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Abstract

Our aim is to recognise the words being spoken by a talking face, given only

the video but not the audio. Existing works in this area have focussed on trying

to recognise a small number of utterances in controlled environments (e.g. digits

and alphabets), partially due to the shortage of suitable datasets.

We make three novel contributions: first, we develop a pipeline for fully

automated data collection from TV broadcasts. With this we have generated

a dataset with over a million word instances, spoken by over a thousand dif-

ferent people; second, we develop a two-stream convolutional neural network

that learns a joint embedding between the sound and the mouth motions from

unlabelled data. We apply this network to the tasks of audio-to-video synchroni-

sation and active speaker detection; third, we train convolutional and recurrent

networks that are able to effectively learn and recognize hundreds of words from

this large-scale dataset.

In lip reading and in speaker detection, we demonstrate results that exceed

the current state-of-the-art on public benchmark datasets.

Keywords: lip reading, lip synchronisation, active speaker detection, large

vocabulary, dataset

1. Introduction

Lip-reading, the ability to understand speech using only visual information,

is a very attractive skill. It has clear applications in speech transcription for

cases where audio is not available, such as for archival silent films or (less ethi-

cally) off-mike exchanges between politicians or celebrities (the visual equivalent



of open-mike mistakes). It is also complementary to the audio understanding of

speech, and indeed can adversely affect perception if audio and lip motion are

not consistent (as evidenced by the McGurk [1] effect). For such reasons, lip-

reading has been the subject of a vast research effort over the last few decades.

Our objective in this work is a scalable approach to large lexicon speaker

independent lip-reading. Furthermore, we aim to recognize words from contin-

uous speech, where words are not segmented, and there may be co-articulation

of the lips from preceding and subsequent words. Achieving this goal enables a

form of ‘word spotting’ in (no-audio) video streams.

In lip-reading there is a fundamental limitation on performance due to ho-

mophones. These are sets of words that sound different, but involve identical

movements of the speaker’s lips. Thus they cannot be distinguished using visual

information alone. For example, in English the phonemes ‘p’ ‘b’ and ‘m’ are visu-

ally identical, and consequently the words mark, park and bark, are homophones

(as are pat, bat and mat) and so cannot be distinguished by lip-reading. This

problem has been well studied and there are lists of ambiguous phonemes and

words available [2, 3]. It is worth noting that the converse problem also applies:

for example ‘m’ and ‘n’ are easily confused in audio, but are visually distinct.

We take account of such homophone ambiguity in assessing the performance of

our methods.

Apart from this limitation, lip-reading is a challenging problem in any case

due to intra-class variations (such as accents, speed of speaking, mumbling), and

adversarial imaging conditions (such as poor lighting, strong shadows, motion,

resolution, foreshortening, etc.).

In this paper we investigate using Convolutional Neural Networks (CNNs)

for directly recognizing individual words from a sequence of lip movements.

Our reason for considering CNNs, rather than the more usual Recurrent Neural

Networks that are used for sequence modelling, is their ability to learn to classify

images on their content given only image supervision at the class level, i.e.

without having to provide stronger supervisory information such as bounding

boxes or pixel-wise segmentation. This ability is evident from the results of the
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ImageNet classification challenge [4].

We take advantage of this ability to recognize temporal signals in an image

time series. In particular we consider one second sequences of lip movements

of continuous speech and learn to recognize words within the sequence given

only class level supervision, but do not require stronger temporal supervision

such as specifying the start and end of the word. Clearly, spatial registration of

the mouth is an important element to consider in the design of the networks.

Typically, the imaged head will move in the video, either due to actual move-

ment of the head or due to camera motion. One approach would be to tightly

register the mouth region (including lips, teeth and tongue, that all contribute

to word recognition), but another is to develop networks that are tolerant to

some degree of motion jitter. We take the latter approach, and do not enforce

tight registration.

We make contributions in three areas: first, we build a pipeline for automated

large scale data collection, including visual and temporal alignment. With this

we are able to obtain training data for hundreds of distinct words, thousands

of instances for each word, and over a thousand speakers (Section 2); second,

we develop a two-stream convolutional neural network SyncNet that learns a

joint embedding between the sound and the mouth motions using cross-modal

self-supervision. We apply this network to the tasks of audio-to-video synchro-

nisation and active speaker detection (Section 3); third, we develop and compare

a number of network architectures for classifying multi-frame time series of lips

(Section 4). In speaker detection and lip reading, our results exceed the state-

of-the-art on public datasets, Columbia [5] and OuluVS2 [6].

As discussed in the related work below, in three aspects: (i) speaker inde-

pendence, (ii) learning from continuous speech, and (iii) lexicon (vocabulary)

size, we go far beyond the current state of the art. We also exceed the state of

the art in terms of performance, as is also shown in Section 5 by comparisons

on the standard OuluVS2 benchmark dataset [6].
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1.1. Related work

Research on lip reading (a.k.a. visual speech recognition) has a long history.

A thorough survey of shallow (i.e. not deep learning) methods is given in the

recent review [7], and will not repeated in detail here. Many of the existing

works in this field have followed similar pipelines which first extract spatio-

temporal features around the lips (either motion-based, geometric-feature based

or both), and then align these features with respect to a canonical template. For

example, Pei et al. [8], which holds state-of-the-art on many datasets, extracts

the patch trajectory as a spatiao-temporal feature, and then aligns these features

to reference motion patterns.

A number of recent papers have used deep learning methods to tackle prob-

lems related to lip reading. Koller et al. [9] train an image classifier CNN to

discriminate visemes (mouth shapes, visual equivalent of phonemes) on a sign

language dataset where the signers mouth words. Similar CNN methods have

been performed by [10] to predict phonemes in spoken Japanese. In the context

of word recognition, [11] has used deep bottleneck features (DBF) to encode

shallow input features such as LDA and GIF [12]. Similarly [13] uses DBF to

encode the image for every frame, and trains a LSTM classifier to generate a

word-level classification.

One of the major obstacle to progress in this field has been the lack of

suitable datasets [7]. Table 1 gives a summary of existing datasets. The amount

of available data is far from sufficient to train scalable and representative models

that will be able to generalise beyond the controlled environments and the very

limited domains (e.g. digits and the alphabet).

Word classification with large lexicons has not been attempted in lip reading,

but [23] has tackled a similar problem in the context of text spotting. Their

work shows that it is feasible to train a general and scalable word recognition

model for a large pre-defined dictionary, as a multi-class classification problem.

We take a similar approach.

Of relevance to the architectures and methods developed in this paper are

CNNs for action recognition that learn from multiple-frame image sequences
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Name Env. Output I/C # class # subj. Best perf.

AVICAR [14] In-car Digits C 10 100 37.9% [15]

AVLetter [16] Lab Alphabet I 26 10 43.5% [17]

CUAVE [18] Lab Digits I 10 36 83.0% [19]

GRID [20] Lab Words C 8.5∗ 34 79.6% [21]

OuluVS1 [17] Lab Phrases I 10 20 89.7% [8]

OuluVS2 [6] Lab Phrases I 10 52 73.5% [22]

LRW TV Words C 500 1000+ -

Table 1: Existing lip reading datasets. I for Isolated (one word, letter or digit per record-

ing); C for Continuous recording. The reported performance is on speaker-independent ex-

periments. (∗ For GRID [20], there are 51 classes in total, but the first word in a phrase is

restricted to 4, the second word 4, etc. 8.5 is the average number of possible classes at each

position in the phrase.)

such as [24, 25, 26], particularly the ways in which they capture spatio-temporal

information in the image sequence using temporal pooling layers and 3D con-

volutional filters.

2. Building the dataset

This section describes our multi-stage pipeline for automatically collecting

and processing a very large-scale visual speech recognition dataset, starting from

British television programmes. Using this pipeline we have been able to extract

1000s of hours of spoken text covering an extensive vocabulary of 1000s of

different words, with over 1M word instances, and over 1000 different speakers.

The key ideas are to: (i) obtain a temporal alignment of the spoken audio

with a text transcription (broadcast as subtitles with the programme). This

in turn provides the time alignment between the visual face sequence and the

words spoken; (ii) obtain a spatio-temporal alignment of the lower face for the

frames corresponding to the word sequence; and, (iii) determine that the face is

speaking the words (i.e. that the words are not being spoken by another person

in the shot). The pipeline is summarised in Figure 2 and the individual stages
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Figure 1: A sample of speakers in our dataset.

are discussed in detail in the following paragraphs.

Audio

Audio-subtitle

forced alignment

Alignment

verification

Video

OCR subtitle

Shot detection

Face detection

Face tracking

Facial landmark

detection

AV sync &

speaker detection

Training

words

Figure 2: Pipeline to generate the text and visually aligned dataset.

Stage 1. Selecting programme types. We require programmes that have

a changing set of talking heads, so choose news and current affairs, rather than

dramas with a fixed cast. Table 2 lists the programmes. There is a significant

variation of format across the programmes – from the regular news where a single

speaker is talking directly at the camera, to panel debate where the speakers

look at each other and often shifts their attention. There are a few people
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who appear repeatedly in the videos (e.g. news presenter in BBC News or the

host in the others), but the large majority of participants change every episode

(Figure 1).

Channel Series name Description # vid. Length Yield

BBC 1 HD News at 1 Regular news 1242 30 mins 39.9%

BBC 1 HD News at 6 Regular news 1254 30 mins 33.9%

BBC 1 HD News at 10 Regular news 1301 30 mins 32.9%

BBC 1 HD Breakfast Regular news 395 varied 39.2%

BBC 1 HD Newsnight Current affairs debate 734 35 mins 40.0%

BBC 2 HD World News Regular news 376 30 mins 31.9%

BBC 2 HD Question Time Current affairs debate 353 60 mins 48.8%

Table 2: Video statistics. The yield is the proportion of useful face appearance relative to the

total length of video. A useful face appearance is one that appears continuously for at least

5 seconds, with the face being that of the speaker.

Figure 3: Subtitles on BBC TV. Left: ‘Question Time’, Right: ‘BBC News at One’.

Stage 2. Subtitle processing and alignment. We require the alignment

between the audio and the subtitle in order to get a timestamp for every word

that is being spoken in the videos. The BBC transmits subtitles as bitmaps

rather than text, therefore subtitle text is extracted from the broadcast video

using standard OCR methods [27, 28]. The subtitles are not time-aligned, and

also not verbatim as they are generated live. The Penn Phonetics Lab Forced

Aligner [29, 30] (based on the open-source HTK toolbox [31]) is used to force-

align the subtitle to the audio signal. The aligner uses the Viterbi algorithm
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to compute the maximum likelihood alignment between the audio (modelled by

PLP features [32]) and the text. This method of obtaining the alignment has

significant performance benefits over regular speech recognition methods that

do not use prior knowledge of what is being said. The alignment result, however,

is not perfect due to: (1) the method often misses words that are spoken too

quickly; (2) the subtitles are not verbatim; (3) the acoustic model is only trained

to recognise American English. The noisy labels are filtered by double-checking

against the commercial IBM Watson Speech to Text service. In this case, the

only remaining label noise is where an interview is dubbed in the news, which

is rare.

Stage 3. Shot boundary detection, face detection, and tracking. The

shot boundaries are determined to find the within-shot frames for which face

tracking is to be run. This is done by comparing color histograms across consec-

utive frames [33]. The HOG-based face detection method of [34] is performed on

every frame of the video (Figure 4 left). As with most face detection methods,

this results in many false positives and some missed detections. In a similar

manner to [28], all face detections of the same person are grouped across frames

using a KLT tracker [35] (Figure 4 middle). If the track overlaps with face

detections on the majority of frames, it is assumed to be correctly tracking the

face.

Figure 4: Left: Face detections; Middle: KLT features and the tracked bounding box (in

yellow); Right: Facial landmarks.
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Stage 4. Facial landmark detection and speaker identification. Facial

landmarks are needed to determine the mouth position for speaker/ non-speaker

classification. They are determined in every frame of the face track using the

method of [36] (Figure 4 right). The landmarks are used to determine the

mouth region, and to map it to a canonical position as input to the two-stream

network described in Section 3 that is used to determine who is speaking in the

video, and reject the clip if the face is not-speaking in sync. It is important

to determine whether the face shown is actually speaking or not. For example,

there may be a reaction shot or voice-over.

Figure 5: One-second clips that contain the word ‘about ’. Top: male speaker, bottom: female

speaker.
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Figure 6: Word statistics. Regardless of the actual duration of the word, we take a 1-second

clip for training and test.

Stage 5. Compiling the training and test data. The training, validation

and test sets are disjoint in time. The dates of videos corresponding to each
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set is shown in Table 3. Note that we leave a week’s gap between the test set

and the rest in case any news footage is repeated. The lexicon is obtained by

selecting the 500 most frequently occurring words between 5 and 10 characters in

length (Figure 6 gives the word duration statistics). This word length is chosen

such that the speech duration does not exceed the fixed one-second bracket that

is used in the recognition architecture, whilst shorter words are not included

because there are too many ambiguities due to homophones (e.g. ‘bad’, ‘bat’,

‘pat’, ‘mat’, etc. are all visually identical), and sentence-level context would be

needed to disambiguate these.

These 500 words occur at least 800 times in the training set, and at least

40 times in each of the validation and test sets. For each of the occurrences,

the one-second clip is taken, and the face is cropped with the mouth centered

using the registration found in Stage 4. The words are not isolated, as is the

case in other lip-reading datasets; as a result, there may be co-articulation of

the lips from preceding and subsequent words. The test set is manually checked

for errors.

Set Dates # class #/class

Train 01/01/2010 - 28/02/2015 500 800+

Val 01/03/2015 - 25/07/2015 500 50

Test 01/08/2015 - 31/03/2016 500 50

Table 3: Dataset statistics.

3. Learning a Synchronization Network for Lip Motion and Audio

The ability to identify who is speaking is crucial in building the dataset

described in Section 2, and has many applications beyond this task.

This section describes the representations and network architectures for a

Synchronization Network (SyncNet), which ingests 0.2-second audio and video

clips, and generates a joint embedding between the inputs. The audio-to-video
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embedding is then used to identify the active speaker and to correct the lip-sync

error.

No explicit annotations (e.g. word labels, or the precise time offset) are

used to train this network – we only assume that in the majority of television

videos, the audio and the video are usually synced, and we use cross-modal

self-supervision to learn the embedding.

The model consists of two asymmetric streams for audio and video, each of

which is described below.

layer   support x # filters (stride)

Key

pool1 3x3 (2)               
conv1  3x3x96 (1)

pool2 3x3 (2)
conv2  3x3x256 (2)

120x120x5

conv3 3x3x512 (1)

conv4 3x3x512 (1)

pool5 3x3 (2)
conv5 3x3x512 (1)

fc6 6x6x4096 (1)

fc7 1x1x256 (1)

conv1  3x3x96 (1)

pool2 1x3 (1x2)
conv2  3x3x256 (1)

conv3 3x3x512 (1)

conv4 3x3x512 (1)

pool5 3x3 (2)
conv5 3x3x512 (1)

fc6 5x4x4096 (1)

fc7 1x1x256 (1)contrastive loss

13x20x1

Figure 7: SyncNet architecture. Both streams are trained simultaenously.

3.1. Loss function

The training objective is that the output of the audio and the video networks

are similar for genuine pairs, and different for false pairs. Specifically, the

Euclidean distance between the network outputs is minimised or maximised.

We propose to use the contrastive loss (Equation 1), originally proposed for

training Siamese networks [37]. v and a are fc7 vectors for the video and the

audio streams, respectively. y ∈ [0, 1] is the binary similarity between the audio

and the video inputs.

E =
1

2N

N∑
n=1

(yn) d2n + (1− yn) max (margin− dn, 0)
2

(1)
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dn = ||vn − an||2 (2)

An alternative to this would be to approach the problem as one of classifi-

cation (binary classification of on-sync and off-sync, or multi-class between the

different offset bins using synthetic data), however we were unable to achieve

convergence using this method.

3.2. Training

The training procedure is inspired by the Siamese network [37], however our

network is different in that it consists of non-identical streams, two independent

sets of parameters and inputs from two different domains. The network weights

are learnt using stochastic gradient descent with momentum. The parameters

for both streams of the network are learnt simultaneously.

3.3. Audio stream

The input audio data is MFCC values. This is a representation of the short-

term power spectrum of a sound on a non-linear mel scale of frequency. 13 mel

frequency bands are used at each time step. The features are computed at a

sampling rate of 100Hz, giving 20 time steps for a 0.2-second input signal.

A 
B 

C
 D

 E
 F

 G
 H

 I 
J 

K 
L 

M

Time +20

-20

Time

Figure 8: Input representations. Left: temporal representations as heatmaps for audio.

The 13 rows (A to M) in the audio image encode each of the 13 MFCC features representing

powers at different frequency bins. Right: Grayscale images of the mouth area.

Representation. The audio is encoded as a heatmap image representing

MFCC values for each time step and each mel frequency band (see Figure 8).

12



The top and bottom three rows of the image are reflected to reduce boundary

effects. Previous work [38] has also attempted to train image-style CNN for

similar inputs.

Architecture. We use a convolutional neural network inspired by those de-

signed for image recognition. Our layer architecture (Figure 7) is based on

VGG-M [39], but with modified filter sizes to ingest the inputs of unusual di-

mensions of 13× 20 (13 in the frequency domain, and 20 in the time domain).

3.4. Visual stream

Representation. The input format to the visual network is a sequence of

mouth regions as grayscale images, as shown in Figure 8. The input dimensions

are 111×111×5 (W×H×T) for 5 frames, which corresponds to 0.2-seconds at

25 Hz.

Architecture. The visual stream is based on the VGG-M network, but the

conv1 filter size has been modified to ingest the 5-channel input instead of the

usual 3.

3.5. Applications
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Figure 9: Mean distance between the audio and the video features for different offset values,

averaged over a clip. The actual offset lies at the trough. The three example clips shown here

are for different scenarios. Left: synchronised AV data; Middle: the audio leads the video

by 4 frames; Right: the audio and the video are uncorrelated.

The problems of AV synchronisation and active speaker detection are closely
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related in that the correspondence between the video and the accompanying

audio must be established.

Audio-to-video synchronisation. To find the time offset between the audio

and the video, we use a sliding-window approach. For each sample, the distance

is computed between one 5-frame video feature and every audio feature in the ±

1 second range. The correct offset is found where this distance is at a minimum.

Since not every 0.2-second sample contains discriminative information (e.g., the

person might be taking a breath), the distance for every offset value is averaged

across the video clip. Typical distances against offset plots are shown in Figure 9.

Active speaker detection. We test our method using the dataset (Figure 10)

and the evaluation protocol of Chakravarty et al. [5]. The objective is to deter-

mine who the speaker is in a multi-subject scene.

Figure 10: Still images from the Columbia dataset [5].

The dataset contains 6 speakers, of which 1 is used for development and

5 (Bell, Bollinger, Lieberman, Long, Sick) for testing. A score threshold is set using

the annotations on the remaining speaker (Abbas), at the point where the ROC

curve intersects the diagonal (the equal error rate).

We report the F1-scores in Table 4. The scores for each test sample are

averaged over a 10-frame or 100-frame window. The performance is almost

perfect for the 100-frame window. The disadvantage of increasing the size of

the averaging window is that the method cannot detect examples in which the

person speaks for a very short period; though this is not a problem for this

dataset.
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Method [5] Ours

Window 10 100 10 100

Bell 82.9% 90.3% 93.7% 100%

Bollinger 65.8% 69.0% 83.4% 100%

Lieberman 73.6% 82.4% 86.8% 100%

Long 86.9% 96.0% 97.7% 99.8%

Sick 81.8% 89.3% 86.1% 99.8%

Table 4: F1-scores on the Columbia speaker detection dataset. The results of [5] have been

digitised from Figure 3b of their paper, and are accurate to around ±0.5%.

4. Models for Lip Reading

The task for the network is to predict which words are being spoken, given a

video of a talking face. The input format to the network is a sequence of mouth

regions, as shown in Figure 5. Previous attempts at visual speech recognition

have relied on very precise localisation of the facial landmarks (the mouth in

particular); our aim is learn from from more noisy data, and tolerate some

localisation irregularities both in position and in time.

4.1. Architectures

We cast the problem as one of multi-way classification, and so base our ar-

chitecture on ones designed for image classification [40, 39, 41]. In particular,

we build on the VGG-M model [39] since this has a good classification perfor-

mance, but is much faster to train and experiment on than deeper models, such

as VGG-16 [41]. We develop and compare models that differ principally in how

they ‘ingest’ the T input frames (where here T= 25 for a 1 second interval).

These variations take inspiration from previous work on human action classi-

fication [24, 25, 42, 26]. Apart from these differences, the architectures share

the configuration of VGG-M, and this allows us to directly compare the perfor-

mance across different input designs. These configurations are closely related

to the visual stream of SyncNet (Section 3).
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We next describe the five architectures, summarised in Figure 11, followed

by a discussion of their differences. Their performance is compared in Section 5.

The numbers in the names refer to the number of temporal frames ingested by

each tower, and the EF, MT, LF and LSTM indicates where the fusion occurs.

concat  on dimension 3

pool1
conv1

pool1 3x3 (2)        
conv1  3x3x48 (1) 

softmax

...

111x111x5

LF-5

pool1 3x3 (2)      
conv1  7x7x96 (2)

pool2 3x3 (2)
conv2  3x3x256 (2)

conv3 3x3x512 (1)

conv4 3x3x512 (1)

pool5 3x3 (2)
conv5 3x3x512 (1)

fc6 6x6x4096 (1)

fc7 1x1x4096 (1)

fc8 1x1xC (1)

softmax

224x224x3

111x111x1
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conv1d 1x1x96 (1)
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pool1 3x3 (2)         
conv1  3x3x48 (1)
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...

fc8
…
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...lstm1 512 

lstm2 512 
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pool1 3x3 (2)          
conv1  3x3x96 (1)
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pool1
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LSTM-5

conv1d 1x1x96 (1)

concat  on dimension 3

pool1
conv1

pool1 3x3 (2)       
conv1  3x3x48 (1)

softmax

...

111x111x5

fc8
…

conv2 

MT-5

pool1 3x3 (2)       
conv1  3x3x48 (1)

fc8
…

conv2 

softmax

111x111x25

EF-25

VGG-M

fc6
…

conv2 

fc6
…

conv2 

fc7

fc8

layer   support x # filters (stride)

Key

Figure 11: Left: VGG-M architecture that is used as a base. Right: Network architectures

for lip reading.

Early Fusion (EF-25). The network ingests a 25-channel image, where each

of the channels encode an individual frame in greyscale. The layer structure for

the subsequent layers is identical to that of the regular VGG-M network. This

method is related to the Early Fusion model in [25], which takes colour images

and uses a T×3-channel convolutional filter at conv1. We did experiment with

25×3-channel colour input, but found that the increased number of parame-

ters at conv1 made training difficult due to overfitting (resulting in validation

performance that is around 5% weaker; not quoted in Section 5).

Multiple Towers (MT-1). There are T= 25 towers with common conv1 layers
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(with shared weights), each of which takes one input frame. The activations

from the towers are concatenated channel-wise after pool1, producing an output

activation with 1200 channels. The subsequent 1×1 convolution is performed

to reduce this dimension, to keep the number of parameters at conv2 at a

managable level. The rest of the network is the same as the regular VGG-M.

Multiple Towers (MT-5). There are 21 towers with common conv1 layers,

each of which takes a 5-frame window, moving one 1-frame at a time. The

subsequent layers are configured in the same way as MT-1.

Late Fusion (LF-5). Like MT-5, the 21 towers each take 5-frame windows,

with a stride of 1. However, each tower in this variant has common conv1 to fc6

layers with shared weights, after which the activations are concatenated. The

subsequent layer structure is the same as EF-25, MT-1 and MT-5.

Long Short-Term Memory (LSTM-5). Each convolutional tower shares

the layer configuration of the LF-5 model. The two-layer LSTM ingests the

visual features (fc6 activations) of the 5-frame sliding window, moving 1-frame

at a time, and returns the classification result at the end of the sequence.

Discussion. The early fusion architecture EF-25 shares similarities with pre-

vious work on human action recognition using CNNs [24, 25, 42] in that registra-

tion between frames is assumed. The models perform time-domain operations

beginning from the first layer to precisely capture local motion direction and

speed [25]. For these methods to capture useful information, good registration

of details between frames is critical. However, we are not imposing strict regis-

tration, and in any case it goes slightly against the signal (lip motion and mouth

region deformation) that we are trying to capture.

In contrast, the MT-1 model delays all time-domain registrations (and op-

erations) until after the first set of convolutional and pooling layers. This gives

tolerance against minor registration errors (the receptive field size at conv2 is

11 pixels). Note, the common conv1 layers of the multiple towers ensures that

the same filter weights are used for all frames, whereas in the early fusion ar-

chitecture EF-25 it is possible to learn different weights for each frame.

The MT-5 model shares similarities with both EF-25 and MT-1 models –
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the 5-frame input to each tower allows the network to learn some local motion

information, but are more tolerant to movements than the EF-25 model over

the whole time period.

The LF-5 model also shares many characteristics of MT-5, but delays time-

domain operations until after all of the convolutional layers, except within the

5 neighbouring frames between which the movement would be negligible.

Likewise, the LSTM-5 delays time-domains operations, and in addition,

this model benefits from the ability to accept sequences of variable lengths,

unlike the other models.

One other design choice is the size of the input images. This was chosen as

111×111 pixels, which is smaller than that typically used in image classification

networks. The reason is that the size of the cropped mouth images are rarely

larger than 111×111 pixels, and this smaller choice means that smaller filters

can be used at conv1 than those used in VGG-M without sacrificing receptive

fields, but at a gain in avoiding unnecessary parameters being learnt.

4.2. Training

Data augmentation. Data augmentation often helps to improve valida-

tion performance by reducing overfitting in CNN image classification tasks [40].

We apply the augmentation techniques used on the ImageNet classification task

by [41, 40] (e.g. random cropping, flipping, colour shift), with a consistent trans-

formation applied to all frames of a single clip. To further augment the training

data, we make random shifts in time by up to 0.2 seconds, which improves the

top-1 validation error by 3.5% compared to the standard ImageNet augmenta-

tion methods. It was not feasible to scale in the time-domain as this results in

artifacts being shown due to the relatively low video refresh rate of 25fps.

Details. Our implementation is based on the MATLAB toolbox MatCon-

vNet [43] and Caffe [44]. The network is trained using SGD with momentum 0.9

and batch normalisation [45], but without dropout. The training was stopped

after 20 epochs, or when the validation error did not improve for 3 epochs,

whichever is sooner. The learning rate of 10−2 to 10−4 was used, decreasing on
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log scale.

5. Experiments

In this section we evaluate and compare the several proposed architectures,

and discuss the challenges arising from the visual ambiguities between words.

We then compare to the state of the art on a public benchmark.

5.1. Comparison of architectures

Evaluation protocol. The models are evaluated on the independent test set

(Section 2). We report top-1 and top-10 accuracies , as well as recall against

rank curves. Here, the ‘Recall@K’ is the proportion of times that the correct

class is found in the top-K predictions for the word. The experiments were per-

formed under two different conditions: ‘continuous’ where the input sequences

also contain co-articulation from the neighbouring words within the one-second

window and ‘isolated’ where the words are segmented according to the forced

alignment output, and thus can last less than one-second.

Results. The results are shown in Table 5. The experimental results show that

the registration-tolerant models gives a modest improvement over EF-25, and

the performance improvement is likely to be more significant where the tracking

quality is less ideal. Having 5 frames as input seems to achieve a good balance

for registration, in that it is able to compute useful temporal derivatives (MT-5

is better than MT-1 where no temporal derivatives are computed) which re-

quires local (in time) registration, but does not require the global registration

of EF-25 (which is inferior to both MT models). The LSTM-5 shows stronger

performance compared to the CNN-based models. For all models, the perfor-

mance is slightly better under the ‘isolated’ conditions since there are fewer

ambiguities due to co-articulation.

The top-10 accuracy for the best models are over 95%, despite the relatively

modest top-1 figure of around 70%. This is a result of ambiguities in lip reading,

which we will discuss next.
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Net LRW (Con.) LRW (Iso.)

R@1 R@10 R@1 R@10

EF-25 57.0% 88.8% 62.5% 92.6%

MT-1 61.1% 90.4% 64.2% 94.2%

MT-5 66.8% 94.6% 69.0% 95.6%

LF-5 65.4% 93.3% 68.2% 94.8%

LSTM-5 66.0% 94.3% 71.5% 96.4%

OuluVS2

R@1

[22] 73.5%

[46] 85.6%

MT-1 93.2%

MT-5 93.2%

LSTM-5 94.1%

Table 5: Word classification accuracy. Left: On the LRW dataset for the different architec-

tures. Right: On OuluVS2 (short phrases, frontal view). Con. (continuous): the input

sequences also contain co-articulation from the neighbouring words within the one-second

window; Iso. (isolated): the words are segmented according to the forced alignment output,

and thus can last less than one-second.

5.2. Analysis of confusions

0.32 BENEFITS BENEFIT

0.31 QUESTIONS QUESTION

0.31 REPORT REPORTS

0.31 BORDER IMPORTANT

0.31 AMERICA AMERICAN

0.29 GROUND AROUND

0.28 RUSSIAN RUSSIA

0.28 FIGHT FIGHTING

0.26 FAMILY FAMILIES

0.26 AMERICAN AMERICA

0.26 BENEFIT BENEFITS

0.25 ELECTIONS ELECTION

0.24 WANTS WANTED

0.24 HAPPEN HAPPENED

0.24 FORCE FORCES

0.23 HAPPENED HAPPEN

0.23 SERIOUS SERIES

0.23 TROOPS GROUPS

0.22 QUESTION QUESTIONS

0.21 PROBLEM PROBABLY

0.21 WANTED WANTS

0.21 RUSSIA RUSSIAN

0.20 TAKEN TAKING

0.20 PROBLEM PROBLEMS

0.20 MISSING MEETING

0.20 PARTIES PARTY

Table 6: Most frequently confused word pairs for the ‘continuous’ experiment. The numbers

refer to class confusions.

Here, we examine the classification results, in particular, the scenarios in

which the network fails to correctly classify the spoken word. Table 6 shows

the most common confusions between words in the test set for the ‘continuous’

experiment. This is generated by taking the largest off-diagonal values in the

word confusion matrix. This result confirms our prior knowledge about the

challenges in visual speech recognition – almost all of the top confusions are
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either (i) a plural of the original word (e.g. ‘report’ and ‘reports’) which is

ambiguous because one word is a subset of the other, and the words are not

isolated so this can be due to co-articulation; or (ii) a known homophone visual

ambiguity (explained in Section 1) where the words cannot be distinguished

using visual information alone (e.g. ‘billion’ and ‘million’, ‘worse’ and ‘worst’).

Such errors are phonetically understandable. For example, some of the most

common confusions, e.g. ‘groups’ which is phonetically (G R UW P S) and ‘troops’

(T R UW P S) , ‘ground’ (G R AW N D) and ‘around’ (ER AW N D), actually share

most of the phonemes.

Apart from these difficulties, the failure cases are typically for extreme sam-

ples. For example, due to strong international accents, or poor quality/low

bandwidth location reports and Skype interviews, where there are motion com-

pression artifacts or frames dropped from the transmission.

5.3. Comparison to state of the art

It is worth noting that the top-1 classification accuracy of over 70%, shown in

Table 5, is comparable to that of many of the recent works [13, 15, 47] performed

on lexicon sizes that are orders of magnitude smaller (Table 1).

Figure 12: Original video frames for ‘hello’ on OuluVS. Compare this to the our original input

frames in Figure 3.

OuluVS2. We evaluate our method on the OuluVS2 dataset [6]. The dataset

consists of 52 subjects uttering 10 phrases (e.g. ‘thank you’, ‘hello’, etc.), and has

been widely used in previous works. Here, we assess on a speaker-independent

experiment, where some of the subjects are reserved for testing.

To apply our method on this dataset, we pre-train the convolutional layers

on the BBC data, and re-train the fully-connected layers from scratch. Training
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from scratch on OuluVS2 underperforms as the size of this dataset is insufficient

to train a deep network. For all models apart from LSTM-5, we simply repeat

the first and the last frames to fill the 1-second clip if the phrase is shorter than

25 frames. If the clip is longer, we take a random crop.

As can be seen in Table 5 the method achieves a strong performance, and sets

the new state-of-the-art. Note that, without retraining the convolutional part

of the network, we achieve these strong results on videos that are very different

to ours in terms of lighting, background, camera perspective, etc. (Figure 12),

which shows that the model generalises well across different formats.

6. Summary and extensions

We have shown that CNN and LSTM architectures can be used to classify

temporal lip motion sequences of words with excellent results. We also demon-

strated a recognition performance that exceeds the state of the art on a standard

public benchmark dataset, OuluVS2.

Extensions could include lip reading of profile views, and varying the ar-

chitecture (in terms of depth, 3D CNNs etc) to improve performance – there is

already evidence that there are benefits of using deeper architectures [48] on our

released dataset. It is worth noting that recent papers have combined CNNs

with sequence models in order to recognize sentences rather than individual

words [49, 50].

The dataset is available for download at http://www.robots.ox.ac.uk/

~vgg/data/lip_reading/ and the trained SyncNet is available at http://www.

robots.ox.ac.uk/~vgg/software/lipsync/.
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