environments (Bertini et al., 2012;
Boiman and Irani, 2007; Calderara et al., 2011; Li et al., 2014) focus
exclusively on local statistics to infer about a frame’s “irregularity”,
thus neglecting global patterns that may arise. However, this con-
stitutes a very common situation in the examined traffic scenarios
where many “anomalies” often emerge as a result of correlation pat-
terns involving the entire frame. In order to capture these correlations,
several works based on topic modeling have been proposed (Hospedales
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et al., 2012, 2011; Isupova et al., 2016; Kuettel et al., 2010; Song et al.,
2014; Varadarajan et al., 2012, 2013; Wang et al., 2009) examining
traffic related scenarios. Nevertheless, in these works the extracted
traffic models describe frame dynamics as a whole, restricting their
algorithm’s resolution, as important local information may be lost in the
large bulk of data. So, even though hybrid approaches have been used
in the past in anomaly detection tasks (Kim and Grauman, 2009), works
examining traffic scenes based on topic modeling, often miss the local
aspect.

In order to tackle this issue, we adopt a novel hybrid, topic-model
based approach combining both local and global information. The scene
is first divided into SLIC (Simple Linear Iterative Clustering)
(Achanta et al., 2012) superpixels with homogeneous appearance
characteristics, which are then clustered into regions with dynamically
varying boundaries. Descriptors are efficiently extracted in these re-
gions according to varying spatiotemporal tubes, as obtained from the
combined action of superpixels clustering and tracking information in a
proposed scheme. Subsequently, Multiple Hierarchical Dirichlet Pro-
cesses (HDP) (Teh et al., 2007) are deployed, one for each region se-
parately, capturing local feature correlations and creating meaningful
local topics. The resulting topic probability distributions are then used
to globally reconstruct the frames under examination, and each re-
constructed video subsequence’s “abnormality” is assessed by a classi-
fier based on its cosine difference from the original subsequence. Thus,
videos can be characterized as normal or “abnormal”, while preserving
local information and at the same time smoothing out the influence of
local noise, achieving a balance between the local and global.

The contribution of our work lies in the investigation of multiple
topic models deployed in the scene, in an original framework, resulting
in an effective fast algorithm capable of being used in real life sur-
veillance scenarios. Superpixels and clustering have been used in the
past for anomaly detection (Cui et al., 2007; Kwon and Lee, 2015),
however this work proposes a different deployment scheme. Particu-
larly, the benefits of superpixels’ structure are exploited in two different
ways: (a) they define region boundaries which vary over time according
to the level of activity in them, and therefore visual events, and (b) they
constitute the structural elements of varying spatiotemporal tubes used
for feature extraction, instead of the classic supervoxels commonly used
in the literature. Furthermore, it is the first time that multiple HDP
models are deployed and their combination is used as an inference
about a frame’s “abnormality”, in contrast to many SoA works which
propose variants, to address different categories of problems (Wulsin
et al., 2012; Yakhnenko and Honavar, 2009). Our contribution can be
summarized as follows:

1. Dynamically varying spatiotemporal volumes are built based on the
combined action of superpixels clustering and tracking, resulting in
the extraction of informative descriptors.

2. Multiple local topic models (HDPs) are applied for the first time in
the extracted regions of interest, to capture small scale interactions.

3. The outcomes of multiple HDPs are used in a frame reconstruction
process, to infer about each frame’s irregularity, thus integrating
local and global information in a novel, hybrid framework.

As the experimental results show, the proposed method efficiently
captures both local and global anomalies in real world challenging
traffic scenes, outperforming state of the art algorithms in accuracy, and
at a lower computational cost.

2. State of the art

Methods dealing with scene analysis and understanding from sur-
veillance camera videos can be divided into two main categories.

The first one is comprised of methods based on trajectory extraction
and processing. A work in this category is that of Saleemi et al. (2009)
where object trajectories are modeled using kernel density estimators to

specify their multivariate nonparametric probability density function
(pdf). A unified Markov Chain Monte Carlo (MCMC) sampling-based
scheme is then used to generate the most likely paths. Anomalies are
detected based on the estimated pdf of the next state by comparing the
actual measurements of objects with the predicted tracks. A different
approach is followed in Jiang et al. (2011), where three different levels
of semantics are considered after tracking all moving objects in the
video. Rules of normal events are automatically extracted at each level
and anomalies are defined as the events deviating from these rules. A
two-stage inference model is used by Jeong et al. (2014) for modeling
trajectory patterns in a probabilistic framework. In Yang et al. (2013)
sub-trajectories are modeled by a sequence learning model, and multi-
instance learning is applied in order to detect anomalies, while a
tracking scheme involving pedestrian detection is proposed in
Yuan et al. (2015), for anomaly detection in crowded scenes based on
spatio-temporal variations. Finally, in the work of
Piciarelli et al. (2008), trajectory clustering and a single class Support
Vector Machine (SVM) are used for the identification of anomalous
trajectories in surveillance video sequences, while a Dual Hierarchical
Dirichlet Process (Dual-HDP) is proposed in Wang et al. (2008) for
trajectory and region modeling. These methods show some promising
results, but are most applicable in scenarios where trajectories are well
defined and clearly visible. Their usability becomes limited in the case
of more realistic traffic scenes where the motions are often highly
dense, complex, with many occlusions and local noise. In those cases,
extracted trajectories are susceptible to errors due to occlusions and
local noise, while initial step in some of these approaches, object de-
tection, may also be challenging and contain errors.

The second category, is defined by the recent trend of applying
statistical models directly on raw image data, such as pixel location or
other low level features. Non-parametric methods, including Gaussian
Mixture Models, Dynamic Bayesian Networks or Probabilistic Topic
Models, are used in the literature to capture spatiotemporal changes or
find correlations among features, as in the case of topic models.

Wang et al. (2009) use hierarchical Bayesian models to model
scenes in two layers: atomic activities, represented as distributions over
visual words, and interactions, represented as distribution over atomic
activities. Typical and abnormal activities are then defined in a prob-
abilistic framework, according to the Bayesian models. Despite pro-
mising results, that method relies on a single model for the whole
frame, unlike the framework proposed in this work, while features are
extracted around each moving pixel, instead of extracting informative
pixel regions, thus facilitating the existence of noise artifacts. Further-
more, scalability issues arise due to its high computational cost, as the
learning model requires about 12 h to process a 1.5 h video.

A new dynamic topic model, the Markov Clustering Topic Model
(MCTM), is introduced by Hospedales et al. (2012) while two new
learning algorithms for the same model are proposed in
Isupova et al. (2016). The suggested model clusters visual events into
activities and subsequently clusters activities into global behaviors, in
order to identify salient events. Latent Dirichlet Allocation (LDA) is
used in this case, which is less powerful than HDP used in our work, as
it requires the prior specification of the number of events in the video
sequences. Moreover, the use of a single Markov-chain to describe the
whole video dynamics, assumes that all scenes are described by a global
rule, making the method likely to miss local abnormalities and events.

A weakly supervised topic model is described in
Hospedales et al. (2011), in order to identify rare and subtle events in
the scene. This work requires the use of clips of each class for training
purposes, including training samples of anomalous events. However, in
practical applications like traffic surveillance, there is a vast diversity of
potentially abnormal events, which makes it impossible to find ade-
quate instances of each class.

In another approach for abnormal event detection,
Varadarajan et al. (2012) introduce a novel model that exploits tem-
poral relationships between activity pairs, as well as global rules that
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are dominant in the scene, to effectively capture the scene’s dynamical
context. In Varadarajan et al. (2013), temporal information is em-
bedded in a topic based model called Probabilistic Latent Sequential
Motifs (PLSM) to efficiently discover motifs of activities that occur
concurrently in the scene while swarm intelligence was deployed by
Kaltsa et al. (2014) for anomaly detection in crowded scenarios.
However, these works ignore the interactions of motifs, making them
inappropriate for anomaly detection in traffic videos, where interac-
tions may play a leading role in the determination of normal and “ab-
normal” activity.

Clustering of groups of pixels is used in the work of Cui et al. (2007),
where blobs corresponding to visual events are created. Blob-level
features are then used in a sequential Monte Carlo approach in order to
detect abnormalities. However, in this case “anomaly” is examined in
each frame as a whole, making it harder to detect anomalies occurring
only in a small part of a dense scene (global approach). Additionally,
this blob based method, as derived from the connected components,
seems to be inadequate in dense scenarios. Furthermore, the “super-
pixels” in Cui et al. (2007) are essentially blocks of pixels which have a
fixed square shape, whereas the superpixels used in our work are
formed based on appearance similarity, following the SLIC method of
Achanta et al. (2012). Additionally, the features of Cui et al. (2007) are
derived based on statistics of pixel-frame differences to define regions
of interest, instead of more accurate optical flow estimates, making that
method susceptible to noise.

A graph representation and a MCMC model is used by Kwon and
Lee (2015) for event summarization and rare event detection. However,
as stated, that method is only suitable for events caused by several
objects, missing “anomalies” caused by a single object (e.g. a police car
driving in the wrong way). This constitutes a quite important limita-
tion, as it may miss significant ”irregularities” often occurring in traffic
scenes.

An interesting work in the field of “anomaly” detection in traffic
scenes is that of Yuan et al. (2017), where the problem is examined
from the driver’s perspective, using moving camera, instead of sur-
veillance camera data. By definition, Yuan et al. (2017) addresses a
different problem than our work, as ego-centric camera data poses
challenges related to the varying camera viewpoint, while also pro-
viding different types of information about the traffic scene, compared
to static camera surveillance videos.

Another recent work Cheng et al. (2015) uses hierarchical feature
representations and a Gaussian Process Regression (GPR) framework to
build a low-level and a high-level codebook respectively. Anomalies are
then detected, after the integration of local and global anomaly detec-
tors. A two-level motion pattern and Latent Dirichlet Allocation (LDA)
were adopted in Song et al. (2014) for scene understanding, which, as
mentioned above, has limited applicability as it requires prior knowl-
edge of the number of events in the scene. In Kuettel et al. (2010),
Dependent Dirichlet Process and Hidden Markov Model (DDP-HMM)
are used in order to capture spatiotemporal dependencies in traffic
scenarios. The main drawback of these methods is their usually high
computational cost, due to the large volume of data they manage, in
combination with the complexity of their models.

It is worth mentioning that our topic based framework, proposed in
this work, is significantly differentiated from the previously described
topic related works in the following two ways.

1. We extract features in local regions of interest which are comprised
of superpixels with a similar appearance and a significant level of
motion, instead of using the whole set of moving pixels present in
the frame. This way, more accurate region modeling is achieved,
while local noise artifacts are efficiently avoided.

2. We deploy multiple HDPs in these frame regions, instead of a single
global model proposed in the aforementioned works, resulting in the
enhancement of our algorithm’s resolution.

These features, in combination with the low computational cost,
due to its modeling simplicity, make our method most suitable to be
used for anomaly detection tasks in structured traffic video sequences.

The paper is organized as follows: Section 3 describes the problem
formulation and presents methods for video representation and de-
ployment of local HDPs; Section 4 presents the anomaly detection and
localization framework; and a detailed experimental evaluation is dis-
cussed in Section 5. Conclusions are summarized in Section 6.

3. Problem formulation

In this work we address the problem of spatiotemporal anomaly
detection and localization in traffic video data. This is a particularly
challenging problem due to the variety of scenarios and the complexity
of the scenes, often containing a wide range of different objects (people,
small/big vehicles etc.) whose density may dramatically change at a
moment’s notice.

In our approach each frame is divided into superpixels and regions
are formed as clusters of these superpixels. Thus, regions with varying
boundaries are generated, avoiding the division of moving parts of
objects into different areas, and retaining valuable information about
object shape and motion. Spatiotemporal Interest Points (STIPs) are
then sparsely extracted and tracked in these volumes. Their motion
history from the temporal window in which they are tracked is used as
input in local topic models, which are applied to capture separate se-
mantic topics for each region. The use of many topic models in each
frame - instead of one - allows the efficient capture of elusive details.
The use of local topic models also overcomes issues originating from
local sources of noise, such as incomplete or erroneous trajectories. An
overview of the proposed method is presented in Fig. 1.

3.1. Video representation

In order to extract a meaningful representation of the video se-
quence, each frame is divided into 12×12 superpixels, using the im-
plementation of Achanta et al. (2012). In this manner pixels are
grouped into regions with a homogeneous appearance, which have a
high likelihood of corresponding to entire objects. Thus they avoid
breaking up objects into different cells, as is often the case when regular
grids are applied to video frames or images. An instance of this can be
seen clearly in Fig. 2(a), where superpixel-based segmentation of the
QMUL dataset results in accurate object localization, whereas when a
regular grid is applied, objects can be broken up, such as the white
truck in Fig. 2(b). Our intuitive expectation that the use of superpixel-
based segmentation of video frames will result in more accurate event
detection is further proven by our experiments, where it is shown that
their incorporation contributes to the improvement of our algorithm’s
performance. Superpixels have been used in the past for image seg-
mentation or video representation (Chang et al., 2013; Li et al., 2013,
2012), to segment along object outlines. In our approach, superpixels
are grouped into regions of interest, as detailed below, resulting in an
area of varying size, that captures both local and global information.

In order to capture global event characteristics, while retaining local
information, we cluster the superpixels, dividing the frames into m× n
regions. We empirically found that the division of frames into 3×3
regions leads to the best tradeoff between the successful capture of local
scene details and containing a sufficient percentage of the overall
scenes motion energy. The setting of this parameter is examined in
more detail in Section 5.1. Different numbers of superpixels were also
clustered into regions, from which it was found that a grid consisting of
regions containing the same number of superpixels ( × =4 4 16 super-
pixels) leads to satisfactory results in all cases examined in this work. As
the size of the superpixels themselves changes, the resulting regions
have a varying size that is adaptive to the scene characteristics, and are
therefore expected to lead to improved results.

After the division of the frame in a fixed number of regions, the
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motion in each superpixel is estimated using the Farneback optical flow
(Farnebäck, 2003), and the amount of activity in it is assessed as fol-
lows: a superpixel is considered active if 40% of the pixels in it are
characterized by motion whose optical flow value is greater than an
empirically determined threshold. Interest points are then extracted in
the active superpixels: the position of the pixel in the 95th percentile
motion magnitude of all pixels, belonging in the same superpixel, is
selected. Pixels with the highest motion magnitude are excluded in
order to eliminate possible noise caused by outliers. The adopted
threshold of 95% was experimentally seen to be flexible, with other
values leading to roughly the same results. The utilization of this
method, proved to contribute to more meaningful interest points and
hence, to more representative descriptors.

Once interest points are extracted, they are tracked using the KLT
tracker (Shi and Tomasi, 1994). Each frame is then characterized by
visual words, derived from the spatial location of interest points and the
orientation of their neighborhood pixels’ optical flow values. More
specifically, all possible quantized locations and orientations are re-
presented by a fixed codebook: spatial information is retained in the
positions of all superpixels’ centers, and the orientation of their optical
flow value is quantized into 8 bins. Thus, the corresponding codebook
comprises of the Cartesian product of all possible locations and or-
ientations. Finally, a codeword indicating no motion is also added,
making the codebook’s size equal to { × × +(12 12) 8 1}, for our grid of
12×12 superpixels. Consequently, each interest point is defined by the
location of the superpixel it belongs to, and the dominant orientation of
its “active” neighborhood within a region of interest (ROI) of 12×12
pixels around it.

In order to account for temporal variations, which are central in the
detection of abnormal events, the video sequence is divided into
overlapping subsequences of 2 s in length, overlapping by half their size

(1 s). Regions comprised of superpixels are then described as a histo-
gram over the finite aforementioned codebook, with no zero elements
corresponding to the visual words in their interest points’ trajectory
history. In this way, informative descriptors are extracted from varying
spatiotemporal volumes, as constructed from the combined action of
superpixels clustering and tracking. Local HDPs are subsequently de-
ployed, for each region separately to effectively describe its dynamics.

3.2. Local Hierarchical Dirichlet Processes

Probabilistic Topic Models (PTM) were first introduced in text
mining (Hofmann, 1999) to efficiently process large collection of data
by capturing their underlying latent structure. In order to achieve this,
topics are extracted in a generative manner from the data corpus,
clustering similar words present in the documents. Subsequently, each
document is characterized by a probability distribution of the topics in
it, which results in a low-dimensional semantic descriptor. In video
analysis, documents correspond to video clips (subsequences), whose
length is equal to the size of the temporal window used. Thus, the terms
“clip” and “document” will be used interchangeably throughout the rest
of the paper. Topics can be interpreted as the recurring actions, arising
as histograms over the extracted visual vocabulary, described in
Section 3.1.

The general idea behind the use of topic models in video surveil-
lance is to depict data as a distribution over high level concepts,
without any previous knowledge about what these concepts are. The
use of a PTM is well suited for anomaly detection in traffic scenes, as it
can allow the unsupervised extraction of the rules, usually governing
traffic scenes. In our work, Hierarchical Dirichlet Process (HDP) was
deployed for topic modeling, in order to avoid the manual determina-
tion of the number of topics, which is required by the widely used
Latent Dirichlet Allocation (LDA) (Blei et al., 2003). HDP constitutes an
hierarchical extension of the Dirichlet Process (DP), which is defined as
a distribution over a random probability measure using a nonpara-
metric prior, allowing the mixture models to share components. The
generative model, proposed in Teh et al. (2007), is depicted in Fig. 3,
where it can be seen that Dirichlet Processes are employed on two le-
vels. A global random probability measure G0, drawn from a Dirichlet
process DP(γ, H), is used as a prior distribution over the whole corpus.
The base distribution H is a probability measure used by a DP to draw
distributions around it, while γ stands for a positive scaling parameter.

∼G DP γ H( , )0 (1)

For each document j in the corpus D, a random measure Gj, is then
drawn from a second Dirichlet Process with base distribution G0 and

Fig. 1. Overview of the proposed method. At each time instant t, a frame is divided into superpixels, and interest points are extracted in them. They are then tracked over previous frames
during a 2 s time window, so as to retain information about their temporal evolution and spatiotemporal correlations. Regions are formed in each frame by grouping the superpixels: in
this work, each frame comprised of 3× 3 regions. Codewords are formed for the optical flow orientation and location of the interest points. Multiple HDPs are then deployed in each
region, to efficiently characterize the topics in them. The regions are reconstructed based on these HDPs, and a confidence score for each region determines if it contains abnormal events.

Fig. 2. An instance of the QMUL dataset when: (a) superpixels are used (b) rigid cells are
used In both cases a grid of 12× 12 is applied.
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scaling parameter α0.

∼G G DP α G( , ), for each jj 0 0 0 (2)

In using G0 as a sample measure to create Gj, we implicitly assume
that each Gj has support at the same locations as G0. This means that the
whole corpus shares the same set of topics, with only their proportion
being differentiated in each document. Hyperparameters γ, α0 both
control the concentration of the word distribution and therefore influ-
ence the sparsity of the topics and their percentage in the corpus.
Subsequently, a specific topic ϑji for document j is sampled from Gj, and
a word xji is then drawn from a multinomial distribution of the selected
topic ϑji. The overall process can be summarized by the following
conditional distributions:

∼θ G Gji j j (3)

∼x Mult θϑ ( )ji ji ji (4)

As for most Bayesian non parametric models, exact posterior in-
ference for the HDP is intractable. Thus, a variety of approximate in-
ference techniques have been proposed, including variational inference
and Markov Chain Monte Carlo (MCMC) sampling. The general idea
refers to the approximation of the posterior distribution over the latent
variables. In our work, the Split-Merge MCMC algorithm, an enriched
version of the Gibbs sampler proposed in Wang and Blei (2012), was
preferred. It operates at the top level of HDP and its main advantage is
its potential to lead to a faster convergence, compared to traditional
Gibbs sampling.

In our method, multiple HDP models, referred to here as “local
HDPs”, are generated concurrently, in order to describe the whole
frame’s dynamics. This goes beyond the current State of the Art (SoA)
topic-related works (Hospedales et al., 2009; Hospedales et al., 2012;
Hospedales et al., 2011; Kuettel et al., 2010; Varadarajan et al., 2012;
Wang et al., 2009), which rely exclusively on a single model for the
entire frame. The motivation for choosing multiple local HDPs is based
on the observation that an anomaly is often described with very few
words, relatively to the total number of words in the clip. This results in
often missing anomalies occurring locally, and in a limited space,
especially in high density scenarios.

Thus, we develop a local-global approach, to detect anomalies with
spatiotemporal accuracy. Each frame is firstly divided into 12×12
superpixels, which are spatially clustered to form a 3× 3 grid of su-
perpixel-based regions. Then, the interest points in each superpixel-
based region at frame t, and their history from their tracking over a 2 s
temporal window, are used to form the descriptor of the region. Interest
points with a lifespan less than that of the window size, are also taken
into account only if they exist for at least 20 frames, thus eliminating
possible outlier noise. The resulting region’s descriptor is subsequently
used as input for the deployment of the corresponding local HDP. The
procedure is depicted in Fig. 4, while examples of topics generated by a
local HDP for a specific region are shown in Fig. 5.

The use of interest points’ history for the extraction of region’s de-
scriptors, often results in visual words based on interest points found
outside the boundaries of the superpixel-based region at frame t. This is
because an interest point’s location in the timespan −t t: 2 may be part
of a different region (e.g. Fig. 5-a and b). In this way, the correlation of
features found in different neighbor regions may also be efficiently
captured. The proposed framework for local HDP extraction results in
the capture of combined filtered local and global information. The ex-
perimental results prove that the specific scheme leads to a highly re-
liable algorithm, as the use of multiple models in the same frame
contributes to the capture of more scene details, necessary for an

Fig. 3. Graphical model representation of HDP model as suggested in Teh et al. (2007).
Each node denotes a random variable, with shading suggesting an observed variable.
Rectangles denote a replication of the model within the rectangle.

Fig. 4. Example of local HDP extraction for region 4. Each of the 9 regions comprise of a scene-related number of neighbor superpixels, defined at the beginning of the process. For each
clip of temporal duration equal to the window size, the interest point history is captured, and a descriptor is calculated for it. Local HDPs are implemented separately in each region, using
their descriptors as an input.
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efficient classifier. At the same time, the anomaly localization process is
facilitated, as each local HDP provides inference for a particular region.

4. Anomaly detection and localization

The deployment of local HDPs results in the extraction of semanti-
cally meaningful topics, defined as histograms over our fixed vocabu-
lary that characterize the underlying motion of the regions. Each region
is then described within a spatiotemporal window by a probability
distribution over the extracted local topics. Anomaly detection takes
place by a reconstruction process of the clip: successful reconstruction
of a region by the extracted topic models implies that they describe it
well, whereas inaccurate reconstruction implies that an anomaly is
present. Thus, each region, is firstly reconstructed according to its
corresponding local HDP inference.

If a region is described by a set of local topics …θ θ θΘ: { , , },K1 2 n

where each topic θi corresponds to a histogram over the fixed code-
book’s words, the reconstruction of the region can be calculated by the
following equation:

∑=r p θj
i

K

ji i

n

(5)

where rj denotes the reconstruction of a specific region r in clip j, pji
stands for the probability of topic i in clip j, and Kn constitutes the total
number of topics, as found from local HDPs.

After the division of each dataset to training and testing subsets, the
reconstruction of the regions of all clips follows. The cosine distance
measure is then used to define a confidence score indicating the region’s
regularity. This distance measure is chosen as it is indicated for high-
dimensional positive spaces and has proven to be a useful measure for
histogram comparison (Nguyen and Bai, 2011). Furthermore, cosine
distances entail relatively low computational cost. Thus, if r1, r2 re-
present two reconstruction instances of the same region, but for dif-
ferent clips, as obtained by Eq. (5), their corresponding distance can be
calculated by:
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∑
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where m indicates the dimensions of r1 and r2, which in our case are
both equal to the codebook size.

We then define the confidence score of region r in clip j as the
minimum distance from the training data, given by:

= { }s min Drj r r,j tr (7)

where srj denotes the confidence score of region r for clip j, and D ,r r,j tr
represent the distances between each reconstructed region rj, and all the
respective reconstructed regions found in the training data, rtr.

With the method proposed, we can determine each clip’s “ab-
normality” by examining each region separately and inferring about its
“irregularity”. It follows that the localization of the anomaly constitutes
an automatic process, as the algorithm is region-based. For more de-
tailed location coordinates of the anomaly, the distribution of the more
rare words can be used, as they contain spatial information.

In order to acquire an inference score for the clip as a whole and not
for each region separately, we propose a meta processing algorithm that
combines the outcomes of all regions. In brief, the algorithm uses sta-
tistical measures describing each region r in order to decide the re-
spective weight wrj for each region’s confidence score concerning clip j.
The final score for each clip then is computed by the weighted sum of
all regions’ scores for this clip. The method is summarized in
Algorithm 1, where each clip’s score is given by Eq. (8).

∑=s w sclip
r

rj rj
(8)

with wrj corresponding to the weight of region r in clip j, and srj is the
region’s score, calculated by Eq. (7). The overall process of the ex-
traction of a clip’s final score is depicted in Fig. 6.

Anomalous clips are defined as those that have a total score value
greater than 3σ, with σ representing the standard deviation of all scores
in the corpus. The proposed method is found to work efficiently in
challenging traffic datasets, surpassing SoA methods, and detecting
even the most challenging anomalous events. At the same time, its
computational cost is kept low, making the scheme promising even for

Fig. 5. Instances of topics for region 4 from training data: each image
corresponds to a topic instance for region 4 with vectors representing
the codewords contained in them. Colors are used to better visualize
the direction of the particular codeword. It is clear that the topics are
also formed by codewords corresponding to pixels outside of region 4,
as they are based on each interest point’s history over the past 2 s. This
allows our method to retain information about temporal correlations
of the frame features.
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future use in real-time applications.

5. Experiments

In order to evaluate the effectiveness of our method, we have ap-
plied it on three benchmark datasets of traffic, where different kinds of
anomalies were detected and localized. These include the QMUL junc-
tion dataset (Hospedales et al., 2012), the Idiap traffic dataset
(Varadarajan and Odobez, 2009) and the Uturn dataset (Benezeth et al.,
2009). In all cases, our algorithm’s speed and accuracy were calculated
and compared with the SoA, demonstrating improved performance.

5.1. Parameter estimation

The Hierarchical Dirichlet Processes used in our work do not require
the prior determination of a significant number of parameters.
However, a few basic ones are set a priori in order to determine, for
example, the length of the video subsequences to be analyzed. The size
of the regions to be examined, both in space and time, is determined
experimentally, so as to achieve a balance between local and global
information, as it is discussed in more detail below. Because of the static
nature of surveillance cameras, all these parameters need to be tuned
and set only once, and hence do not affect the general applicability of
the method.

In this work, and as mentioned in the previous Sections, documents
defined as clips are created in order to exploit temporal information.
The length of each clip should be large enough to contain sufficient
information but, at the same time, small enough to avoid the loss of
valuable details in long temporal segments. In our experiments, a
window size of 2 s with overlap of half its size (1 s) was found to meet
these requirements.

The spatial division of the frame to 9 regions in a 3×3 grid, was
experimentally found be a suitable choice, as it divides the frame in
small regions where details can be successfully captured but without
losing the correlations present on a greater scale. Numerical compar-
isons of the effect of the varying region sizes is depicted in Fig. 7, where
it is demonstrated how a balance is achieved between global scene
characteristics and local information. In particular, we computed the
percentage of the total frame’s “motion energy”, defined as the sum of
the optical flow magnitudes for each region, in the cases where the
video frames are divided into 2× 2, 3×3, 4×4 and 5× 5 regions. In
the first case, an extracted region contained −40 45% of the total
frame’s “motion energy”, leading to a large concentration of the mo-
tion-related information in the scene, which makes it prone to missing
valuable local information. On the other hand, the division of the frame
into 4×4 and 5× 5, resulted in regions containing 10% or less of the
“motion energy”. These smaller regions are thus more susceptible to the
influence of local noise, while neglecting correlations present on a
larger scale. Finally, the choice of a 3×3 division of each frame re-
sulted in regions that contained up to 25% of the “motion energy”,
which is a good tradeoff between the successful capture of local scene
details and containing a sufficient percentage of the overall scene’s
motion energy. The definition of this parameter is global and thus ap-
plicable to all cases.

For the HDP models, the topic Dirichlet parameter h, is set to
=h 0.5, while the parameters of the prior distributions, γ, α0 were given

gamma priors, γ∼Gamma(0.1, 1) and α0∼Gamma(0.1, 1). In general,
the use of small values for the concentration parameters γ, α0 favors
topic sparsity, and results in the creation of more topics. The algorithm
was run for 200 iterations, giving meaningful and descriptive topics at a
low computational cost. Examples of topics for the QMUL dataset can
be seen in Fig. 5. All HDPs generating exclusively a single topic, were
ignored, as they represent regions with negligible motion.
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5.2. Evaluation criteria

To evaluate our method, we utilize the widely used in the literature,
Area Under the Curve (AUC) measure. This is derived from the true
positive and false positive rates, with larger areas suggesting better
overall performance. Furthermore the Equal Error Rate (EER) derived
from this curve, is also used. It corresponds to the error rate of a system
when false positives (detections of anomalies in a normal situation) are
equal to false negatives (missed anomaly detections). This is achieved
by adjusting the threshold for accepting/rejecting a change until equal
errors are achieved. The lower the EER, the higher the accuracy of the
system.

The area under the precision-recall curve, is also used for the
comparison of our method with SoA for the Idiap dataset, as is com-
monly applied in the literature.

The evaluation and comparison of anomaly detection methods on
traffic datasets is hindered by the lack of quantitative results in many
SoA works. The literature on anomaly detection in the benchmark
traffic datasets provides almost exclusively qualitative results, while
video segmentation and scene analysis constitute the main scope of
many of these works.

5.3. QMUL

The QMUL junction dataset (Hospedales et al., 2012) consists of

90,000 frames depicting the traffic scene of a busy junction. It con-
stitutes a highly challenging dataset for anomaly detection, due to the
wide range of densities it contains, including many scenes with a high
density of vehicles. It also comprises of complex motions, with nu-
merous object occlusions, and traffic patterns often interrupted. This is
due to the nature of the scene being recorded, which contains a central
zone where cars stop temporarily until oncoming traffic stops. Anom-
alous events like U-turns are difficult to detect, as part of their trajec-
tory is common to other activities (like crossing the road or turning),
and moreover, their pattern is often interrupted. As a result, they are
often missed by the SoA literature.

To apply our method, the grid of 12× 12 superpixels was divided in
9 regions, as shown in Fig. 8-a. The first 12, 000 frames were used for
training our models, while the remaining frames were used for eva-
luation. In total 412 clips, each with duration of 2 s, were formed for
training purposes and 2689 clips were used to be tested for anomaly
detection.

Our method was able to efficiently detect and localize a number of
different anomalies, as shown in Fig. 9. The area outlined with red color
corresponds to the region where an anomaly occurs, while green lines
indicate the tracking history of the interest points found in the parti-
cular region. Comparisons with the SoA, provided by
Cheng et al. (2015), are depicted in Table 1. It can be seen that the
method proposed outperforms the SoA, as it results in higher AUC,
precision-recall curve and a lower EER. The method is compared
against 8 other SoA works, which use different approaches to detect
spatiotemporal anomalies in this dataset. These include: the use of local
nearest neighbor distances for the extraction of scores indicating
anomalous events (Saligrama and Chen, 2012), the utilization of a
probabilistic framework to infer about sparse or dense spatiotemporal
patches modeled by an hierarchical codebook (Javan Roshtkhari and
Levine, 2013), the use of “inference by composition” (IBC) to determine
about “irregularities” found in sparse patches (Boiman and Irani, 2007),
the deployment of Gaussian Process Regression (GPR) to identify unu-
sual spatiotemporal configurations in Loy et al. (2009) and
Cheng et al. (2015), and finally the Markov Clustering Topic Model
(MCTM) and its variation (EM) provided by Hospedales et al. (2012)
and Isupova et al. (2016) respectively.

It is noteworthy, that it surpasses the “consistent GPR” method of
Cheng et al. (2015) by 1.17 in AUC and at a lower computational cost.
This is evident in Table 5, where it can be seen that our algorithm is
about 6 times faster than “consistent GPR” in the inference process, as it
is able to process 5.04 frames per second, in contrast to 0.82 frames per
second denoted in Cheng et al. (2015). The ROC curve for the QMUL
dataset is depicted in Fig. 11-a.

Fig. 6. Inference about a clip’s j score. Region descriptors are formed by capturing the trajectory history of all interest points in their area. Subsequently, local HDPs are extracted and
their inference is used for the reconstruction of each region. The resulting reconstructed regions are compared with the clips from the training corpus, and a confidence score srj is
calculated for each region r in clip j. The final clip score is then calculated as the weighted sum of all local scores, to determine if a frame is normal or if it contains abnormal events.

Fig. 7. Investigation of the division of frame in a grid of 2× 2, 3× 3, 4× 4 and 5×5
regions respectively. The horizontal axis depicts the total number of regions per frame,
while the vertical axis represents the mean motion energy of each region, as a percentage
of the total energy of the frame.
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Our methodology’s evaluation in terms of AUC and EER is presented
in Table 2. The accuracy of the proposed method is compared with
cases where: (1) a single HDP model is used instead of the multiple local
HDPs proposed in this work, (2) cells of a fixed size are used instead of
superpixels, and (3) our meta processing algorithm is not taken into
account, with equal weights ( =w 1) assigned to all regions’ scores, to
assess if a clip is normal or not. The experimental results show that the
proposed framework leads to improved accuracy, supporting the use of
multiple HDPs with varying cell sizes and weights.

5.4. Idiap

The Idiap traffic junction dataset (Varadarajan and Odobez, 2009)
consists of a 45 min video depicting a road scene containing multiple
activities such as: pedestrians walking on the pavement or waiting to
cross the road, vehicles moving in and out the scene in different di-
rections. Anomalous events are comprised of jaywalking or people
crossing the road away from the pedestrian zone, while an occurrence
of a vehicle entering the pedestrian area is also present. About 18, 000
frames were used for training, with the remaining frames kept for
testing. In total, 714 clips of 2 s were created to form the training data,
while 1911 clips were used as test data.

Comparisons for this dataset are based on the precision recall area,
and are depicted in Table 3, where the AUC for our method is also
presented. The proposed algorithm is compared with the Markov
Clustering Topic Model of Hospedales et al. (2009) and its variation
provided by Isupova et al. (2016). Our method achieves a score of
60.41, which is significantly higher than the 37.59 currently found in
the literature. We also tested multiple HDPs without using superpixels,

Fig. 8. Examples of two regions’ grids, after the division of frame in 12× 12 superpixels. In all cases a 3× 3 grid of regions is created, with only the number of superpixels in each region,
being differentiated. (a) Grid used for the QMUL dataset, (b) symmetrical grid with all regions containing the same number of superpixels. This grid was used for Idiap and Uturn dataset.

Fig. 9. Anomalies detected and localized in QMUL dataset. Red color depicts the region that the anomaly was localized, while green lines correspond to the tracking history of the interest
points found in the area. The anomalies concern: (a) Uturn, (b) Jay walking, (c) wrong direction, and (d) traffic break. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Comparisons with SoA for anomaly detection in QMUL.

Method AUC EER Precision-recall area

local kNN 43.6 54.3 –
Dense STC 68.7 36.4 –
Sparse STC 64.5 42.7 –
Sparse IBC 61.8 42.7 –
Loy et al. 77.4 28.1 –
Consistent GPR 85.4 23.8 –
MCTM – – 27.87
EM – – 30.51
model proposed 86.57 21.69 45.63

Table 2
Investigation of the proposed methodology in QMUL dataset.

Single HDP Without superpixels Without weights Method proposed

AUC 54.78 77.07 82.18 86.57
EER 44.58 29.43 24.10 21.69

Table 3
Comparisons for Idiap dataset.

MCTM EM model without
superpixels

model proposed

precision-recall
area

36.43 37.59 48.49 60.41

AUC – – 83.82 90.74
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with the same number of cells of a constant size to form a region. This
resulted in lower performance, confirming the advantage of using su-
perpixels in our algorithm. The ROC curve for this dataset is provided in
Fig. 11 (b), while examples of anomalies being correctly detected and
localized by our algorithm are shown in Fig. 10.

5.5. Uturn

The Uturn dataset (Benezeth et al., 2009) shows normal traffic in a
crossroad and some cars making illegal U-turns (defined as “anoma-
lies”). The dataset comprises of 6117 frames of 360×240 pixels. The
scenes are quite sparse and the dataset is of a limited size, so there is not
much training data. The training set was composed of 1500 frames,
while the remaining frames were used for testing, with 97 and 303 clips
created in each case, respectively.

Examples of “anomalies” correctly detected in the Uturn dataset can
be seen in Fig. 12. The evaluation is summarized in Table 4, where it is
compared with the following 5 methods: the hierarchical mixture of

Fig. 10. Anomalies detected and localized in Idiap dataset. Red color depicts the region that the anomaly was localized, while green lines correspond to the tracking history of the interest
points found in the area. All the anomalies concern jay walking. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. ROC curves for anomaly detection in (a) QMUL junction dataset, (b) Idiap traffic dataset.

Fig. 12. Anomalies detected and localized in Uturn dataset. Red color depicts the region that the anomaly was localized, while green lines correspond to the tracking history of the
interest points found in the area. Anomalies concern: (a)-(b) Uturn, (c) Jay walking. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 4
Comparisons for Uturn dataset.

H-MDT-
spat

H-MDT-
temp

H-MDT Local
stat. aggr.

Swarm
intelligence

Method
proposed

AUC 83.9 92.9 95.2 94.7 95.3 94.46
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dynamic textures method and its variants as proposed
in Li et al. (2014), the local statistical aggregates approach
of Saligrama and Chen (2012) and the swarm intelligence framework
of Kaltsa et al. (2015). As it can be seen, proposed method achieves very
high performance, with an AUC of 94.46, which is comparable to the
highest 95.3 in our previous work (Kaltsa et al., 2015). The lack of more
training documents, an important factor for the deployment and success
of topic models, contributed to the current performance of our algo-
rithm, which is expected to be even further improved with more
training. It is remarkable to note, that our method also revealed 2
jaywalking-related “anomalies” (Fig. 12-c), which are not reported or
found in the rest of the SoA (Benezeth et al., 2009; Kaltsa et al., 2015; Li
et al., 2014), where only Uturns are defined as “anomalies”.

5.6. Computational cost

The computational cost constitutes an important factor for the
evaluation of an algorithm, responsible for processing of surveillance
videos. Whether the algorithm is applied online or offline, it has to run
in a reasonable timeframe despite the large volume of data. Although,
our algorithm has not been optimized for better performance, our ex-
perimental results show that its computational cost remains quite low.
Currently, our algorithm works offline, however there is the potential to
extend it to an online mode. All experiments were run in C++, on a 16
GB RAM computer with a 3.5 GHz CPU.

Table 5 compares our algorithm’s computational cost with the
“consistent GPR” method for the QMUL dataset (Cheng et al., 2015).
During the training phase, our algorithm is about 1.2 times faster, while
in the most important test phase, it achieves a speed up of about 6
times. The omission of superpixel extraction significantly improves its
speed, but leads to the deterioration of the algorithm’s performance, as
Table 2 shows. In Table 6 our method’s computational cost is also
provided for all datasets, with and without the use of superpixels. It is
clear, that the process of superpixel extraction is the main step that
delays our algorithm’s performance, as its omission results in a 3 times
speed improvement, from about 5 frames per second to about 14 frames
per second.

6. Conclusion

In this work we propose a novel framework for anomaly detection in
different traffic scenarios, given data recorded from static surveillance
cameras. Informative regions are formed by clusters of superpixels, in
which interest points are detected. The interest points are then tracked
over time and their location and flow orientation are encoded and used
by multiple HDPs which are applied in each region separately, de-
tecting the topics in them. This results in the robust capture of both
local and global information about the scene, by maintaining local
feature correlation information over space and time. Its remarkable

performance in 3 different benchmark traffic datasets proves the
method’s generality and its applicability in real life situations.
Especially, its significantly high performance in the QMUL dataset,
where different kinds of “anomalies” are successfully detected, de-
monstrates that the proposed algorithm can be effectively used for
challenging traffic videos with many occlusions, local scale variations
and complex correlated motion patterns. This fact, in combination with
its low computational cost, make our algorithm very appropriate for a
variety of surveillance applications.
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