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Abstract

Range-based pedestrian recognition is instrumental towards the development

of autonomous driving and driving assistance systems. This work introduces

encoding methods for pedestrian recognition, based on statistical shape analy-

sis of 3D LIDAR data. The proposed approach has two variants, based on the

encoding of local shape descriptors either in a spatially agnostic or spatially sen-

sitive fashion. The latter method derives more detailed cues, by enriching the

‘gross’ information reflected by overall statistics of local shape descriptors, with

‘fine-grained’ information reflected by statistics associated with spatial clusters.

Experiments on artificial LIDAR datasets, which include challenging samples,

as well as on a large scale dataset of real LIDAR data, lead to the conclusion

that both variants of the proposed approach (i) obtain high recognition accu-

racy, (ii) are robust against low-resolution sampling, (iii) are robust against

increasing distance, and (iv) are robust against non-standard shapes and poses.

On the other hand, the spatially-sensitive variant is more robust against partial

occlusion and bad clustering.
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1. Introduction

Range data are essential for pedestrian recognition, bringing the opportu-

nity to identify higher level patterns, beyond image gradients. Despite this

fact, the interest on range-based pedestrian recognition has only recently been

considerable, since robust depth inference from monocular optical cameras is a5

difficult problem. Yet, low cost 3D sensors, such as Microsoft Kinect, are now

available, whereas Light Detection and Ranging (LIDAR) sensors, such as the

Velodyne HDL-64E, emerge as the primary range-based technology for pedes-

trian recognition. Although LIDAR-generated point clouds are rather sparse,

LIDAR sensors are more reliable than 3D sensors on outdoor settings. In addi-10

tion, they have a maximum range exceeding 50 m, as opposed to the 4 m range

of a 3D sensor such as Kinect.

Considering the sparsity of LIDAR-generated point clouds, which limits the

descriptive capability of local shape information, related research could be di-

rected towards encoding methods for the statistical analysis of local shapes, in15

order to identify patterns beyond the local scale. In addition, the employed

encoding methods should cope with problems associated with pedestrian recog-

nition, such as partial occlusion, bad clustering, as well as non-standard shapes

and poses. The bag-of-visual-words (BoVW) framework appears as a suitable

encoding candidate, having been successfully applied for 3D shape analysis in20

various settings [1],[2].

This work introduces encoding methods for pedestrian recognition, based

on statistical shape analysis of 3D LIDAR data. The proposed approach has

two variants based on the encoding of local shape descriptors either in a spa-

tially agnostic or spatially sensitive fashion. The latter method derives more25

detailed cues, by enriching the ‘gross’ information reflected by overall statistics

of local shape descriptors, with ‘fine-grained’ information reflected by statistics

associated with spatial clusters. The recognition accuracy obtained is evaluated

on artificial LIDAR datasets, which include challenging samples addressing oc-

clusion, bad clustering, non-standard shapes and poses, as well as on a large30
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scale dataset of real LIDAR data. As will be shown in the related work section,

current research on LIDAR-based pedestrian recognition has not fully consid-

ered state-of-the-art in local shape descriptors, as well as in effective encoding

schemes, as the ones introduced here.

The remainder of this paper is organized as follows: Section 2 presents re-35

lated previous work in pedestrian recognition, after introducing and motivating

the topic. Section 3 provides technical background on local shape analysis and

Fisher encoding. Section 4 describes the proposed encoding methods and Sec-

tion 5 presents the experimental evaluation of the proposed methods on datasets

of artificial and real LIDAR data. Finally, Section 6 presents the main conclu-40

sions of this work.

2. Related work

Kidono et al. [3] introduced a LIDAR-based pedestrian recognition method,

which combines the slice feature and the distribution of the reflection intensities

in a standard SVM-based classification scheme. Promising recognition results45

were obtained on a road-environment dataset created by the authors. Teichman

et al. [4] utilized time series of point clouds, as well as intensities. A related

work of Chen et al. [5] obtains bounding boxes by means of inference in a

Markov random field encoding object size priors, ground plane and a variety

of depth informed features. Their application on the RGB-D version of the50

KITTI dataset leads to state-of-the-art recognition accuracy. Du et al. [6] used

local-global articulated human parts and defined part-specific features. This

method relies on heuristic approaches to identify upper human body and legs.

The recognition accuracy obtained was higher than the one obtained by the

method of Kidono et al., yet on different datasets. A limitation of this method55

is that it is tailored to human body, which could hardly allow generalization to

non-standard shapes, as is the cases with pedestrians carrying an object (e.g. a

bag, an umbrella etc).

There are also hybrid pedestrian recognition methods, based on both image
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and LIDAR data. Premebida et al. [7] showed that the two modalities are60

complementary. Similar conclusions where derived in the work of Gonzalez et

al. [8]. These works where based on image-based feature vectors combining

standard image descriptors such as HOG [9] and LBP [10], with depth maps

generated from LIDAR data.

It could be noted that although LIDAR data have been proved as valuable for65

the recognition task, related research, either for standalone LIDAR-based meth-

ods or for hybrid methods, is relatively limited. More importantly, this research

is mostly based on global shape descriptors, such as object size, which cannot

reflect the complexity and variability of all pedestrian and non-pedestrian point

clouds. State-of-the-art local shape descriptors, which provide detailed shape70

representations, such as the Fast Point Feature Histograms (FPFH) [11], Spin

Images (SI) [12] and Signatures of Histograms of OrienTations (SHOT) [13],

have not been employed. Along this direction, an encoding scheme for effec-

tively addressing statistical properties of such local shape descriptors, should be

investigated.75

3. Background

This section provides the background for the various elements of the pro-

posed recognition schemes, in terms of local shape descriptors, encoding and

classification.

3.1. Local shape descriptors80

We use Fast Point Feature Histogram (FPFH), which has been introduced by

Rusu et al. as an effective and more efficient variant of the previously proposed

Point Feature Histogram (PFH) [14]. Both PFH and FPFH had been initially

used for point cloud registration but several works have demonstrated their

applicability in the context of various tests, which include shape retrieval and85

recognition [15]. FPFH relies upon geometrical relations between k nearest

neighbours, derived from 3D point coordinates (x,y,z ) and estimated surface
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normals (nx,ny,nz ). FPFH can be defined as follows: (i) for each point p, all

pairs of points formed by p and each point pi in the r -neighborhood of p are

considered, (ii) the normals n and ni are estimated by PCA, (iii) a Darboux uvn90

frame (u = n, v = (p − pi) × u, n = u × v) is defined. The angular variations

of n and ni are computed as follows: α = u · ni, φ = u · (pi − p)/||pi − p||,

θ = arctan(w · ni, u · ni), (iv) for each pair of points, a single point feature

histogram (SPFH) is estimated. The histogram has b binning subdivisions for

each one of α, φ and θ angle, where b is implementation-dependent. This leads95

to a histogram size equal to 3b. Finally, for each point p, an FPFH is calculated

as a weighted sum of all SPFH’s associated to pairs (p, pi), where the weight for

each pair depends on the distance between its points.

Apart from FPFH, we will also investigate the use of Spin Images (SI) [12],

which are among the most popular local 3D shape descriptors and have been100

widely applied on both structured and unstructured data. An SI of an oriented

point is a 2D representation of its surrounding surface, constructed on a pose-

invariant 2D coordinate system by accumulating the coordinates of neighboring

points. The SI is invariant to rigid transformations, since it encodes the coor-

dinates of points on the surface of an object with respect to a local basis. An105

important drawback of SI is the large number of histogram bins involved, which

is equal to 153 and affects the efficiency of SI-based recognition methods.

Finally, we will investigate the use of Signatures of Histograms of OrienTa-

tions (SHOT). SHOT employs a local reference frame and a 3D descriptor which

represents both the histograms of normal angles and their spatial distributions.110

The latter is a hybrid structure between signatures and histograms, aiming at a

more favorable balance between descriptive power and robustness. In [13], the

authors have shown that SHOT outperforms point signatures and SI.

3.2. Encoding

The Bag-of-Visual-Words (BoVW) framework provides a tool for deriving115

global statistics from local shape descriptors and has already been successfully

employed for 3D shape analysis [1],[2]. Fisher encoding employs a codebook
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formed by Gaussian Mixture Models (GMMs) instead of k -means [16]. The

mean of a Gaussian fit is subtracted from all observations and the resulting

differences comprise the Fisher vector, which has been shown to provide a gen-120

eralized, enhanced version of a variant of k -means-based BoVW: the vector of

locally aggregated descriptors. As demonstrated by Jegou et al. [16], Fisher

vector tends to reflect information which is distinctive for each sample. More-

over, Fisher encoding requires much more compact codebooks and has been

associated with enhanced recognition accuracy.125

Given a training set of N local shape descriptors x1, ...,xN ∈ RD, a GMM

p(x|θ) is the probability density on RD provided by

p(x|θ) =

K∑
k=1

p(x|µk,Σk)πk (1)

p(x|µk,Σk) =
1√

(2π)DdetΣk
e−

1
2 (x−µk)T Σ−1

k (x−µk) (2)

where K is the number of Gaussian components used, θ is the vector of model

parameters (π1, µ1,Σ1, ..., πK , µK ,ΣK), including the prior probability values

πk ∈ R+ (which sum to one), the means µk ∈ RD, and the positive definite

covariance matrices Σk ∈ RD×D of each Gaussian component. The covariance

matrices are assumed to be diagonal, so that the GMM is fully specified by

(2D+1)K scalar parameters. Soft data-to-cluster assignments extend the binary

assignments to k -means in basic BoVW and can be defined as

qki =
p(xi|µk,Σk)πk∑K
j=1 p(xi|µj ,Σj)πj

, k = 1, ...,K (3)

Fisher encoding captures the average first and second order differences between

the local descriptors and the GMM centroids. For the k-th GMM, where k =

1, ...,K, the following vectors are defined

uk =
1

N
√
πk

N∑
i=1

qikΣ
−1/2
k (xi − µk) (4)

vk =
1

N
√

2πk

N∑
i=1

qik[(xi − µk)Σ−1
k (xi − µk)− 1] (5)
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In uk and vk, the approximate location of the descriptors in each region

is encoded, relatively to the mean and the variance, respectively. The division

by
√

2πk can be interpreted as a BoVW inverse document frequency term: the

weights of frequent descriptors are reduced [16].130

The Fisher encoding of the set of local feature vectors is then given by the

concatenation of uk and vk for all K components, giving an encoding of size

2DK

f = [uT1 ,v
T
1 , ...,u

T
k ,v

T
k , ...u

T
K ,v

T
K ] (6)

4. Proposed recognition approach135

This section presents our approach for pedestrian recognition based on lo-

cal shape geometry, with two methods employing either spatially agnostic or

spatially Fisher sensitive encoding. The spatially agnostic method serves also

as an introductory step to formulate the more sophisticated spatially sensitive

method.140

4.1. Spatially agnostic encoding of local shape geometry

The first encoding method applies Fisher encoding of histogram-based local

shape descriptors in a spatially agnostic fashion, with a codebook of GMMs

learned from local ‘visual words’, as is the case with standard BoVW. The re-

sulting Fisher vector reflects ‘gross’, global statistics of local shape geometry145

and can be used for classification. Beyond standard pedestrian queries, such an

approach can cope with non-standard poses, since in such cases local neighbor-

hoods and the derived statistics of local shape descriptors remain unaffected.

In this work we employed standard Support Vector Machines (SVMs) and k

Nearest Neighbors (k-NN) classifiers. In the text to follow, we will refer to this150

method as Spatially Agnostic Fisher Encoding (SAFE). Figure 1 (top) presents

a schematic overview of SAFE.
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Spatially agnostic encoding of local shape geometry

Spatially sensitive encoding of local shape geometry

Figure 1: Schematic overviews of the two proposed recognition methods.

4.2. Spatially sensitive encoding of local shape geometry

Although SAFE is capable of correctly recognizing standard pedestrian queries,

as well as most non-standard shapes and poses, it has its limitations attributed155
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to the ‘gross’ nature of the Fisher vector employed. Such limitations can be more

prominent in cases of partial occlusion or bad clustering, in which overall shape

statistics are significantly affected. Aiming for a more fine-grained shape repre-

sentation. we introduce Spatially Sensitive Fisher Encoding (SSFE), a spatially

sensitive method for encoding local shape geometry. SSFE splits each point160

cloud into clusters obtained by k-means clustering of points, based on spatial

coordinates. Instead of deriving a Fisher vector from local histograms associated

with all points or some keypoints, SSFE derives a Fisher vector from the mean

histograms of each spatial cluster. As was the case with SAFE, we employed

standard SVM and k-NN classifiers, although other classification schemes could165

also be used. Figure 1 (bottom) presents a schematic overview of this method.

The information reflected in per-cluster statistics of local shape geometry

extends the information provided by ‘gross’, spatially agnostic statistics of local

histograms. Indeed, the ‘gross’ information reflected by SAFE is maintained

in SSFE, since the mean histogram of all points, which forms one part of the170

‘gross’ Fisher vector in SAFE, can be derived as the mean of per-cluster his-

tograms in SSFE. In essence, SAFE provides a part of the information provided

by SSFE considering that the mean histograms in SAFE are identical to the

mean histograms in SSFE with one spatial cluster (i.e. the whole object). In

addition, the variance of histograms over all points, which forms the other part175

of the ‘gross’ Fisher vector in SAFE, can be derived as the mean of per-cluster

histogram variances in SSFE. Instead of reflecting shape statistics in the scale

of local neighborhood, the derived Fisher vector reflects shape statistics in the

intermediate scale of a spatial cluster.

Following the formalism introduced in subsection 3.2, SSFE employs local180

shape descriptors augmented by spatial coordinates: x́i=[xi xi1 xi2 xi3]T (x́i ∈

RD+3, i = 1, ..., N and xik, xil, xim are the three spatial coordinates associated

with point i). In the first layer of clustering, k-means is applied on all augmented

local shape descriptors x́i (i = 1, ..., N), resulting in no spatial clusters. For each

resulting spatial cluster sc, we derive the mean histogram x̄sc. These mean per-185

cluster histograms are essentially the mean local shape descriptors. Following
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Eq. 4 and 5, instead of deriving uk and vk from xk, for k = 1, ..., N , we derive

úsc and v́sc from x̄sc for sc=1,...,no. The final Fisher vector of SSFE is derived

as

f́ = [úT1 , v́
T
1 , ..., ú

T
sc, v́

T
sc, ...., ú

T
no, v́

T
no] (7)

When compared to the Fisher vector f of SAFE, it can be noticed that f́ is a190

product of extra information in the form of: (i) spatial coordinates xi1, xi2, xi3,

which augment local shape descriptors xi, and (ii) an extra layer of clustering,

i.e. spatial clustering, before Fisher encoding.

SSFE provides an alternative to introduce spatial context within a BoVW

framework. Unlike the spatially sensitive BoVW of Bronstein [1], which employs195

a 2D histogram counting the co-occurrence of visual words over a local neighbor-

hood, SSFE derives per-cluster statistics of local shape geometry, incorporating

the intermediate scale of a spatial cluster.

5. Experimental evaluation

This section presents the experimental evaluation of the proposed recognition200

approach, with information on the datasets, the experimental setup, as well

as the results of various experiments aiming at quantitative and qualitative

evaluation.

5.1. Datasets and experimental setup

The experimental evaluation of the proposed recognition approach has been205

performed on datasets of either artificial or real LIDAR data.

Two artificial datasets have been created by using Blensor software, a Blender

sensor simulation 1. Both datasets will be publicly available to allow future com-

parisons. Scanning has been performed from a height of 2 m. Pedestrian point

clouds were obtained by scanning models created with Makehuman software 2,210

1http://www.blensor.org/
2http://www.makehuman.org/
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whereas non-pedestrian point clouds were obtained by scanning models from

3D warehouse 3. In the case of the first artificial dataset, which will be referred

as DS1, non-pedestrian object types were not limited to standard objects such

as poles, cars and trees, but they were selected to constitute a more diverse set

of samples. High resolution versions have been obtained to simulate Velodyne215

HDL-64 E2 at frame rate=10 Hz. Low resolution versions have been obtained

by decimation of high resolution data, with one line kept every two lines and one

point kept every two points within the kept lines. All details associated with

DS1 are provided in Table 1, whereas Fig. 2 and 3 provide example samples of

pedestrian and non-pedestrian point clouds.220

Distance (m)         10                    15                     20                   25       

Resolution

High

Low

Figure 2: Examples of pedestrian point clouds in DS1.

3https://3dwarehouse.sketchup.com/
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Distance (m)         

10                    

15                     

20                   

25       

Resolution                       High                                   Low

Figure 3: Examples of non-pedestrian point clouds in DS1.

We also used Blensor to create a second artificial dataset, which will be

referred as DS2 and comprises a set of challenging pedestrian samples, including

cases of occlusion, bad clustering, non-standard poses and non-standard shapes.

All details associated with DS2 are provided in Table 1, whereas Fig. 4 provides

example samples.225

Apart from datasets of artificial LIDAR data, we created a large-scale dataset

of approximately 40K real LIDAR samples, derived from the publicly available

Stanford Track Collection (STC) 4 [4], which has been recorded in natural street

scenes (e.g. university campus, intersections, urban and suburban streets). Sim-

ilar to DS1, versions for high and low resolution have been created. This dataset,230

4http://cs.stanford.edu/people/teichman/stc/
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Partial occlusion         Bad clustering      Non-standard pose  Non-standard shape   

Figure 4: Examples of challenging pedestrian point clouds in DS2, which include partial

occlusion from a car, bad clustering with a bicycle, a non-standard pose with hand waving,

and a non-standard shape with an umbrella.

named DS3, is balanced in order to enable the training of a classifier capable

of detecting both pedestrian and non-pedestrian samples, balancing the ac-

cept/reject ability, instead of over-learning either of the two types. It should

be noted that STC is the only relevant large scale dataset. However, it con-

tains objects tracked in time and is not directly usable for the evaluation of235

our approach, which is applied on objects derived from standalone frames of

LIDAR data. Moreover, in the original STC and in the range 10-25 m, there

were approximately 10K pedestrians in the training set and 10K pedestrians in

testing set. We selected all the pedestrians present in that range. Regarding the

non-pedestrians, we extracted randomly 10K non-pedestrians in the training set240

and 10K non-pedestrians in the testing set, all in the same range of interest. In

total, this leads to 20K training set and 20K testing set. All details associated

with DS3 are provided in Table 1, whereas Fig. 5 provides example samples.

All datasets used in the experiments (DS1, DS2, DS3) are available in:

https://vc.ee.duth.gr/cviu18-db.245

5.2. Results

The results presented include quantitative comparisons for various distances

on the artificial dataset DS1, quantitative comparisons on the large scale dataset

DS3, qualitative comparisons on challenging queries from DS2, as well as dis-

cussion on parameter adjustment and time costs.250
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Pedestrians

Non-pedestrians

Figure 5: Examples of point clouds in DS3.

5.2.1. Quantitative comparisons on artificial dataset

Table 2 presents the results obtained by SAFE and SSFE, using FPFH, SI

and SHOT, when applied on DS1. Experiments are performed for distances

equal to 10, 15, 20 and 25 m, both for high and low resolution versions of

the dataset. The recognition accuracy for each distance/resolution setting is255

evaluated by the mean area under curve (AUC) derived from a 10-fold cross-

validation experiment, with AUCs measured from receiver operating character-

istics (ROCs) corresponding to each fold. Overall, the SVM/SSFE methods ob-

tain higher mean AUCs for most distances and resolutions, with SI/SVM/SSFE

Table 1: Datasets

Dataset name DS1 DS2 DS3

Difficulty Standard Challenging Standard

Type Simulated Simulated Real

Source Blensor Blensor STC

Distances 10-25 m 15 m 0-35 m

#Pedestrians 84 23 20K

#Non-pedestrians 336 - 20K
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method obtaining the highest mean AUCs in most cases. Also, the AUCs ob-260

tained using the SVM classifier are mostly higher than the ones obtained using

k-NN. Moreover, the SI-based methods obtain slightly higher AUCs than the

ones obtained by FPFH and SHOT. Finally, most methods are robust as dis-

tance increases.

5.2.2. Quantitative comparisons on large scale dataset265

Table 3 presents the results, in terms of mean AUC, obtained by the appli-

cation of SAFE and SSFE, using SVM and k-NN classifier, with FPFH, SI and

SHOT, on high and low resolution versions of DS3. Figure 6 illustrates the

corresponding ROC curves. For clarity, we only illustrate ROCs associated with

the best performing classifier for each descriptor/encoding pair on the respec-270

tive resolution. These results validate the recognition capability of SAFE and

SSFE on a large scale dataset. Similar to DS1, the SVM/SSFE methods ob-

tain higher mean AUCs per descriptor, for most distances and resolutions, with

two marginal exceptions, whereas the AUCs obtained using the SVM classifier

are mostly higher than the ones obtained using k-NN. The FPFH/SVM/SSFE275

method obtains the highest mean AUC, for both high and low resolution. It

could be noticed that, unlike DS1, FPFH outperforms SI and SHOT. This is

a result of the higher sensitivity of SI and SHOT on radius (see comments to

follow on parameterization), which affects their performance when using a uni-

form radius on a dataset of samples acquired from mixed distances, as is the280

case with DS3.

5.2.3. Qualitative comparisons on challenging cases

Another set of experiments is performed to qualitatively investigate the ro-

bustness of each method against four types of challenging queries, suffering from

partial occlusion, bad clustering, non-standard poses and non-standard shapes.285

Overall, 12 challenging queries from DS2 are performed with SVM or k-NN

trained on DS1, with 3 queries for each type. DS1 is used as training dataset

for these experiments, since both DS1 and DS2 have been created with the same
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Method AUC (10 m) AUC (15 m) AUC (20 m) AUC (25 m)

FPFH/SVM/SAFE 0.994/0.963 0.993/0.996 0.894/0.855 0.793/0.756

FPFH/k-NN/SAFE 0.923/0.934 0.927/0.919 0.906/0.794 0.956/0.794

FPFH/SVM/SSFE 0.999/0.978 0.998/0.951 0.929/0.906 0.918/0.804

FPFH/k-NN/SSFE 0.933/0.947 0.901/0.898 0.924/0.807 0.877/0.817

SI/SVM/SAFE 0.953/0.959 0.956/0.964 0.951/0.953 0.948/0.943

SI/k-NN/SAFE 0.948/0.945 0.957/0.974 0.932/0.944 0.954/0.953

SI/SVM/SSFE 1.000/0.998 1.000/1.000 0.998/1.000 0.986/0.999

SI/k-NN/SSFE 0.962/0.935 0.933/0.948 0.961/0.942 0.940/0.932

SHOT/SVM/SAFE 0.919/0.896 0.891/0.883 1.000/0.983 0.881/0.954

SHOT/k-NN/SAFE 0.874/0.868 0.841/0.772 0.909/0.896 0.757/0.964

SHOT/SVM/SSFE 0.982/0.960 0.979/1.000 0.967/0.979 0.964/0.966

SHOT/k-NN/SSFE 0.938/0.938 0.923/0.954 0.899/0.942 0.918/0.860

Table 2: Mean AUC obtained by spatially Fisher agnostic encoding (SAFE) and spatial Fisher

encoding (SSFE), with FPFH, SI, SHOT local shape descriptors and SVM, k-NN classifiers,

when applied on DS1. The results are presented as mean AUC for (high resolution/low

resolution). The highest mean AUC per descriptor/resolution is marked with bold, whereas

the highest mean AUC per resolution is underlined.

process. In all cases of challenging queries, the SVM-based methods performed

equal or better than their k-NN-based countrparts. For this reason and aiming290

for clarity, we will only present recognition results from the SVM-based meth-

ods in the comparisons to follow. Overall, in most types of challenging queries

the SSFE-based methods performed better than SAFE-based methods. With

respect to the local shape descriptor, the overall performance of FPFH, SI and

SHOT is similar.295

Figures 7 and 8 illustrate the recognition results obtained in the case of

samples associated with partial occlusion and bad clustering, respectively. The

SAFE-based methods frequently fail to detect pedestrians in these cases. This
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Method AUC (0-35 m)

FPFH/SVM/SAFE 0.935/0.930

FPFH/k-NN/SAFE 0.908/0.905

FPFH/SVM/SSFE 0.946/0.934

FPFH/k-NN/SSFE 0.927/0.898

SI/SVM/SAFE 0.895/0.897

SI/k-NN/SAFE 0.858/0.869

SI/SVM/SSFE 0.901/0.893

SI/k-NN/SSFE 0.815/0.852

SHOT/SVM/SAFE 0.754/0.766

SHOT/k-NN/SAFE 0.805/0.737

SHOT/SVM/SSFE 0.803/0.778

SHOT/k-NN/SSFE 0.779/0.737

Table 3: Mean AUC obtained by spatially Fisher agnostic encoding (SAFE) and spatial Fisher

encoding (SSFE), with FPFH, SI, SHOT local shape descriptors and SVM, k-NN classifiers,

when applied on DS3. The results are presented as mean AUC for (high resolution/low

resolution). The highest mean AUC per descriptor/resolution is marked with bold, whereas

the highest mean AUC per resolution is underlined.

can be attributed to the ‘gross’ nature of the Fisher vector employed in SAFE,

which only reflects overall statistics, naturally affected by partial occlusion or300

clustering. On the other hand, SSFE employs a more fine grained representation,

which reflects statistics per spatial cluster. Spatial clusters which are part of

standard pedestrian samples are also present in pedestrian samples suffering

from partial occlusion or clustering, allowing SSFE to classify such challenging

queries correctly. Still, the SSFE-based methods miss the ‘pedestrian occluded305

by car’ sample. In that case, the car covers a large part of the sample, affecting

spatial clustering and cluster shape statistics. Interestingly, unlike the other

two SSFE-based methods, SHOT/SVM/SSFE misses the ‘pedestrian occluded
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by pedestrian’ sample.

Figure 9 illustrates the recognition results obtained in the case of samples310

associated with non-standard poses. Both SAFE-based and SSFE-based meth-

ods achieve perfect recognition results in these cases. This can be explained

by considering that in the case of such samples, local neighborhoods and the

derived statistics of local shape descriptors remain unaffected, both for SAFE

and SSFE.315

Figure 10 illustrates the recognition results obtained in the case of samples

associated with non-standard shapes. In these cases, most methods detect one

or two out of three samples. FPFH/SVM/SSFE and FPFH/SVM/SHOT miss

the ‘pedestrian with the dress’ sample. In that case, as was the case with

the ‘pedestrian occluded by car’ sample, the dress covers a large part of the320

sample, affecting spatial clustering and cluster shape statistics. Interestingly,

SI/SVM/SSFE detects this sample. Also, all SAFE-based methods miss the

seemingly more straightforward ‘pedestrian with closed umbrella’ sample.

5.2.4. Sensitivity on parameter adjustment

Another set of experiments has been performed on the large scale DS3325

dataset to assess the sensitivity of the proposed methods on parameter ad-

justment. The three parameters affecting recognition accuracy are the radius of

the local shape descriptor, the number of GMMs used by both SAFE and SSFE

for Fisher encoding, as well as the number of spatial clusters used by SSFE. The

FPFH radius which results in the highest mean AUC is 0.15 for both high and330

low resolution, with a difference of less than 2% when radius is altered by up to

10%. SI and SHOT are more sensitive to radius, with a difference of 4% and 6%

in AUC, for similar radius variations. The optimal number for GMMs has been

found to be 9 for high resolution and 4 for low-resolution, both for SAFE and

SSFE, with a difference of less than 2% when this parameter is altered by 10%335

for high resolution. The difference in AUC for low resolution is approximately

5% when the same parameter is altered by 25%. The optimal number of spatial

clusters in the case of SSFE, has been found to be 5 for high resolution and 3
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for low resolution. The difference in AUC is less than 2%, when this parameter

is altered by 10% for high resolution. The difference in AUC for low resolution340

is approximately 5% when the same parameter is altered by 33%. It should also

be noted that in the case of the experiments in DS3, the distance of each input,

although known, is not used for optimally setting the radius, which is uniformly

set to one value 5. With respect to k-NN, k has been set to 5, whereas k=3 and

k=7 resulted in less than 0.5% difference in AUC. Finally, in order to verify the345

robustness of our evaluation approach against the pedestrian/non-pedestrian

sample ratio, we also performed experiments on a testing set derived from DS3,

with a ratio equal to that of the original STC. The resulting AUC differs less

than 0.5%, which is negligible compared to the differences in AUC measured

throughout this work.350

5.2.5. Time costs

Table 4 presents the computational cost of each step of the pipeline for

SAFE and SSFE, using FPFH descriptor and SVM classifier. The offline part

is calculated on the large scale dataset DS3 and comprises descriptor calcula-

tion for all samples, mean histogram calculations in the case of SSFE, GMM355

codebook creation, encoding and classifier training. The online part comprises

descriptor calculation for the query sample, encoding and classifier testing. It

could be noticed that SSFE is slightly slower than SAFE. In the online part,

this can be explained by the extra step of SSFE for mean histogram calculation

over the spatial clusters. This step requires 0.03 sec, which is exactly the time360

difference between the two encoding methods. In the offline part, the difference

in time emerges from: i) the mean histogram calculations in SSFE, ii) the code-

book creation, which in the case of SSFE involves two layers of clustering (GMM

and spatial clustering) instead of only one layer in the case of SAFE. The mean

histogram calculations in SSFE require 10 min and the two layers of clustering365

5In the case of the experiments on DS1, this information is used with a small positive

impact on the obtained recognition accuracy
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Pipeline step SAFE SSFE

Descriptor calculation (min) 60 60

Mean histogram calculation (min) - 10

GMM codebook creation (min) 9 12

Encoding (min) 5 3

Training (min) 10 10

Total offline (min) 84 95

Descriptor calculation (sec) 0.200 0.200

Encoding (sec) 0.030 0.030

Mean histogram calculation (sec) - 0.030

Testing (sec) 0.005 0.005

Total online (sec) 0.235 0.265

Table 4: Offline and online time costs for SAFE and SSFE, using FPFH descriptor and SVM

classifier. The offline part is calculated on the large scale dataset DS3.

in SSFE require 12 min as opposed to 9 minutes required by the single layer of

clustering in SAFE. On the other hand SAFE encoding is slightly slower (5 min

instead of 3 min for SSFE), resulting in a total difference of 11 min between

SAFE and SSFE offline parts. Using k-NN instead of SVM is associated with a

smaller time cost in the offline part but induces 2 to 3 times larger time costs370

for training in the online part. Also SI-based and SHOT-based methods are ap-

proximately 55% and 100% slower than their FPFH-based counterparts, both

in offline and online parts. These time costs have been measured for our single

core C++/ Matlab implementation running on an Intel Core i7 workstation,

operating at 3.5 GHz with 16 GB of RAM.375
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6. Conclusions

This work introduces two encoding methods for pedestrian recognition based

on the statistical shape analysis of 3D LIDAR data: SAFE and SSFE. SAFE

is a spatially agnostic recognition method, which employs Fisher encoding to

derive global shape statistics. SSFE employs spatially sensitive encoding of380

local shape geometry, providing a more fine-grained shape representation.The

proposed recognition approach is evaluated on artificial LIDAR datasets, com-

prising standard and challenging samples, as well as on a large scale dataset

of real LIDAR data. Three local shape descriptors have been used for testing:

FPFH, SI and SHOT, as well as two classifiers: SVM and k-NN. The experi-385

mental results lead to the following conclusions:

- both SAFE and SSFE obtain high recognition accuracy on the artificial

dataset (DS1), for most descriptor/classifier/distance/resolution configurations.

SSFE is more accurate than SAFE in most such configurations. The highest

AUC is obtained by SSFE, using SI and SVM (Table 2),390

- both SAFE and SSFE obtain high recognition accuracy on high and low

resolution versions of a dataset of real LIDAR data, consisting of approximately

40K samples (DS3). SSFE is more accurate than SAFE in most configurations.

The highest AUC is obtained by SSFE, using FPFH and SVM (Table 3),

- with respect to the local shape descriptor, SI is more accurate on DS1395

(Table 2), whereas FPFH is more accurate in DS3 (Table 3). This is a result of

the higher sensitivity of SI in radius, which affects its performance when using

a uniform radius on a dataset of samples acquired from mixed distances, as is

the case with DS3,

- with respect to the classifier, SVM outperforms k-NN for most descrip-400

tor/distance/resolution configurations, in all datasets. k-NN-based methods

induce smaller offline time costs but are 2 to 3 times slower in the online part,

- both methods are robust against increasing distance,

- both methods are robust against non-standard shapes and poses,

- SSFE is more robust than SAFE against partial occlusion and bad cluster-405
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ing. Still, it fails to cope with some challenging queries,

- both methods behave quite smoothly for varying parameter adjustment,

- SSFE is slightly slower than SAFE, with its online part running in about

0.27 sec per sample for our single core C++/Matlab implementation (using

FPFH and SVM). Chen et al. [5] report 1.2 sec on a single core for feature410

calulation. It could be noted that the proposed method requires conventional

CPU whereas CNN-based methods require GPU-based parallelizations.

- overall, SSFE appears as a more accurate encoding method than SAFE

without inducing significant extra time cost.

The proposed LIDAR-based pedestrian recognition approach could poten-415

tially be hybridized with image-based features, as well as with global shape

features. With respect to the latter, our preliminary experiments with simple

feature concatenation between FPFH and global shape dimensions, led to a

boost of approximately 2%, in terms of AUC (DS3). Another advance of SSFE

could be based on point cloud segmentation beyond k-means spatial clustering.420

In the future, spatially sensitive encoding could be applied on features derived

with deep learning methods. Overall, SSFE provides a promising direction for

pedestrian recognition.
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[2] G. Lavoué, Combination of bag-of-words descriptors for robust partial

shape retrieval, The Visual Computer 28 (2012) 931–942.430

[3] K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, J. Miura, Pedestrian

recognition using high-definition lidar, in: Proc IEEE IV, 2011, pp. 405–

410.

22



[4] A. Teichman, J. Levinson, S. Thrun, Towards 3D object recognition via

classification of arbitrary object tracks, in: Proc. ICRA, 2011.435

[5] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, R. Urtasum,

3D object proposals for accurate object class detection, in: Proc NIPS,

2015, pp. 424–432.

[6] S. Du, B. Liu, Y. Liu, J. Liu, Global local articulation pattern-based

pedestrian detection using 3D lidar data, Remote Sensing Letters 7 (2016)440

681–690.

[7] C. Premebida, J. Carreira, J. Batista, U. Nunes, Pedestrian detection

combining rgb and dense lidar data, in: Proc IEEE IROS, 2014, pp. 424–

432.
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High resolution

Low resolution

Figure 6: ROC curves obtained by the application of SAFE and SSFE, with FPFH, SI and

SHOT, on high and low resolution versions of DS3. For clarity, we only illustrate ROCs asso-

ciated with the best performing classifier for each descriptor/encoding pair on the respective

resolution.
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Figure 7: Recognition results on samples associated with partial occlusion.

Figure 8: Recognition results on samples associated with bad clustering.
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Figure 9: Recognition results on samples associated with non-standard poses.

Figure 10: Recognition results on samples associated with non-standard shapes.
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