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ABSTRACT

Camouflaged objects attempt to conceal their texture into the background and discriminating them
from the background is hard even for human beings. The main objective of this paper is to explore
the camouflaged object segmentation problem, namely, segmenting the camouflaged object(s) for a
given image. This problem has not been well studied in spite of a wide range of potential applications
including the preservation of wild animals and the discovery of new species, surveillance systems,
search-and-rescue missions in the event of natural disasters such as earthquakes, floods or hurricanes.
This paper addresses a new challenging problem of camouflaged object segmentation. To address
this problem, we provide a new image dataset of camouflaged objects for benchmarking purposes.
In addition, we propose a general end-to-end network, called the Anabranch Network, that leverages
both classification and segmentation tasks. Different from existing networks for segmentation, our
proposed network possesses the second branch for classification to predict the probability of contain-
ing camouflaged object(s) in an image, which is then fused into the main branch for segmentation
to boost up the segmentation accuracy. Extensive experiments conducted on the newly built dataset
demonstrate the effectiveness of our network using various fully convolutional networks.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Camouflage is an attempt to conceal the texture of a fore-

ground object into the background (Singh et al., 2013). The

term “camouflage” was first coined from nature where ani-

mals used to hide themselves from predators by changing their

body pattern, texture, or color. Unlike salient objects, camou-

flaged objects are hard to detect in their nature even for human

beings. Autonomously detecting/segmenting camouflaged ob-

jects is thus a challenging task where discriminative features do
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while he interned at University of Dayton. He is currently a postdoc at the

Institute of Industrial Science, the University of Tokyo, Japan. Tam V. Nguyen
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not play an important role anymore since we have to ignore ob-

jects that capture our attention. While detecting camouflaged

objects is technically difficult on one hand, it is beneficial in

various practical scenarios, on the other hand, which include

surveillance systems, and search-and-rescue missions. For ex-

ample, detecting and segmenting camouflaged objects in im-

ages definitely helps us search for camouflaged animals for the

preservation of wild animals and the discovery of new species.

Nevertheless, camouflaged object segmentation has not been

well explored in the literature.

There exist two types of camouflaged objects in reality: nat-

urally camouflaged objects such as animals or insects hiding

themselves from their predators, and artificially camouflaged

objects such as soldiers and weapons disguised by artificial tex-
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Fig. 1. A few examples from our Camouflaged Object (CAMO) dataset with corresponding pixel-level annotations. Camouflaged objects attempt to conceal

their texture into the background.

ture patterns. These objects first evaluate their surrounding en-

vironment and then change to camouflaged textures via the col-

orization of cloths or cover. For either type of camouflaged

objects, it is not obvious to identify them in images. Figure

1 shows a few examples of camouflaged objects in real life.

Based on this figure, we can easily see how challenging cam-

ouflaged object segmentation is.

Camouflaged objects have naturally evolved to exploit weak-

nesses in the visual system of their prey or predator, and thus

understanding such a mechanism will provide some insights for

segmenting camouflaged objects. Without any prior, we hu-

man beings easily miss detecting camouflaged objects; how-

ever, once we are informed a camouflaged object exists in an

image, we can carefully scan the entire image to detect it. This

also comes up in nature: once the predator has an awareness of

camouflaged animals in the scene, then it makes efforts to lo-

calize them for hunting. Therefore, utilizing the awareness as a

prior can be an essential cue for camouflaged object segmenta-

tion. Then, the challenge is what awareness should be incorpo-

rated in what way. We consider that classification scheme can

be used as the awareness of existing of camouflaged objects

in an image in order to combine with detection/segmentation

scheme.

As reviewed in Singh et al. (Singh et al., 2013), there are a

few methods that study camouflaged object detection in sim-

ple contexts. These methods use hand-crafted low-level fea-

tures such as color, edge or texture to detect camouflaged ob-

jects. Such hand-crafted low-level features are designed to be as

much discriminative as possible for detecting and segmenting

objects, which is the opposite way to camouflage. Therefore,

their performances are limited to camouflaged object segmen-

tation. Furthermore, these methods can be applied only to rela-

tively low-resolution images with a uniform background. Deep

features, on the other hand, are known to outperform low-level

features in many tasks in computer vision such as image clas-

sification (Krizhevsky et al., 2012), image semantic segmenta-

tion (Shelhamer et al., 2016), action recognition (Tran et al.,

2015), and face recognition (Wen et al., 2016). We thus expect
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that deep features can replace low-level features even for cam-

ouflaged object segmentation by incorporating them into a new

network. To use them, however, a large number of data of cam-

ouflaged objects are required. Nevertheless, there is no public

dataset (both for training data and testing data) for the camou-

flaged object segmentation problem. This obviously poses seri-

ous problems to (1) train deep learning models and (2) evaluate

the performance of the proposed network.

The overall contribution of this paper is two-fold:

• We provide a new image dataset of camouflaged objects

to promote new methods for camouflaged object seg-

mentation. Our newly constructed Camouflaged Object

(CAMO) dataset consists of 1250 images, each of which

contains at least one camouflaged object. Pixel-wise

ground-truths are manually annotated to each image. Fur-

thermore, images in the CAMO dataset involve a variety

of challenging scenarios such as object appearance, back-

ground clutter, shape complexity, small object, object oc-

clusion, multiple objects, and distraction. We emphasize

that this is the very first dataset for camouflage segmenta-

tion.

• We propose a novel end-to-end network, called the

Anabranch1 Network (ANet), which is general, concep-

tually simple, flexible, and efficient for camouflaged ob-

ject segmentation. Our proposed ANet leverages the ad-

vantages of different network streams, namely, the classi-

fication stream and the segmentation stream, in order to

segment camouflaged objects. The classification stream

is used as the awareness of existing of camouflaged ob-

ject(s) in an image. This design is motivated by the obser-

vation that there is no guarantee that a camouflaged object

is always present in an image and thus we first identify

whether a camouflaged object is present in an image and

then only if exists, the object(s) should be accurately seg-

mented; nothing is segmented otherwise. Extensive exper-

iments verify the effectiveness of our proposed ANet when

1An anabranch is a section of a river or stream that diverts from the main

channel or stem of the watercourse and rejoins the main stem downstream.

the network is applied on various fully convolutional net-

works (FCNs) for camouflaged object segmentation.

The datasets, evaluation scripts, models, and results are pub-

licly available at our websites 2,3

The remainder of this paper is organized as follows. Sec-

tion 2 summarizes the related work. Next, Section 3 and Sec-

tion 4 introduce the constructed dataset and the proposed net-

work, respectively. Section 5 then reports extensive experi-

ments over the proposed method and baselines on the newly

constructed dataset. Section 5.5.2 discusses the joint training

of ANet. Finally, Section 6 draws the conclusion and paves the

way for the future work.

2. Related Work

This section first reviews existing works on camouflaged ob-

ject segmentation and salient object segmentation, which share

some similarities. We also clarify that the camouflaged object

segmentation is more challenging than the salient object seg-

mentation. Then, we briefly introduce some advancements of

two-stream networks in several computer vision tasks.

2.1. Camouflaged Object Segmentation

As addressed in the intensive survey compiled by Singh et

al. (Singh et al., 2013), most of the related work (Kavitha et al.,

2011; Pan et al., 2011; Siricharoen et al., 2010; Song and Geng,

2010; Yin et al., 2011) uses handcrafted, low-level features for

camouflaged region detection/segmentation where the similar-

ity between the camouflaged region and the background is eval-

uated using low-level features, e.g., color, shape, orientation,

and brightness (Galun et al., 2003; Song and Geng, 2010; Xue

et al., 2016). We note that there is little work that directly

deals with camouflaged object detection; most of the work is

dedicated to detecting the foreground region even when some

of its texture is similar to the background. Pan et al. (Pan

et al., 2011) proposed a 3D convexity based method to detect

camouflaged objects in images. Liu et al. (Liu et al., 2012)

2https://sites.google.com/view/ltnghia/research/camo
3https://sites.google.com/site/vantam/research

https://en.wikipedia.org/wiki/Anabranch
https://en.wikipedia.org/wiki/Anabranch
https://sites.google.com/view/ltnghia/research/camo
https://sites.google.com/site/vantam/research
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integrated the top-down information based on the expectation

maximization framework for foreground object detection. Sen-

gottuvelan et al. (P. Sengottuvelan and Shanmugam, 2008) ap-

plied a gray level co-occurrence matrix method to identify the

camouflaged object in images with a simple background. In

the case where some parts of a moving object and the back-

ground share the similar texture, optical flow is combined with

color to detect/segment the moving object (Yin et al., 2011;

Gallego and Bertolino, 2014). All these methods use hand-

crafted low-level features and work for only a few cases where

images/videos have the simple and non-uniform background.

Their performances are also unsatisfactory in camouflage de-

tection/segmentation when there is a strong similarity between

the foreground and the background.

One of the main reasons why there has been very little work

on camouflaged object segmentation is the lack of the stan-

dard dataset for this problem. A benchmarking dataset is thus

mandatory to develop advanced techniques for camouflaged ob-

ject segmentation. Note that the dataset has to include both

training data and testing data. To our best of knowledge, there is

so far no standard dataset for camouflage object segmentation,

which has the sufficient number of data for training and evalu-

ating deep networks. A few of datasets related to camouflaged

animals have been proposed, but they have a limited number of

samples. Bideau et al. (Pia Bideau, 2016) proposed a camou-

flaged animal video dataset but the dataset has only 9 videos,

and camouflaged animals really exist in a third of videos. The

unpublished dataset proposed by Skurowski et.al.4 has only 76

images of camouflaged animals. Therefore, we collect a new

camouflaged object dataset. Note that our work is the first work

solve the real camouflage segmentation problem in diverse im-

ages. Different from the two above datasets, our constructed

dataset consists of both camouflaged animals and human.

4http://zgwisk.aei.polsl.pl/index.php/en/research/other-research/63-

animal-camouflage-analysis

2.2. Salient Object Segmentation

Salient object predictors aim to detect and segment salient

objects in images. Though “saliency” is opposed to “camou-

flage”, techniques developed for salient object segmentation

may be useful for camouflaged object segmentation. This is

because the two tasks highlight image regions with certain char-

acteristics.

Early work on salient object segmentation is based on

biologically-inspired approaches (Itti et al., 1998; Koch and

Ullman, 1987) where used features are the contrast of low-level

features such as orientation of edges, or direction of movement.

Since human vision is sensitive to color, different approaches

using color were proposed where the contrast of color features

is locally or globally analyzed (Achanta et al., 2009; Cheng

et al., 2011). Local analysis methods estimate the saliency of

a particular image region against its neighborhoods based on

color histogram comparison (Cheng et al., 2011); global anal-

ysis methods achieve globally consistent results by computing

color dissimilarities to the mean image color (Achanta et al.,

2009). Various patch-based methods were also proposed that

estimate dissimilarity between image patches (Cheng et al.,

2011; Margolin et al., 2013; Zhang et al., 2015). To lever-

age the advantage of deep learning, recent methods first con-

duct superpixel segmentation and then feed segmented regions

into a convolutional neural network (CNN) individually to ob-

tain saliency scores (Le and Sugimoto, 2018; Li and Yu, 2015;

Wang et al., 2015). More recent methods modified fully con-

volutional networks (FCNs) to compute a pixel-wise saliency

map (Hou et al., 2017; Le and Sugimoto, 2017; Li et al., 2017a;

Liu and Han, 2016; Wang et al., 2017b,a). Skip-layer struc-

tures are usually employed in FCNs to obtain multi-scale fea-

ture maps, which are critically needed to segment a salient ob-

ject (Le and Sugimoto, 2017; Liu and Han, 2016; Hou et al.,

2017). Li et al. (Li and Yu, 2016) modified the FCN to combine

pixel-wise and segment-wise feature maps for saliency value

prediction. Wang et al. (Wang et al., 2017b) integrated a pyra-

mid pooling module and a multi-stage refinement mechanism

into an FCN for salient object segmentation. Wang et al. (Wang

http://zgwisk.aei.polsl.pl/index.php/en/research/other-research/63-animal-camouflage-analysis
http://zgwisk.aei.polsl.pl/index.php/en/research/other-research/63-animal-camouflage-analysis
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(a) Camouflaged

object

(b) Ambiguous (c) Salient object

Fig. 2. Ambiguous differences between camouflaged objects and salient ob-

jects.

et al., 2017a) proposed a two-stage training method to com-

pute saliency maps using image-level tags. Object proposal

based networks, which are originally developed for category-

specific object detection, are also utilized to identify salient ob-

jects (Han et al., 2018b; Le and Sugimoto, 2019). In addition,

salient objects from common categories can be co-segmented

by exploiting correspondence relationship among multiple rel-

evant images (Han et al., 2018a; Yao et al., 2017).

It is worth noting that camouflaged object segmentation is

more challenging than salient object segmentation. In fact,

salient objects tend to be outstanding and discriminative from

the background. We thus only need to focus on identifying

such outstanding and discriminative regions to segment salient

objects. Camouflaged objects, however, tend to conceal them-

selves into the background environment by decreasing discrim-

inativeness as much as possible. This makes it hard to iden-

tify boundaries of camouflaged objects. In particular, when

the background is cluttered, camouflaged objects blend with the

background too much, and discriminating them from the back-

ground becomes even harder.

We remark that the same object can be either a camouflaged

object or a salient object, meaning that the differences be-

tween camouflaged objects and salient objects are ambiguous

(cf. Fig. 2). This suggests that some salient object detection

methods may work for the camouflaged object segmentation

task; however, this is not the case. Indeed, existing methods on

salient object segmentation are designed to segment objects for

any reason because a salient object is assumed to always exist in

a training/testing image. On the contrary, there is no guarantee

that a camouflaged object is always present in an image. The

approach to camouflaged object segmentation should be com-

pletely different so that it allows us to handle practical scenarios

where we do not know whether or not a target object exists.

2.3. Two-Stream Network

There are several works that use two-stream architec-

tures (Simonyan and Zisserman, 2014a; Feichtenhofer et al.,

2016; Wang et al., 2016; Jain et al., 2017; He et al., 2017;

Li et al., 2017b). Fusion networks were proposed for action

recognition (Simonyan and Zisserman, 2014a; Feichtenhofer

et al., 2016; Wang et al., 2016) and object segmentation (Jain

et al., 2017) in videos. The network consists of an appearance

stream and a motion stream, and the final result is fused from

the outputs of the two streams. Two streams, however, have the

same architecture for the same task despite the fact that they re-

ceive different inputs (i.e., video frame and optical flow). Two

streams (i.e., a classification stream and a segmentation stream)

of region-based networks for instance segmentation (He et al.,

2017; Li et al., 2017b) have different architectures for different

tasks. The two streams are built up from the region proposal

network (Ren et al., 2015) and then work on specific regions.

In contrast with the above mentioned two-stream networks,

the two streams (the classification stream and the segmenta-

tion stream) of our proposed ANet have different architectures

mutually reinforce each other on the whole image for different

tasks. The output of the classification stream is fused with that

of the segmentation stream to enhance segmentation result. In

this sense, the role of the classification stream is complemen-

tary to that of the segmentation stream.

3. Camouflaged Object Dataset

3.1. Motivation

In the literature, no dataset is available for camouflaged ob-

ject segmentation. To promote camouflaged object segmenta-

tion, a publicly available dataset with pixel-wise ground-truth

annotation is mandatory. Note that the dataset has to include

both training data and testing data. The training data is suitable

for training a deep neural network whereas the testing data is

used for evaluation. Therefore, we aim to construct a dataset,
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Mammal 21% 265

Insect 17% 210

Bird 16% 194

Underwater 14% 181

Reptile 9% 118

Amphibian 5% 59

Body Art 13% 161 1250

Solider 5% 62

21%

17%

16%
14%

9%

5%
13%

5%
Mammal

Insect

Bird

Underwater

Reptile

Amphibian

Body Art

Solider

Fig. 3. Categories in Camouflaged Object Dataset. Natural camouflaged

objects are shown in red while artificial camouflaged objects are shown in

blue.

Camouflaged Object (CAMO) dataset, to promote advance-

ments in camouflaged object segmentation and its evaluation.

We stress that our CAMO dataset is the very first dataset for

camouflaged object segmentation.

3.2. Dataset Construction

To build the dataset, we initially collected 3000 images in

which at least one camouflaged object exists. We collected

the images of camouflaged objects from the Internet with key-

words: “camouflaged objects”, “camouflaged animals”, “con-

cealed objects”, “hidden animals”, “camouflaged soldier”, “hu-

man body painting”, etc. Note that we consider both types of

camouflaged objects, namely, natural and artificial camouflage

as mentioned in Section 1. Then, we manually discarded im-

ages with low resolution or duplication. Finally, we ended up

with 1250 images. To avoid inconsistency in labeling ground-

truth, we asked three people to annotate camouflaged objects in

all 1250 images individually using a custom designed interac-

tive segmentation tool. On average, each person takes 2-5 min-

utes to annotate one image depending on its complexity. The

annotation stage spanned about one month.

3.3. Dataset Description

We describe in this section the Camouflaged Object (CAMO)

dataset specifically designed for the task of camouflaged object

segmentation. Some examples are shown in Fig. 1 with the cor-

responding ground-truth label annotations. We focus on two

categories, i.e., naturally camouflaged objects and artificially

camouflaged objects, which usually correspond to animals and

DistractionMultiple 
Objects

Object 
Occlusion

Small 
Object

Shape 
Complexity

Background 
Clutter

Object 
Appearance

(a) Examples of challenging attributes

Object appearance 62% 775
Background clutter 57% 711
Shape complexity 40% 506
Small object 35% 438
Object occlusion 29% 359 1250
Multiple objects 8% 104
Distraction 3% 33

62% 57%

40% 35%
29%

8%
3%

Object
appearance

Background
clutter

Shape
complexity

Small
object

Object
occlusion

Multiple
objects

Distraction

(b) Attribute distribution over the CAMO dataset

Fig. 4. Some examples of challenging attributes and the attribute distribu-

tion over the CAMO dataset.

humans in the real world, respectively. Camouflaged animals

consist of amphibians, birds, insects, mammals, reptiles, and

underwater animals in various environments, i.e., ground, un-

derwater, desert, forest, mountain, and snow. Camouflaged hu-

man falls into soldiers on the battlefields and human body paint-

ing arts. The ratios for each category are shown in Fig. 3.

In our CAMO dataset, it is also noteworthy that multi-

ple objects, including separate single objects and spatially

connected/overlapping objects, possibly exist in some images

(8%). This also makes our dataset more challenging for cam-

ouflaged object segmentation. The challenge of the CAMO

dataset is also enhanced due to some attributes, i.e. object ap-

pearance, background clutter, shape complexity, small object,

object occlusion, and distraction (cf. Fig. 4):

• Object appearance: The object has a similar color ap-

pearance with the background, causing large ambiguity in

segmentation.

• Background clutter: The background is not uniform but

contains small-scale structures or is composed of several

complex parts.

• Shape complexity: The object has complex boundaries

such as thin parts and holes, which is usually the case for

the legs of insects.

• Small object: The ratio between the camouflaged object
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area and the whole image area is smaller than 0.1.

• Object occlusion: The object is occluded, resulting in dis-

connected parts or in touching the image border.

• Distraction: The image contains distracted objects, result-

ing in losing attention to camouflaged objects. This makes

camouflaged objects more difficult to discover even by hu-

man beings.

4. Anabranch Network

In this section, we give a detailed description of our

Anabranch Network (ANet). Specifically, we first discuss the

motivation of network design. Then, we introduce the architec-

ture of ANet.

4.1. Network Design

As mentioned above, there is no guarantee that a camou-

flaged object is always present in the scene. Therefore, a

method that systematically segments objects for any image will

not work. Moreover, directly applying discriminative features

from segmentation models (i.e., semantic segmentation and

salient object segmentation, etc.) to camouflaged object seg-

mentation is not effective because camouflaged objects conceal

their texture into the surrounding environment. In order to seg-

ment camouflaged objects, we need an additional function that

identifies whether a camouflaged object exists in an image. To

do so, each pixel needs to be classified as a part of camouflaged

objects or not. Such classification can be used not only to en-

hance segmentation accuracy but also to segment multiple cam-

ouflaged objects. Indeed, this classification only strengthens

features extracted from the camouflaged part and weakens fea-

tures extracted from a non-camouflaged part. Accordingly, seg-

mentation and classification tasks should be closely combined

in the network with different architectures for camouflaged ob-

ject segmentation.

4.2. Network Architecture

Figure 5 depicts the overview of our proposed ANet, a gen-

eral network for camouflaged object segmentation. The ANet

leverages the advantages of the two different network mod-

els, namely, the classification network model based on a con-

volutional neural network (CNN) and the segmentation net-

work model based on a fully convolutional network (FCN). The

CNN reveals object hypotheses in the image (Zhou et al., 2014),

yielding a cue on whether or not the input image contains cam-

ouflaged object(s). We thus aim to train the CNN model so

that it classifies two classes: camouflaged image class and non-

camouflaged image one. The FCN, on the other hand, provides

us with the pixel-wise semantic information in the image. We

consider the output of the FCN as the semantic information of

different objects in the image. The two outputs from the two

network streams are finally fused to produce a pixel-wisely ac-

curate camouflage map which uniformly covers camouflaged

objects. We note that our classification stream output, i.e., the

probability (scalar), is multiplied (⊗) with each pixel value of

2D map produced by the segmentation stream.

Segmentation Stream: The input and the output of the seg-

mentation stream are both images, and, thus, any end-to-end

FCN for segmentation can be employed. In the sense that we

can employ any FCN for segmentation, ANet can be considered

as a general network.

Though, as addressed above, methods for salient object

detection alone may not work for accurate camouflaged ob-

ject segmentation, effective compensation by the classification

stream can be expected to boost up the performance in the

ANet. Recent state-of-the-art methods for salient object detec-

tion have demonstrated their good performances. In addition,

as we observed in Fig. 2, we have ambiguity in difference be-

tween camouflaged objects and salient objects. Based on these

reasons, we consider a saliency model is suitable to use into

ANet. We can easily swap the model with any other saliency

model. We remark that it is also interesting to utilize saliency

models in a similar but different domain such as camouflaged

object segmentation.

Classification Stream: We build the classification stream

on top of convolution layers, which play as feature extraction

module, of FCNs. In particular, we use three fully connected
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Input Image
(Camouflage /

Non-Camouflage)

Segmentation Result

Feature Extraction Segmentation Stream

Classification Stream

Classification 
(Camouflage / Non-Camouflage)

Fully connected

Soft-max

Multiply

State-of-the-art of Salient Object Segmentation

Fig. 5. Overview of our proposed Anabranch Network (ANet). The proposed network leverages the strength of both image classification and semantic

segmentation tasks for camouflaged object segmentation.

Fig. 6. Examples of non-camouflaged objects from MS-COCO.

Table 1. Architecture of the classification stream.

No Layer Output Dropping Rate

1 Fully connected 2048

2 ReLU 2048

3 Dropout 2048 50%

4 Fully connected 2048

5 ReLU 2048

6 Dropout 2048 50%

7 Fully connected 2

8 Soft-max 2

layers with 4096, 4096, and 2 filters, respectively (cf. Fig. 5

and Table 1). We note that each of the first two fully connected

layers is followed by a Rectified Linear Unit (ReLU) activation

layer (Krizhevsky et al., 2012). The last layer is the soft-max

layer. To train this stream, we use soft-max with the cross-

entropy loss. During the training process, we use dropout layers

with a dropout rate of 50% after the first two fully connected

layers to avoid over-fitting.

As seen above, our introduced ANet is conceptually simple.

Each stream in ANet has its own task and; thus, each stream is

expected to be individually trained using data suitable for the

task to enhance its ability. Then, the fusion of the two streams

into one boosts up segmentation accuracy of camouflaged ob-

jects. Furthermore, ANet is flexible in the sense that we can

employ any end-to-end FCN and easily switch it with another.

As we see in our experimental results, ANet is robust since it

maintains good segmentation accuracy in both cases of with and

without a camouflaged object in an input image. We also see its

computational efficiency.

5. Experiments

In this section, we first introduce evaluation datasets and

evaluation criteria used in experiments. Then we describe im-

plementing details as well as network training of our proposed

ANet and other baselines. In experiments, we show the po-

tential ability of transforming domain from salient object seg-

mentation to camouflaged object segmentation. We next com-

pare instances of our ANet with the FCN models fine-tuned on

two evaluation datasets, to demonstrate that classifying camou-

flaged objects and non-camouflaged objects can boost up the

camouflaged object segmentation. We also present the effi-
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Table 2. CAMO-COCO dataset used in our experiments.

Training Testing Total

Camouflaged object images (CAMO) 1000 250 1250

Non-Camouflaged object images (MS-COCO) 1000 250 1250

Total 2000 500 2500

ciency of our general ANet through short network training and

fast running time. These results can be considered as the first

baselines for the camouflaged object segmentation problem. Fi-

nally, we discuss the challenge of the proposed CAMO dataset

to show rooms for further research on this problem.

5.1. Datasets and Experimentation Setup

Any image in the CAMO dataset contains at least one cam-

ouflaged object. There is thus prior information that camou-

flaged objects are always present. In a realistic scenario, how-

ever, there is no guarantee that a camouflaged object is always

present in an image. Therefore, we set up another dataset,

called CAMO-COCO5, consisting of camouflaged object im-

ages and non-camouflaged object images. We used the entire

images in the CAMO dataset for the camouflaged object im-

ages and collected additional 1250 images from the MS-COCO

dataset (Lin et al., 2014) for the non-camouflaged object images

(cf. Fig. 6). We note that we created zero-mask ground-truth

labels (all pixels have zero values) for the non-camouflaged

object images. For each of the camouflaged image and non-

camouflaged object image sets, we randomly chose 80% for

training (1000 images) and used the remaining 20% for test-

ing (250 images). Table 2 shows the number of images in the

CAMO-COCO dataset used for experiments.

5.2. Evaluation Criteria

We used the F-measure (Fβ) (Achanta et al., 2009), Intersec-

tion Over Union (IOU) (Long et al., 2015), and Mean Absolute

Error (MAE) as the metrics to evaluate obtained results. The

5The link to the dataset will be available along with the publication of this

paper.

first metric, F-measure, is a balanced measurement between

precision and recall as follows:

Fβ =

(
1 + β2

)
Precision × Recall

β2 × Precision + Recall
. (1)

Note that we set β2 = 0.3 as used in (Achanta et al., 2009) to put

an emphasis on precision. IOU is the area ratio of the overlap-

ping against the union between the predicted camouflage map

and the ground-truth map. Meanwhile, MAE is the average of

the pixel-wise absolute differences between the predicted cam-

ouflage map and the ground-truth.

For MAE, we used the raw grayscale camouflage map. For

the other metrics, we binarized the results depending on two

contexts. In the first context, we assume that camouflaged ob-

jects are always present in every image like salient objects; we

used an adaptive threshold (Jia and Han, 2013) θ = µ+ η where

µ and η are the mean value and the standard deviation of the

map, respectively. In the second context which is much closer

to a real-world scenario, we assume that the existence of cam-

ouflaged objects is not guaranteed in each image; we used the

fixed threshold θ = 0.5.

5.3. Implementation Details

To demonstrate the generality and flexibility of our pro-

posed ANet, we employ various recent state-of-the-art FCN-

based salient object segmentation models for the segmenta-

tion stream. They are DHS (Liu and Han, 2016), DSS (Hou

et al., 2017), SRM (Wang et al., 2017b), and WSS(Wang et al.,

2017a).

For each employed model, we train two streams sequen-

tially. We first fine-tuned the segmentation stream using the

CAMO dataset from the publicly available pre-trained model

and then trained the classification stream using CAMO-COCO

with fixed parameters in the segmentation stream. The final

model is considered as our baseline for camouflaged object seg-

mentation.

In both training steps, we set the size of each mini-batch to

2, and used the Stochastic Gradient Descent (SGD) optimiza-

tion (Rumelhart et al., 1988) with a moment β = 0.9 and a

weight decay of 0.0005. We trained the segmentation stream
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Table 3. Experimental results on two datasets: CAMO dataset (the left part), and CAMO-COCO dataset (the right part). The evaluation is based on

F-measure (Achanta et al., 2009) (the higher the better), IOU (Long et al., 2015) (the higher the better), and MAE (the smaller the better). The 1st and 2nd

places are shown in blue and red, respectively.

Dataset in test CAMO CAMO-COCO

Method Adaptive Threshold Fixed Threshold Adaptive Threshold Fixed Threshold

MAE ⇓ Fβ ⇑ IOU ⇑ Fβ ⇑ IOU ⇑ MAE ⇓ Fβ ⇑ IOU ⇑ Fβ ⇑ IOU ⇑

DHS (Liu and Han, 2016) (pre-trained) 0.173 0.548 0.351 0.562 0.332 0.204 0.746 0.571 0.750 0.549

DHS (fine-tuned with CAMO) 0.129 0.640 0.459 0.643 0.444 0.169 0.794 0.633 0.793 0.618

DHS (fine-tuned with CAMO-COCO) 0.138 0.596 0.388 0.614 0.367 0.072 0.796 0.679 0.808 0.681

ANet-DHS (baseline) 0.130 0.626 0.437 0.631 0.423 0.072 0.812 0.712 0.814 0.705

DSS (Hou et al., 2017) (pre-trained) 0.157 0.564 0.320 0.563 0.333 0.176 0.757 0.559 0.756 0.570

DSS (fine-tuned with CAMO) 0.141 0.622 0.425 0.631 0.420 0.152 0.791 0.633 0.795 0.630

DSS (fine-tuned with CAMO-COCO) 0.145 0.582 0.385 0.584 0.381 0.076 0.790 0.686 0.792 0.687

ANet-DSS (baseline) 0.132 0.587 0.404 0.607 0.390 0.067 0.795 0.701 0.804 0.694

SRM (Wang et al., 2017b) (pre-trained) 0.171 0.448 0.258 0.425 0.213 0.191 0.699 0.535 0.685 0.502

SRM (fine-tuned with CAMO) 0.120 0.683 0.507 0.688 0.498 0.176 0.815 0.651 0.812 0.634

SRM (fine-tuned with CAMO-COCO) 0.127 0.663 0.454 0.656 0.421 0.067 0.830 0.717 0.831 0.708

ANet-SRM (baseline) 0.126 0.654 0.475 0.662 0.466 0.069 0.826 0.732 0.830 0.727

WSS (Wang et al., 2017a) (pre-trained) 0.178 0.559 0.323 0.531 0.265 0.197 0.754 0.567 0.740 0.528

WSS (fine-tuned with CAMO) 0.145 0.658 0.477 0.661 0.465 0.174 0.807 0.649 0.810 0.637

WSS (fine-tuned with CAMO-COCO) 0.149 0.642 0.439 0.638 0.382 0.085 0.811 0.678 0.820 0.687

ANet-WSS (baseline) 0.140 0.661 0.459 0.643 0.407 0.078 0.826 0.710 0.820 0.697

for 10 epochs (corresponding to 5k iterations) with the learning

rate of 10−4 and trained the classification stream for 3 epochs

(3k iterations) with the learning rate of 10−6. During the fine-

tuning process, a simple data augmentation technique was used

to avoid over-fitting. Images were rescaled to the resolution

of the specific FCN employed in the segmentation stream and

randomly flipped horizontally.

We note that for comparison, our employed FCN models

(original) were trained on CAMO (or CAMO-COCO) dataset

for 10 epochs with the learning rate of 10−4 and the other pa-

rameters were set similarly to our ANet. We also remark that

we implemented our method in C/C++, using Caffe (Jia et al.,

2014) toolbox and conducted all the experiments on a computer

with a Core i7 3.6 GHz processor, 32 GB of RAM, and two

GTX 1080 GPUs.

5.4. Experimental Results

5.4.1. Baseline Evaluation

We evaluated our model (baseline) on two datasets: CAMO

(camouflaged object images only) and CAMO-COCO (both

camouflaged and non-camouflaged object images) where only

test images in each dataset were used for this evaluation. We

employed an FCN (DHS (Liu and Han, 2016), DSS (Hou et al.,

2017), SRM (Wang et al., 2017b), or WSS(Wang et al., 2017a))

as the segmentation stream. For comparison, we also evalu-

ated each of used FCNs to see how it works for camouflaged

object segmentation. Each was evaluated with three differ-

ent models: the pre-trained models on saliency datasets (e.g.

MSRA (Cheng et al., 2015), DUT-OMRON (Yang et al., 2013),

and DUTS (Wang et al., 2017a)), the models that were fine-

tuned with CAMO or CAMO-COCO (the model is specified

by the word inside the parentheses). Figures 7, 8, and Ta-

ble 3 illustrate the obtained results of our experiments. We note

that ANet-DHS (baseline), for example, denotes our proposed
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model employing DHS as the segmentation stream.

Figures 7 and 8 show that ANet yields better results than

its employed original FCN (pre-trained) independently of the

choice of the FCN. In particular, for non-camouflaged object

images, the superiority of performances of ANet against its

original FCN is distinguished. This suggests that the fusion

with the classification stream indeed works effectively to boost

the segmentation accuracy.

5.4.2. Performance of Camouflaged Object Segmentation

It is interesting for the saliency community to see the seg-

mentation capabilities of saliency systems to segment camou-

flaged objects (which should actually not be possible due to dif-

ferent properties of those objects). Therefore, we show results

of FCNs using pre-trained models for salient object segmenta-

tion in Table 3. Although results are moderate (the worst results

among compared methods for each FCN), it also illustrates the

potential ability to transfer from salient object segmentation to

camouflaged object segmentation due to the ambiguous border

of these kinds of object. This shows the possibility of using

existing saliency models to tackle camouflaged object segmen-

tation problem.

Table 3 shows that the fine-tuned FCN models achieve

around 60+% accuracy in Fβ and IOU (around 0.1 in MAE).

Naturally, the model fine-tuned with the dataset used for test-

ing performs better than the pre-trained model or the model

fine-tuned with the other dataset. We also observe the model

fine-tuned with CAMO-COCO performs better than the one

fine-tuned with CAMO. This is because CAMO is a subset of

CAMO-COCO. These mean that salient object segmentation

methods are, to some extent, capable of segmenting even a not-

target object such as a camouflaged object. This may come

from the ambiguity of the differences between salient objects

and camouflaged objects. This, simultaneously, also supports

the use of an FCN developed for salient object segmentation as

the segmentation stream in our ANet.

We then draw our attention to the performances of ANet us-

ing an FCN. Since the segmentation stream of ANet is trained

using CAMO and its output is multiplied by the output of the

classification stream, the segmentation ability of ANet is lim-

ited by that of the employed FCN fine-tuned with CAMO. In

other words, the performance of ANet on CAMO is expected

to be comparable with that of the employed FCN (fine-tuned

with CAMO), which is confirmed in Table 3. When we evalu-

ate ANet on CAMO-COCO, however, the performance of ANet

can be better than that of the employed FCN (fine-tuned with

CAMO). This can be explained by the nature of CAMO-COCO

where an image may not contain any camouflaged object, and

thus the role of the classification stream becomes more cru-

cial; in other words, the accuracy of the classification stream

boosts up the segmentation accuracy of ANet. The segmenta-

tion accuracy of the FCN, in contrast, is degraded because it

is not trained on CAMO-COCO. A similar conclusion can be

derived from the comparison between ANet and the employed

FCN fine-tuned with CAMO-COCO. Accordingly, ANet works

with comparable accuracy on both CAMO and CAMO-COCO

while each FCN works well only on one of the two datasets. In-

deed, this can be observed in Table 3. This clearly demonstrates

that ANet can maintain with flexibility a good segmentation ac-

curacy, regardless whether a camouflaged object is present in

the input image or not.

We also statistically evaluated the significance of the differ-

ences using the t-test with the significance level of 90%. For

CAMO-COCO dataset, we confirmed that on all the metrics,

ANet significantly outperforms the other methods mostly or is

at least similar to the best methods. For CAMO dataset, we also

confirmed ANet is significantly better than FCNs fine-tuned on

CAMO-COCO, and FCNs fine-tuned on CAMO are signifi-

cantly better than ANet. This means ANet’s ability for CAMO

dataset is between FCNs fine-tuned on CAMO and FCNs fine-

tune on CAMO-COCO. This is reasonable because the per-

formance of the classification stream is not perfect, leading to

slightly reducing the performance on CAMO.

To summarize, ANet has good performance for both CAMO

and CAMO-COCO datasets. On the other hand, FCNs fine-

tuned with CAMO-COCO have good performance for only

CAMO-COCO but not for CAMO; whereas FCNs fine-tuned
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Fig. 7. Visual comparison of our ANet employing different FCNs on natural camouflaged object images (CAMO dataset). From left to right, input image

and ground-truth are followed by outputs obtained using ANet with DHS (Liu and Han, 2016), DHS (pre-trained), ANet with DSS (Hou et al., 2017), DSS

(pre-trained), ANet with SRM (Wang et al., 2017b), SRM (pre-trained), ANet with WSS (Wang et al., 2017a), and WSS (pre-trained) in this order. The

results obtained by ANet is surrounded with red rectangles.
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Fig. 8. Visual comparison of our ANet employing different FCNs. From left to right, input image and ground-truth are followed by outputs obtained using

ANet with DHS (Liu and Han, 2016), DHS (pre-trained), ANet with DSS (Hou et al., 2017), DSS (pre-trained), ANet with SRM (Wang et al., 2017b), SRM

(pre-trained), ANet with WSS (Wang et al., 2017a), and WSS (pre-trained) in this order. The first eight rows are images with artificial camouflaged objects

(CAMO dataset), and the last seven rows are images without camouflaged objects (COCO dataset). The results obtained by ANet is surrounded with red

rectangles.
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Table 4. The accuracy (%) of camouflaged object classification on the

CAMO-COCO dataset.

Method Accuracy

SVM-BoW (Fei-Fei and Perona, 2005) 54.0

AlexNet (Krizhevsky et al., 2012) 76.0

VGG-16 (Simonyan and Zisserman, 2014b) 88.6

ANet-DHS 91.4

ANet-DSS 89.2

ANet-SRM 90.6

ANet-WSS 89.6

with CAMO have good performance for only CAMO but not

for CAMO-COCO (not for both).

5.4.3. Performance of Camouflaged Object Classification

In order to evaluate the level of accuracy achieved by our

classification stream, we compared the performance of our

classification stream with that of the SVM-based classifica-

tion using the Bag-of-Words model (Fei-Fei and Perona, 2005)

with SIFT features (Lowe, 1999) (denoted by SVM-BoW) and

CNNs, including AlexNet (Krizhevsky et al., 2012) and VGG-

16 (Simonyan and Zisserman, 2014b). For CNNs, we fine-

tuned them on our CAMO-COCO dataset from pre-trained

models on the ImageNet dataset (Russakovsky et al., 2015).

The results are shown in Table 4, indicating that the accuracy

of our classification stream achieves around 90%, which outper-

forms SVM-BoW. ANet baseline models are also significantly

better than both AlexNet and VGG-16. As a closer look, the

classification stream achieves high accuracy on few training it-

erations (3 epochs).

5.4.4. Computational Efficiency

We further evaluated the computational efficiency of all the

baseline models. We also evaluated the average running time of

the original FCN models employed in our ANet. The results are

shown in Table 5. We observe that stacking the classification

stream does not incur much more processing time, indicating

that the ANet is able to keep the running time computationally

efficient.

Table 5. The average wall-clock time in millisecond for each image.

Method FCN ANet (baseline)

DHS (Liu and Han, 2016) 63 73

DSS (Hou et al., 2017) 76 79

SRM (Wang et al., 2017b) 81 86

WSS (Wang et al., 2017a) 61 65

5.5. Discussion

5.5.1. Failure Cases

The accuracy of our baselines on CAMO for camouflaged

object segmentation is far lower than the state-of-the-art accu-

racy for salient object segmentation, which can achieve up to

round 90% in Fβ. This is mainly caused by the insufficient abil-

ity of the segmentation stream when we transfer domain from

salient object segmentation to camouflaged object segmenta-

tion. Figure 9 shows some failure segmentation results obtained

by our used FCNs where input images involve challenging sce-

narios in CAMO (object appearance and background clutter in

the first row; the shape complexity of insect legs in the second

row; distraction in the third row).

5.5.2. Joint Training

The classification stream is expected to boost the segmenta-

tion accuracy in ANet, however, fusing the two streams by the

multiplication is still insufficient. Further effective fusion of the

two streams should be explored to improve the segmentation

accuracy.

For a two-stream network, jointly training two streams af-

ter training each stream separately is known as a strategy to

improve the performance (Jain et al., 2017). Following this

strategy, we jointly trained the ANet (baseline) using CAMO-

COCO where we used 10 epochs (10k iterations) with the

learning-rates of 10−4 (for the segmentation stream) and 10−6

(for the classification stream). Other parameters are set sim-

ilarly to training two streams individually. The loss function

for joint-training is defined as the summation of the loss of the

classification stream and that of the segmentation stream:

L = Lseg(ŷseg, yseg) +Lcls(ŷcls, ycls), (2)
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Fig. 9. Failure cases of FCNs on CAMO. Each case is shown in a horizontal triplet of images, from left to right: input image, ground-truth, and result by

the best FCN (fine-tuned with CAMO) in this order.

where ŷseg, yseg, ŷcls, and ycls denote outputs and ground-truth

labels of the segmentation stream and the classification stream,

respectively. Lcls is the soft-max loss of the classification

stream and Lseg is the specific loss of the corresponding FCN

implemented in the segmentation stream.

Table 6 illustrates the improvement of performances by intro-

ducing the joint-training to ANet. We see that differently from

other two-stream network cases, jointly-training ANet does not

lead to better performance for all methods. DHS and WSS re-

duce accuracy while DSS and SRM slightly increase accuracy

(see Table 6). This can be explained as follows. Each stream

of ANet has its own task and thus using training data suitable

for the task is mandatory to enhance its ability. During the

joint-training of ANet, however, data used for training cannot

be suitable for each of the tasks of the two streams, resulting

in interfering with each other stream. This is also facilitated by

the branch structure of ANet. Accordingly, joint-training po-

tentially brings to ANet some collapse in improving training of

each stream.

Therefore, jointly training two streams may not bring gain

to ANet due to opposite attributes of camouflaged objects and

non-camouflaged objects. The two-step training approach is

sufficient for ANet for the task of camouflaged object segmen-

tation on the CAMO-COCO dataset. Further investigation on

this issue is left for future work.

6. Conclusion

In this paper, we addressed an interesting yet challenging

problem of camouflaged object segmentation by providing a

new image dataset of camouflaged object segmentation where

each image is manually annotated with pixel-wise ground-truth.

We believe that our novel dataset will promote new advance-

ments on camouflaged object segmentation. We also aim to

explore camouflaged object segmentation on videos in the near

future.

We proposed a simple and flexible end-to-end network,

namely Anabranch Network, for camouflaged object segmen-

tation where the classification stream and the segmentation

stream are effectively combined to show the baseline perfor-

mance. To show effectiveness of our proposed framework,

which can boot the segmentation using classification, we ap-

plied it to different FCNs. Extensive experiments conducted

on the newly built dataset demonstrate the superiority of the

proposed network. In addition, our method is computationally

efficient.

This paper focused on only regions, but the potential idea

of utilizing classification into segmentation can be useful when

applying for instance segmentation in appropriate ways. For ex-

amples, instance classification can be combined with instance

segmentation, where each instance is classified whether it is

camouflaged or salient. This is left for the future work.
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Table 6. Performance of joint-training on CAMO dataset and CAMO-COCO dataset. The best results are shown in blue.

Dataset in test CAMO CAMO-COCO

Method Adaptive Threshold Fixed Threshold Adaptive Threshold Fixed Threshold

MAE ⇓ Fβ ⇑ IOU ⇑ Fβ ⇑ IOU ⇑ MAE ⇓ Fβ ⇑ IOU ⇑ Fβ ⇑ IOU ⇑

ANet-DHS (baseline) 0.130 0.626 0.437 0.631 0.423 0.072 0.812 0.712 0.814 0.705

ANet-DHS (+joint training) 0.201 0.509 0.314 0.490 0.130 0.109 0.749 0.628 0.758 0.564

ANet-DSS (baseline) 0.132 0.587 0.404 0.607 0.390 0.067 0.795 0.701 0.804 0.694

ANet-DSS (+joint training) 0.126 0.644 0.441 0.651 0.417 0.064 0.822 0.719 0.825 0.707

ANet-SRM (baseline) 0.126 0.654 0.475 0.662 0.466 0.069 0.826 0.732 0.830 0.727

ANet-SRM (+joint training) 0.123 0.680 0.481 0.682 0.454 0.063 0.839 0.733 0.841 0.726

ANet-WSS (baseline) 0.140 0.661 0.459 0.643 0.407 0.078 0.826 0.710 0.820 0.697

ANet-WSS (+joint training) 0.145 0.626 0.394 0.628 0.324 0.074 0.813 0.692 0.816 0.662
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