
26 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Deep 3D morphable model refinement via progressive growing of conditional Generative Adversarial
Networks / Galteri L.; Ferrari C.; Lisanti G.; Berretti S.; Del Bimbo A.. - In: COMPUTER VISION AND IMAGE
UNDERSTANDING. - ISSN 1077-3142. - ELETTRONICO. - 185:(2019), pp. 31-42.
[10.1016/j.cviu.2019.05.002]

Published Version:

Deep 3D morphable model refinement via progressive growing of conditional Generative Adversarial
Networks

Published:
DOI: http://doi.org/10.1016/j.cviu.2019.05.002

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/697538 since: 2019-09-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cviu.2019.05.002
https://hdl.handle.net/11585/697538


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Galteri, L., et al. "Deep 3D Morphable Model Refinement Via Progressive Growing 
of Conditional Generative Adversarial Networks." Computer Vision and Image 
Understanding, vol. 185, 2019, pp. 31-42. 

The final published version is available online at : 
http://dx.doi.org/10.1016/j.cviu.2019.05.002 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 

publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1016/j.cviu.2019.05.002


Accepted Manuscript

Deep 3D morphable model refinement via progressive growing of
conditional generative adversarial networks

Leonardo Galteri, Claudio Ferrari, Giuseppe Lisanti, Stefano Berretti,
Alberto Del Bimbo

PII: S1077-3142(19)30077-3
DOI: https://doi.org/10.1016/j.cviu.2019.05.002
Reference: YCVIU 2775

To appear in: Computer Vision and Image Understanding

Received date : 30 June 2018
Revised date : 6 May 2019
Accepted date : 12 May 2019

Please cite this article as: L. Galteri, C. Ferrari, G. Lisanti et al., Deep 3D morphable model
refinement via progressive growing of conditional generative adversarial networks. Computer
Vision and Image Understanding (2019), https://doi.org/10.1016/j.cviu.2019.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cviu.2019.05.002


Research Highlights

• A solution for reconstructing a fine-grained realistic 3D face model

• 3D face refinement by progressive growing of an encoder-decoder Conditional GAN

• Successfully application of progressive growing to Conditional GAN training

• Shape refinement independent from the 3D coarse reconstruction method

• Conditional GAN training on a relatively small set of examples

*Highlights (for review)



1

Deep 3D Morphable Model Refinement via Progressive Growing of Conditional
Generative Adversarial Networks

Leonardo Galteria,∗∗, Claudio Ferraria,∗∗, Giuseppe Lisantib, Stefano Berrettia, Alberto Del Bimboa

aUniversity of Florence, Media Integration and Communication Center, viale Morgagni 65, Florence 50134, Italy
bUniversity of Bologna, Department of Computer Science and Engineering, Mura Anteo Zamboni 7, Bologna 40126, Italy

ABSTRACT

3D face reconstruction from a single 2D image is a fundamental Computer Vision problem of extraor-
dinary difficulty. Statistical modeling techniques, such as the 3D Morphable Model (3DMM), have
been widely exploited because of their capability of reconstructing a plausible model grounding on
the prior knowledge of the facial shape. However, most of these techniques derive an approximated
and smooth reconstruction of the face, without accounting for fine-grained details. In this work, we
propose an approach based on a Conditional Generative Adversarial Network (CGAN) for refining
the coarse reconstruction provided by a 3DMM. The latter is represented as a three channels image,
where the pixel intensities represent the depth, curvature and elevation values of the 3D vertices. The
architecture is an encoder-decoder, which is trained progressively, starting from the lower-resolution
layers; this technique allows a more stable training, which leads to the generation of high quality out-
puts even when high-resolution images are fed during the training. Experimental results show that our
method is able to produce reconstructions with fine-grained realistic details and lower reconstruction
errors with respect to the 3DMM. A cross-dataset evaluation also shows that the network retains good
generalization capabilities. Finally, comparison with state-of-the-art solutions evidence competitive
performance, with comparable or lower error in most of the cases, and a clear improvement in the
quality of the generated models.

1. Introduction

In recent years, technologies for acquiring 3D data have
made substantial progress with many devices that can capture
clouds of points or depth maps either statically or dynamically.
Such 3D data demonstrated to be beneficial in a variety of appli-
cations, where they provide invariance to view and illumination
conditions (Ioannidou et al., 2017). In particular, face and fa-
cial expression recognition constitute two application contexts
where 3D data have been employed successfully, helping to im-
prove robustness to occlusions and variations of expression, il-
lumination and pose (Sandbach et al., 2012; Soltanpour et al.,
2017). However, the diffusion and applicability of such 3D ac-
quisition devices for face analysis is still limited: on the one

∗∗These authors contributed equally to this work.
Corresponding author: Tel.: +39 055 275-1394; fax: +39 055 275-1396;
e-mail: leonardo.galteri@unifi.it (Leonardo Galteri)

hand, high-resolution scanners are typically slow and require
user cooperation; on the other, depth cameras that can oper-
ate at high frame rate and without user cooperation produce
low-resolution data. In both the cases, operational constraints
limit the applicability of these acquisition modalities to indoor
environments and close fields of view (Berretti et al., 2018).
There are also multi-view stereo rigs, that represent the most
commonly applied face reconstruction solution in the industry.
Multi-view stereo is capable of producing 3D reconstructions
with very high resolution at high capture frame rates1. How-
ever, these methods are based on specialized settings that in-
clude dedicated rooms and the combined views of many cali-
brated cameras, thus making their application more oriented to
computer graphics and virtual reality for cinematographic in-
dustry.

1See for example: http://ir-ltd.net/ or http://ten24.info/
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Following a different perspective, the idea of deriving 3D in-
formation from 2D images using computer vision techniques is
a research topic with a quite long tradition that dates back to
’80. Now, remaining the 3D acquisition limited to certain con-
strained domain, the deployment of powerful machine learn-
ing tools has pushed forward this research area, with innova-
tive and effective solutions appeared recently. Aiming to es-
timate the 3D geometry from single or multiple images un-
der the most general conditions, where no a priori knowledge
is available about the imaged scene and the capturing condi-
tions is a very challenging task. Hence, to make the prob-
lem solvable to some extent, priors are usually assumed. In
the case a 3D model of the face is reconstructed, the prior
knowledge can be in the form of camera parameters and re-
flectance properties of the face considering either a single im-
age, as in the shape from shading (SfS) solution (Horn and
Brooks, 1989), or multiple images with different illuminations
in the photometric stereo approach (Woodham, 1980). Though
quite accurate reconstructions can be obtained with these so-
lutions (Kemelmacher-Shlizerman and Basri, 2011), the given
assumptions are rarely verified in real contexts. Other methods
use a 3D Morphable Model (3DMM) of the face as shape prior.
This statistical model limits the shape of the reconstructed face
to the combination, according to a set of parameters, of an av-
erage face model and some deformation components. Different
solutions have been proposed in the literature for solving for
these parameters. In the original 3DMM, as firstly proposed
in (Blanz and Vetter, 1999), this was formulated as the com-
putationally onerous problem of iteratively minimizing the dif-
ference between the 2D target image and the image rendered
from the 3D reconstructed model. Later works (Blanz et al.,
2004; Ferrari et al., 2017b) proposed to learn the parameters
via linear regression from the position of corresponding 2D and
3D landmarks. These latter solutions, though efficient, often
result in coarse reconstructions that can be sensitive to inac-
curate landmarks detection in the 2D images. Despite these
drawbacks, the 3DMM has been the founding idea of several
recent solutions that use deep neural networks to learn complex
non-linear regressor functions, mapping a 2D facial image to
the optimal 3DMM parameters (Tran et al., 2017a; Dou et al.,
2017). However, the results of such reconstructions appear still
over-smoothed, lacking of fine details of the face.

A promising idea to move a step further from the above so-
lutions is that of starting from an initial smooth estimation of
the face shape, then adding local details. A work that followed
this idea, while keeping general in the assumptions, has been
proposed in (Tran and Liu, 2018). In that work, a founda-
tion shape is generated by a deep learning based 3DMM (Tran
et al., 2017a), which is then refined by adding details gener-
ated by an encoder-decoder network. This is similar to the con-
cept of bump-mapping used in Computer Graphics to separate
the global shape from local details (Blinn, 1978). This idea
brings quite naturally to the use of Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014). In the current litera-
ture of deep learning solutions, GANs have proved their capa-
bility of generating synthetic image data that are hardly distin-
guishable from real one (Berthelot et al., 2017). Thanks to this

specific prerogative, they have found successful application in
tasks such as image super-resolution (Ledig et al., 2017), image
enhancement (Radford et al., 2015), image restoration (Wang
et al., 2017), etc.

1.1. Contribution and paper organization
Getting inspired by the above considerations, in this work

we propose a coarse-to-fine approach to reconstruct a detailed
3D face model from a single image. The approach develops on
the idea of first deriving a coarse 3D shape by fitting a 3DMM.
Then, the coarse shape is refined using a Conditional Genera-
tive Adversarial Network (CGAN). To this end, the 3D shape is
represented as a three-channel image, where the three channels
are the depth, curvature and elevation values of the vertices of
the model. In addition to this, we also tested a variant of our so-
lution, where the RGB channels of the face image are also used
as input of our network. The CGAN is designed following the
encoder-decoder paradigm, which is trained progressively start-
ing from the lower-resolution layers. This technique allows a
more stable training compared to traditional GANs, which ulti-
mately leads to the generation of finer detailed 3D face models.
Experimental results show that our method is able to produce
reconstructions with fine-grained realistic details and lower re-
construction errors with respect to the 3DMM. A cross-dataset
evaluation shows that the model retains good generalization ca-
pabilities. A comparison with state-of-the-art solutions reveals
that the proposed approach is highly competitive in terms of
quantitative measurements, while showing an evident superior-
ity in generating detailed and realistic reconstructions.

In summary, our contributions are as follows:

• We design an effective and efficient solution that starting
from a single image of the face is capable of deriving a
fine-grained realistic 3D face model reconstruction. This
is obtained by an initial coarse reconstruction followed by
a refinement;

• We model the 3D face refinement step as the problem of
training, with progressive growing, an encoder-decoder
based Conditional GAN. Differently from (Karras et al.,
2017), where a classic GAN is used, to the best of our
knowledge, we are the first to successfully apply the pro-
gressive growing in the training of a conditional GAN with
this architecture.

• We improve the reconstruction quality by defining an
alternative solution for training the conditional GAN;
in particular, we compute the adversarial-loss and the
discriminator-loss considering only the depth channel,
while the pixel-loss is still computed on the three-channel
image;

• Through an extensive experimentation, we demonstrate
that the fine-grained 3D face obtained by using the pro-
posed solution better approximates, both quantitatively
and qualitatively, a realistic face independently from the
technique used to generate the coarse reconstruction given
as input to the network. We also show our solution gen-
erates more realistic and detailed reconstructions with re-
spect to state-of-the-art methods.
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The rest of the paper is organized as follows: in Section 2, we
summarize the closely related work on 3D face reconstruction;
in Section 3, we introduce the 3D Morphable Shape Model,
explain how it can be fitted to an image for generating the ini-
tial coarse estimations of the face shape, and illustrate how this
serves to derive training image data with depth, curvature and
elevation channels; the GAN architecture we have designed and
its training are detailed in Section 4; experimental results are
presented in Section 5, where we evaluate the proposed method
both quantitatively, in terms of face reconstruction, and qual-
itatively by looking to the shape of the resulting models, also
in comparison to state-of-the-art solutions; finally, conclusions
and future research directions are sketched in Section 6.

2. Related work

In the general case, reconstructing a 3D face model from 2D
images is extremely challenging so that most of the existing
solutions rely on some assumptions in the form of prior knowl-
edge. Keeping aside methods that do not resort to any problem
simplification, and that thus result in poor reconstructions, in
the following, we organize and discuss previous work into two
categories according to the different priors they use.

2.1. 3D face reconstruction under constrained conditions

In the first category, there are methods that make quite strong
assumptions on the data and viewing conditions, and exploit
them to derive fine details in the reconstructed shape. These
methods date back to ’80s with the seminal works on photo-
metric stereo (Woodham, 1980) and SfS (Horn, 1970; Horn and
Brooks, 1989). While in photometric stereo 3D face models
are reconstructed from large photo collections (Kemelmacher-
Shlizerman and Seitz, 2011; Roth et al., 2015; Liang et al.,
2016), the special case of SfS aims to reconstruct the face when
just a single image is known (Dovgard and Basri, 2004). In both
the cases, additional prior information in the form of one or
more 3D models (Roth et al., 2016; Zeng et al., 2017), or statis-
tical shape models of the face, like 3DMM (Dovgard and Basri,
2004), have been used to support the reconstruction. Though
these methods show accurate and often detailed reconstruc-
tions, this is obtained at the cost of making hypothesis on the
light sources and the reflectance properties of the face. Since
such assumptions do not hold in practice in most of the cases,
the application of these methods is limited to scenes with con-
trolled settings.

2.2. 3D face reconstruction with shape priors

In the second category fall methods that keep general the
assumptions and use priors in the form of a prototypical face
model, thus reconstructing smooth shapes that, however, lack of
fine details (see (A) below). An emerging trend in this category
of methods is that of defining solutions that are both general
and accurate. In most of the cases, this is obtained by applying
a refinement step that adds details to an initially reconstructed
coarse shape; deep learning solutions are mostly used for this
second step (see (B)).

A. Coarse face reconstruction from shape prior – Some
of the earliest methods (Vetter and Blanz, 1998; Hassner and
Basri, 2006) and also more recent methods (Hassner, 2013) in
this category used 3D reference models to modify the shape es-
timated from an input face image. For example, in (Hassner,
2013) a data-driven method was presented for estimating the
3D shape of faces viewed in single “in-the-wild” photos, where
an optimization process was used to jointly maximize the simi-
larity of appearances and depths to those of a reference model.
These methods favor robustness to challenging viewing condi-
tions over detailed reconstructions, thus they were only used to
synthesize new views from unseen poses for face recognition.

The most widely recognized examples in this category
are the 3DMM based fitting methods, as originally proposed
in (Blanz and Vetter, 1999), and subsequently refined in other
works (Romdhani and Vetter, 2003). Also these methods em-
phasized more the appeal of rendered face images, rather than
the quantitative evaluation of the accuracy of the reconstructed
face shape. Among the 3DMM variants, the most success-
ful was proposed in (Paysan et al., 2009) that improved the
3DMM into the Basel Face Model with higher shape and tex-
ture accuracy and less correspondence artifacts. In (Booth et al.,
2017b,a) an in-the-wild 3DMM was proposed by combining a
statistical model of facial shape, which describes both identity
and expression, with an in-the-wild texture model.

Some other reconstruction techniques fit the 3DMM sur-
face to detected facial landmarks rather than to face intensi-
ties directly. These methods include solutions designed for
videos, like in (Saito et al., 2016; Huber et al., 2016), and
the CNN based approaches of (Jourabloo and Liu, 2016; Zhu
et al., 2016). For example, in (Jourabloo and Liu, 2016) a face
alignment method for large-pose face images was proposed that
combines the powerful cascaded CNN regressor method and
the 3DMM. In particular, the face alignment is formulated as a
3DMM fitting problem, where the camera projection matrix and
the 3D shape parameters are estimated by a cascade of CNN-
based regressors. The dense 3D shape allows designing pose-
invariant appearance features for effective CNN learning. The
face recognition method in (Taigman et al., 2014) also used 3D
modeling of the face based on fiducial points to warp a detected
facial crop to a 3D frontal mode. These latter methods, how-
ever, focus more on landmark detection and alignment than 3D
shape estimation, and so do not attempt to produce detailed and
discriminative facial geometries.

B. Deep face shape estimation – Recently, deep neural net-
works (DNN) have been applied also to the face shape esti-
mation problem. When using deep learning approaches to re-
construct 3D faces, one main obstacle to overcome is the lack
of sufficiently large amount of training data. One idea is that
of generating such face shapes synthetically using a 3DMM.
Following this approach, in (Richardson et al., 2016) a rather
shallow network is trained on synthetic shapes with an iterative
process, and facial details are also added by training an end-to-
end system to additionally estimate SfS. In (Richardson et al.,
2017) an end-to-end CNN framework is introduced, which de-
rives the shape in a coarse-to-fine fashion. This architecture is
composed of a network that recovers the coarse facial geometry
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(CoarseNet), followed by a CNN that refines the facial features
of that geometry (FineNet). Also in this case the solution space
is modeled by a 3DMM.

Other methods in this category, used deep networks by em-
phasizing more the aspect of estimating 3D shapes from uncon-
strained photos (Tran et al., 2017a; Dou et al., 2017; Jackson
et al., 2017; Sengupta et al., 2017). These methods estimate
shapes that are highly invariant to viewing conditions, but pro-
vide only coarse 3D details. In (Tran et al., 2017a), authors
proposed to use a very deep CNN to regress 3DMM parameters
and facial details directly from image intensities, rather than
by using the analysis by synthesis approach of earlier meth-
ods. Different from other works that reconstruct and refine the
3D face in an iterative manner using both an RGB image and
an initial 3D facial shape rendering, in (Dou et al., 2017) an
end-to-end DNN model was proposed that avoids the compli-
cated 3D rendering process. In doing so, two components are
integrated in the DNN architecture: a multi-task loss function,
and a fusion-CNN to improve facial expression reconstruction.
With the multi-task loss function, 3D face reconstruction is di-
vided into neutral 3D facial shape reconstruction and expressive
3D facial shape reconstruction. With the fusion-CNN, features
from different intermediate layers are fused and transformed for
predicting the 3D expressive facial shape. In (Jackson et al.,
2017), regression of a volumetric representation of the 3D facial
geometry from a single 2D image is directly performed using
a simple CNN architecture denoted as Volumetric Regression
Network that was based on the “hourglass network” (Newell
et al., 2016). In (Sengupta et al., 2017), the SfSNet designs
an end-to-end learning framework, which reflects a physical
Lambertian rendering model for producing decomposition of
an unconstrained image of a human face into shape, reflectance
and illuminance. To allow for detailed reconstructions in (Sela
et al., 2017) the face shape is directly estimated using a depth
map. An image-to-image translation network is proposed that
jointly maps the input image to a depth image and a facial corre-
spondence map. This explicit pixel-based mapping can then be
utilized to provide high-quality reconstructions of diverse faces
under extreme expressions, using a purely geometric refinement
process. The approach proposed in (Tewari et al., 2017) re-
constructed a 3D face from a single in-the-wild color image
by combining a convolutional encoder network with an expert-
designed generative model that serves as decoder. The method
designed in (Tran and Liu, 2018) provides detailed 3D recon-
structions of faces viewed under out of plane rotations, and oc-
clusions. Motivated by the concept of bump mapping, a layered
approach is proposed, which decouples estimation of a global
shape from its mid-level details (e.g., wrinkles). A coarse 3D
face shape is first estimated, which acts as a foundation, and
then details represented by a bump map (Blinn, 1978) are lay-
ered on this foundation. A deep convolutional encoder-decoder
was used to estimate such bump maps. The solution proposed
in (Feng et al., 2017) exploited the Epipolar Plane Images (EPI)
obtained from light-field cameras and learned CNN models that
recover horizontal and vertical 3D facial curves from the re-
spective horizontal and vertical EPIs. A 3D face reconstruc-
tion network (FaceLFnet) comprises a densely connected archi-

tecture to learn 3D facial curves from low-resolution EPIs. A
framework to learn a nonlinear 3DMM from a large set of un-
constrained face images, without collecting 3D face scans was
proposed in (Tran and Liu, 2018). Given a face image as in-
put, a network encoder estimates the projection, shape and tex-
ture parameters. Two decoders serve as the nonlinear 3DMM to
map from the shape and texture parameters to the 3D shape and
texture, respectively. An analytically-differentiable rendering
layer is then used to reconstruct the original input face from the
projection parameters, 3D shape, and texture. The entire net-
work is end-to-end trainable with weak supervision. However,
face reconstruction is shown just for few examples, without an
extensive quantitative evaluation, and the quality of the results
seem more ascribable to the face texture than to its shape.

2.3. Background on GANs for image synthesis

We are not aware of methods that use GANs, either condi-
tional or not, to generate detailed 3D models of the face start-
ing from a raw estimation of the shape geometry. However, in
designing our reconstruction solution, we leveraged on classi-
cal GAN-based methods applied to RGB images; Therefore, in
the following, we refer some relevant work that used GANs for
image related tasks. GANs were first proposed in (Goodfellow
et al., 2014), and subsequently modified in a series of works, for
improved training (Salimans et al., 2016), or extended to unsu-
pervised learning as with the Deep Convolutional GANs (DC-
GANs) (Radford et al., 2015). Since their introduction, GANs
have rapidly established as state-of-the-art solutions to improve
the quality of generated 2D images in a variety of image syn-
thesis tasks. In (Denton et al., 2015), a generative parametric
model was introduced capable of producing high-quality sam-
ples of natural images. This approach uses a cascade of con-
volutional networks within a Laplacian pyramid framework to
generate images in a coarse-to-fine fashion. At each level of the
pyramid, a separate generative convnet model is trained using
the GAN approach. In (Odena et al., 2017), a new method for
the improved training of GANs for image synthesis was intro-
duced. Several method used GANs in image-to-image transla-
tion, where the goal is to learn the mapping between an input
image and an output image using a training set of aligned im-
age pairs. In (Isola et al., 2017) conditional GANs are investi-
gated as a general-purpose solution for image-to-image trans-
lation problems. These networks not only learn the mapping
from input image to output image, but also learn a loss func-
tion to train this mapping. This was extended in (Zhu et al.,
2017a), for learning how to translate an image from a source
domain to a target domain in the absence of paired examples.
In the work of (Wang et al., 2018), a new method for synthesiz-
ing high-resolution photo-realistic images from semantic label
maps using conditional GANs was presented. To this end a
novel adversarial loss, as well as new multi-scale generator and
discriminator architectures was proposed. The solution pro-
posed in (Zhu et al., 2017b) aims to model a distribution of
possible outputs in a conditional generative modeling setting.
The ambiguity of the mapping is distilled in a low-dimensional
latent vector, which can be randomly sampled at test time. A
generator learns to map the given input, combined with this
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latent code, to the output. The work in (Ledig et al., 2017),
presents SRGAN, a GAN for image super-resolution. This
framework is capable of inferring photo-realistic natural images
for 4× up-scaling factors. This is obtained by a perceptual loss
function, which consists of an adversarial loss and a content
loss. In (Galteri et al., 2017) a feed-forward fully convolutional
residual network model trained using a generative adversarial
framework is proposed for image restoration. As specific ap-
plication context, GANs have been also used to synthesize face
images. In (Huang et al., 2017), a Two-Pathway GAN (TP-
GAN) was proposed for photo-realistic frontal view synthesis
by simultaneously perceiving global structures and local de-
tails. Four landmark located patch networks are proposed to
attend to local textures in addition to the commonly used global
encoder-decoder network. The work in (Tran et al., 2017b) pro-
posed Disentangled Representation learning-GAN (DR-GAN).
Starting from a non-frontal face image, this model is capable
of performing face frontalization for image synthesis; At the
same time, the encoder-decoder structure of the generator al-
lows DR-GAN to learn a generative and discriminative pose-
invariant representation of the face. In (Lample et al., 2017),
an encoder-decoder architecture is proposed, which is trained
to reconstruct images by disentangling the salient information
of the image and the values of attributes directly in the latent
space. As a result, after training, the model can generate differ-
ent realistic versions of an input image by varying the attribute
values.

Though the methods above have been inspiring for our pro-
posed solution, they are tailored for generating 2D RGB im-
ages, while we generate a three-channel image based on depth.
curvature and elevation. Despite our channels are disposed ac-
cording to the same grid-like structure used for RGB images,
the information carried out by each image channel is not the
same, thus posing new and challenging problems about how to
train GANs in a robust and effective way.

3. Coarse 3D reconstruction through 3DMM

Given a face image, we first estimate its coarse 3D recon-
struction exploiting the 3D Morphable Model (3DMM) tech-
nique; then, we represent the reconstructed geometry by a three
channel 2D image, where the channels represent, respectively,
the depth, curvature and elevation of the reconstructed model.
A variation of such representation has been also tested, where
the RGB components of the face image are used as additional
channels.

3.1. 3DMM

The coarse reconstruction represents a first estimate of the
3D face model obtained from a 2D face image. To obtain these
models, we employed two different solutions, which are both
based on a 3DMM.

The first approach, called Dictionary Learning 3DMM (DL-
3DMM) was proposed in (Ferrari et al., 2017a): it fits the
3DMM to a face image exploiting only 2D-3D facial landmark
correspondences, without accounting for the texture compo-
nent. This method performs a fast fitting procedure, and can

Depth Curvature Elevation

Fig. 1: Representation of the 3D face model by a three-channel image. For
visualization purposes, the depth, curvature and elevation channels are shown
as individual images, from left to right.

estimate the face shape fairly accurately even in the presence of
strong facial expressions. The Binghamton University 3D Fa-
cial Expression dataset (BU-3DFE) (Yin et al., 2006) was used
to build the average model and learn the deformation compo-
nents.

The second approach is instead the one proposed by (Tran
et al., 2017a): it uses the Basel Face Model (BFM) developed
in (Paysan et al., 2009) and employs a deep CNN to regress the
3D shape and texture parameters of the 3DMM directly from a
single RGB image, without the need of landmarks. This method
is particularly robust to the subject identity, but does not model
expressions. We will refer to this model as DCNN-3DMM.

Actually, many other 3D face modeling techniques could
have fit our purposes; in fact, the proposed method aims to
refine the coarse reconstruction given as input. It thus results
rather independent from the coarse model that is provided, and
any method can be used in practice. However, better input
reconstructions will reasonably lead to more accurate refined
models. Nevertheless, the above 3DMMs were chosen mainly
for two reasons: (1) the first accurately reproduces facial ex-
pressions; on the opposite, (2) the second is very robust to the
identity.

3.2. Facial images in depth, curvature and elevation format

The 2D representation of the 3D coarse reconstruction used
in this work is inspired by the approach in (Gilani et al., 2017).
Differently from the classic gray-scale depth image, this for-
mat transforms a 3D point cloud to a three-channel image. One
channel contains the depth value of each 3D vertex; the other
two contain, respectively, the elevation (or inclination, or po-
lar angle) and azimuth values of the normal at each 3D vertex,
represented in spherical coordinates.

In our case, we experimentally found that the azimuth chan-
nel, which encodes a geometrical property of the normal vec-
tors as well, does not add relevant information to the final rep-
resentation. On the opposite, a complementary feature for 3D
meshes is the curvature, which encodes the degree of local vari-
ability in the surface direction. As depicted in Figure 1, in the
special case of faces, the curvature highlights the shape of crit-
ical regions as the nose or eyes contour. In light of this, we
decided to use the mean curvature (curvature in the following)
instead of the azimuth property. An example of the proposed
representation based on depth, curvature and elevation is shown
in Figure 1. In order to build the elevation image, we first need
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to compute the normal vectors at each vertex, transform those
vectors in spherical coordinates and retain the elevation (or po-
lar angle) value. For the curvature, we applied the algorithm
presented in (Cohen-Steiner and Morvan, 2003), and refer to
that work for more details.

The subsequent step in the image creation is the projection
of the depth, curvature and elevation values on the image plane,
and rescale such values in the range [0, 255] so that they can
represent pixel values. This procedure must be applied con-
sistently both for the coarsely reconstructed 3DMM and the
ground-truth so that the generated images are aligned. To this
aim, we estimate an orthographic projection matrix P ∈ R2×3

from 2D and 3D landmark correspondences. The 2D land-
marks, which are detected on the RGB face images exploit-
ing the method of (Bulat and Tzimiropoulos, 2017), are both
used to fit and project the 3DMM and, independently, estimate
the projection matrix for the ground-truth model so as to ac-
count for the relative difference in the models’ scale. The same
procedure is applied for the DCNN-3DMM; in this latter case
though, the parameters to deform the 3DMM have been directly
regressed from the RGB image. Thus, there is no need to fit the
3DMM, and the landmarks are only used to estimate the pro-
jection matrix to map the 3D model onto the image plane.

The projections are finally used to map the depth, curvature
and elevation values on the image plane and build the three-
channel images of the 3DMM and ground-truth.

Furthermore, we also experiment the use of the RGB tex-
ture as additional channels. Instead of using the original RGB
face image, we perform a textured rendering of both the 3DMM
and ground-truth models; the RGB texture is sampled directly
from the original image and each 3D vertex is associated to
a pixel value by means of the estimated projection matrix, so
as to highlight the appearance changes induced by differences
in the underlying geometry. This expedient also gave us the
possibility to augment the training data by generating textured
renderings in arbitrary 3D poses.

4. Deep generative refinement

The coarse reconstruction described in Section 3 is usu-
ally obtained as a modification of an average, smooth, model,
which lacks of details. In order to obtain a fine-grained recon-
struction from a single RGB face image, we propose to lever-
age the knowledge of several detailed 3D ground-truth mod-
els by means of a Conditional Generative Adversarial Network
(CGAN). Differently from classic CGAN, the architecture is
trained progressively as described in (Karras et al., 2017).

4.1. Conditional Generative Adversarial Networks (CGAN)

Conditional GANs have been specifically designed for
image-to-image translation, and this makes them particularly
suited for our purpose. In our solution, indeed, the generator G
aims at translating the coarse reconstruction, the condition, to
the target domain, the ground-truth. The discriminator D, in-
stead, has the objective of discriminating ground-truth images
from the synthetically generated ones.

Formally, the training procedure is supervised as the dataset
contains paired images of the coarse model x and the correspon-
dent detailed model y (i.e., the ground-truth). The objective of
conditional GANs is to learn a distribution of real detailed mod-
els given coarse input conditions as:

min
G

max
D

E(x,y)
[
log D(x, y)

]
+ Ex

[
log (1 − D(x,G(x)))

]
. (1)

In our particular case, x and y are the proposed image represen-
tations of Section 3.2 for, respectively, the coarse input model
(e.g., the 3DMM reconstruction) and the ground truth model.
The proposed solution is conditioned on x.

4.2. Progressive growing of GANs

Most of the traditional CGAN frameworks used for image-
to-image translation suffer from a severe instability in the
training phase (Isola et al., 2017), which is caused by high-
resolution images. Indeed, networks trained with high-
resolution images usually produce low quality reconstructions
with unpleasant artifacts.

A solution to overcome this issue has been recently intro-
duced in (Karras et al., 2017). This solution proposes a training
procedure, which is specifically designed to cope with the prob-
lem of high-resolution image generation via GANs. The main
goal of such approach is to stabilize the training algorithm so
that synthetic images generated from noise would appear ex-
tremely realistic. The key idea is to start the training using very
low-resolution images, then progressively increase the scale by
stacking convolutional layers in the architecture. This allows
the network to start learning a coarse approximation of the tar-
get distribution and consequently, as the resolution of images
increases, deal with fine-grained details that affect the human
perception of images.

In this framework, the generator G and the discriminator D
expand their dimensions simultaneously. More specifically, af-
ter the conclusion of the training for a given resolution, the scale
of the images is doubled, and a new set of convolutional layers
is added to both D and G. In this way, all the existing layers
maintain the learned knowledge, while remaining completely
trainable for every future resolution. However, the transition
between two different resolutions is not sharp and such a sudden
change may significantly harm the trained weights for all the
previous scales. For this reason, a transition step is introduced
between the training of two resolutions. During this phase, the
layers responsible for the highest level of details, i.e., the last
trained layers, are treated as residual blocks for which the out-
put is the weighted sum between a 2× upsampled (for the gen-
erator) or 2× downsampled (for the discriminator) versions of
the last resolution and the new added layer. The weighted sum
is parameterized by a factor α, which is initialized to 0 and in-
creases linearly at each iteration following a standard protocol
defined in (Karras et al., 2017). In particular, α is computed
as the number of the current iteration divided by the total num-
ber of iterations (e.g., at iteration number five for a total of ten
iterations, α is equal to 0.5).



7

Table 1: The structure of the discriminator and the encoder part of the
generator.

Genc and D
Layer Filter Output shape Params
Conv 3 × 3 256 × 256 × 32 864
Conv 3 × 3 256 × 256 × 32 9k
Conv 3 × 3 256 × 256 × 64 18k

MeanPool - 128 × 128 × 64 -
Conv 3 × 3 128 × 128 × 64 37k
Conv 3 × 3 128 × 128 × 128 74

MeanPool - 64 × 64 × 128 -
Conv 3 × 3 64 × 64 × 128 147k
Conv 3 × 3 64 × 64 × 128 147k

MeanPool - 32 × 32 × 128 -
Conv 3 × 3 32 × 32 × 128 147k
Conv 3 × 3 32 × 32 × 128 147k

MeanPool - 16 × 16 × 128 -
Conv 3 × 3 16 × 16 × 128 147k
Conv 3 × 3 16 × 16 × 128 147k

MeanPool - 8 × 8 × 128 -
Conv 3 × 3 8 × 8 × 128 147k
Conv 3 × 3 8 × 8 × 128 147k

MeanPool - 4 × 4 × 128 -
Conv 3 × 3 4 × 4 × 128 147k
Conv 4 × 4 4 × 4 × 128 262k

FC (Only D) - 1 128
Total Parameters 1.65M

Table 2: The network structure of the decoder part of the generator.

Gdec

Layer Filter Output shape Params
Conv 4 × 4 4 × 4 × 128 262k
Conv 3 × 3 4 × 4 × 128 147k

Upsample - 8 × 8 × 128 -
Conv 3 × 3 8 × 8 × 128 147k
Conv 3 × 3 8 × 8 × 128 147k

Upsample - 16 × 16 × 128 -
Conv 3 × 3 16 × 16 × 128 147k
Conv 3 × 3 16 × 16 × 128 147k

Upsample - 32 × 32 × 128 -
Conv 3 × 3 32 × 32 × 128 147k
Conv 3 × 3 32 × 32 × 128 147k

Upsample - 64 × 64 × 128 -
Conv 3 × 3 64 × 64 × 128 147k
Conv 3 × 3 64 × 64 × 128 147k

Upsample - 128 × 128 × 128 -
Conv 3 × 3 128 × 128 × 64 74k
Conv 3 × 3 128 × 128 × 64 37k

Upsample - 256 × 256 × 64 -
Conv 3 × 3 256 × 256 × 32 18k
Conv 3 × 3 256 × 256 × 32 9k
Conv 3 × 3 256 × 256 × 3 864

Total Parameters 1.65M

…… …

Input

…

Generator Discriminator

Training step 1
Training step 2

Training step N

GT

downsample
downsample

downsample

downsample

Fig. 2: Progressive refinement process. The input and output layers have been omitted for simplicity; for each training step, the number of filters for both the input
and output layers is equal to the number of channels of the input image. Note that the input to the discriminator is the depth channel only.

4.3. Progressive refinement for Conditional GANs
We aim to exploit the benefits of progressive growth of GANs

in a conditional context. For this reason, we design our gener-
ator as an encoder-decoder to transform a coarse 3DMM into a
high quality detailed face model. To ensure further stability to
the training of our framework, we employ the improved version
of Wasserstein GAN (Gulrajani et al., 2017) as in (Karras et al.,
2017). The set of weights for the discriminator are learned by

minimizing the objective function:

LD = D(x, y) − D(x,G(x)) + λ(||∇x̂D(x, x̂)||2 − 1)2 , (2)

where x and y are, as in Eq. (1), the proposed image represen-
tations of the coarse 3DMM and the ground truth model, re-
spectively, and x̂ is sampled uniformly between pairs of points
belonging to the real distribution and the generator distribution.
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Given the fact that our training is supervised, i.e., each coarse
3DMM is paired with the relative ground-truth image, we can
define the loss for the generator as a combination of two contri-
butions:

LG = Lp(y,G(x)) + κLadv(G(x)) , (3)

where
Lp(y,G(x)) = ||y −G(x)||p ,

represents the pixel loss, and

Ladv(x,G(x)) = D(x,G(x)) ,

is the adversarial loss. In this work, we use p = 1 in the genera-
tor loss as it has shown the best performance. We have noticed
that the balance parameter, κ, has a remarkable impact on the
final reconstruction. Indeed, a too low value for this parame-
ter results in blurry outputs with missing details. This is mainly
due to the fact that the adversarial component is not able to push
the reconstruction towards a realistic appearance, as typical for
GAN approaches. On the other hand, if κ is set too high, the
reconstruction loses the required pixel-wise similarity, result-
ing in an output that is too different from the one of the target
domain. Depending on the number of channels, C, considered
in the loss computation, we empirically found that a reasonable
value can be computed as κ = C ∗ 10−5.

In our particular implementation, instead of computing the
adversarial loss of the discriminator on all the three input chan-
nels, i.e., depth, curvature and elevation, we feed the discrimi-
nator with the depth channel only. This novel strategy grounds
on two major assumptions: first, the curvature and normal vec-
tors are two properties induced by the geometry of surfaces.
If the reconstructed geometry is faithful to the ground-truth,
then we expect the other two channels to be correct as well.
On the other hand though, the mean curvature and the normal
vectors are estimated considering local surface neighborhoods;
thus, there is no guarantee that two identical curvature maps (
or normal maps ) are associated to the exact same depth map.
As an example, a flat surface or a noisy surface, will eventually
generate very similar mean curvature values on local neighbor-
hoods. If the discriminator is trained to classify the generated
images using all the channels, under the latter assumption, it
could ultimately result in poor reconstructions. We instead ar-
gue that if the discriminator is trained to classify the sole depth,
then the reconstructed surfaces must be as accurate as needed
to be confused with the ground-truth. In any case, we also want
to add a constraint on the other two features to ensure their in-
formation is exploited; we do this by imposing the pixel loss
on all the three channels. As a result of this modification, the
condition x, the ground-truth y and the generated image G(x) in
Eq. (2) and for Ladv in Eq. (3) represent the depth channel.

Tables 1 and 2 show the architectures for the components in
our conditional GAN. Similarly to the work in (Karras et al.,
2017), we employ pixel normalization after each convolutional
layer of the generator; on the other hand, we do not use mini-
batch standard deviation as it does not bring noticeable benefits.

We progressively train G and D starting from 4 × 4 down-
scaled images up to 256 × 256, expanding G in both directions
simultaneously, encoder and decoder, as shown in Figure 2.

5. Experimental results

We performed a set of experiments in order to assess the va-
lidity of the proposed approach. In particular, we first show
how the different elements of our solution (i.e., coarse recon-
struction used as input, channels considered as input for the
generator, for the discriminator, and for the loss computation)
influence the final performance. Then, we report on a cross
dataset experiment in order to understand how well our method
generalizes when considering models that come from a differ-
ent distribution (i.e., 3D datasets acquired with a different scan-
ner in different conditions). Finally, we compare the proposed
methods with the state-of-the-art solutions proposed by (Isola
et al., 2017) and (Tran and Liu, 2018), both quantitatively and
qualitatively.

5.1. Datasets

All the experiments have been carried out on two public
available datasets, namely, the Face Recognition Grand Chal-
lenge dataset (FRGC) (Phillips et al., 2005) and the Bosphorus
3D Face database (Savran et al., 2008). In particular, the FRGC
dataset has been split and used both for training and for testing;
whereas the Bosphorus dataset has been used only for test.

FRGC: the FRGC dataset includes 4,007 scans of 466 indi-
viduals acquired with frontal view from the shoulder level, with
very small pose variations. About 60% of the faces have neu-
tral expression, while the others show spontaneous expressions
of disgust, happiness, sadness, and surprise. Scans are given as
matrices of 3D points of size 480 × 640, with a binary mask
indicating the valid points of the face (about 40K on average).
2D RGB images of the face are also available and aligned with
the matrix of 3D points.

Bosphorus: the Bosphorus dataset contains 4,666 face scans
of 105 subjects (60 men and 45 women, most of them of Cau-
casian ethnicity). Some of the scans have occlusions due to
beard/moustache or short facial hair. There are about 54 face
scans per subject, but 34 of these subjects have up to 31 scans
due to the fewer number of expressions. On average, scans are
acquired with about 30K vertices. Note that we excluded profile
scans and the ones labeled as invalid.

5.2. Ground-truth model preprocessing

While the 3DMM has a fixed and clean shape, the ground-
truth models are raw and may heavily differ depending on the
capturing device and technique. For these reasons, they need
to be preprocessed and cropped so as to eliminate surrounding
areas such as ears, hairs and neck. The usual way of doing
this consists in defining a sphere of fixed radius centered on the
nose tip and removing the outer vertices. A drawback of this
approach is that, if the sphere is too tight, the person-specific
shape of the face, e.g., the jawbone contour, is likely to be lost;
on the contrary, if it is too large, undesired components might be
included. To avoid this behavior, we considered the region de-
fined by the intersection of the above mentioned sphere and the
curve delineated by the landmarks of the facial contour. Land-
marks might be provided, detected or estimated if the dataset
comes with aligned pairs of RGB and range images. Finally, a
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median filtering was applied to remove outliers, while preserv-
ing fine-grained details.

5.3. Evaluation protocol and metric

We randomly split the FRGC individuals into three parts; the
first 2/3 are used for training, for a total of 310 individuals;
the remaining 1/3 of individuals and the relative models are
used for test. In this way, we can ensure that an identity used
for test has never been seen during the training. The models
trained using the 2/3 of the FRGC are also used for the cross-
dataset experiments, in which the test set is a different dataset,
Bosphorus in our case.

To quantitatively evaluate our approach, we employed the
Mean Absolute Error (MAE) measure. This is computed be-
tween the ground-truth depth image y and the estimated depth
image G(x) as:

MAE(y,G(X)) =
1

KHW

K∑

k=1

H∑

i=1

W∑

j=1

∣∣∣G(x)k
i, j − yk

i, j

∣∣∣ (4)

∀ G(x)k
i, j , 0 or ∀ yk

i, j , 0 ,

where K is the number of test samples, while H and W are,
respectively, the height and width of the depth images.

To train and test our refinement architecture, we experi-
mented the two solutions for 3DMM construction and fitting
described in Section 3, so as to determine whether our approach
can effectively generalize to coarse reconstructions obtained
with different techniques and datasets.

5.4. Training settings

Data augmentation: as described in the evaluation proto-
col, our networks have been trained using 2/3 of the individ-
uals in the FRGC v2.0 dataset, which results in about 2,670
depth images of 310 individuals. Unfortunately, this number
is too limited for effectively training our architecture. To this
end, we augmented the training data by generating novel poses
as follows: given a 3D face model from the training set (coarse
3DMM and ground-truth pair), we generated a random rota-
tion matrix Rrand ∈ R3×3, with rotation angles (yaw, pitch, roll)
in the range [±45,±20,±20], and used it to build the ortho-
graphic projection matrix P using a fixed 2D translation vector
t ∈ R2 and scale parameters matrix S ∈ R2×3. We then used
P to project the pose-augmented models onto the image plane,
along with the textured rendering of the input RGB image. This
process is repeated 5 times for each 3D model, which results in
more than 14, 000 images. During training, pixel values of each
channel have been normalized in the range [−1, 1]. To further
strengthen the procedure, we randomly crop and pad the images
online during training.

Training details: the weights of the proposed architecture
are initialized using a truncated normal distribution. Each reso-
lution in our architecture has been separately trained for 10, 000
iterations with a batch size of 4 (e.g., about 3 epochs with
14, 000 training samples). We train our networks using the
Adam algorithm of (Kingma and Ba, 2014), with a learning
rate of 10−5.

5.5. Ablation Study

The proposed architecture is composed of three main com-
ponents: the generator, the discriminator and the pixel loss.
Each of these modules can take as input an image with dif-
ferent channel configurations, which can significantly change
the resulting reconstruction. Thus, we conducted an ablation
study so as to better assess the effect that each component has
on the final reconstruction. Tests have been performed on the
1/3 of the identities of the FRGC v2.0 dataset that have not been
observed in the training. Note that we use the same 3DMM
technique to train and test our architecture. In the following,
we comment the outcomes by referring both to the quantita-
tive results reported in Table 3 and the qualitative examples in
Figure 3. From now on, to indicate the input of each compo-
nent, we will use the following naming convention for the chan-
nels: Depth (D), Depth-Curvature-Elevation (DCE), Depth-
Curvature-Elevation + RGB texture (DCE+RGB). The network
components are instead indicated with the following schema:
(Generator | Discriminator | Pixel-Loss).

First, we performed a baseline experiment, in which the in-
put of each module is a single-channel depth image (D | D |
D). The error here is slightly lower than the coarse model, and
some details are correctly generated such as the nostrils. How-
ever, the general surface is still smooth and lacking details. We
then added the curvature and elevation channels as input to the
generator (DCE | D | D); the latter led to an improvement in the
error measures, contributing also to better reconstruct the global
geometry. Adding the textured rendering to this configuration
(DCE+RGB | D | D) further enhanced such effects. However,
these three cases still resulted in rather smooth surfaces. In the
attempt of introducing fine-grained details, we added the cur-
vature and elevation channels as input to the discriminator and
pixel loss (DCE | DCE | DCE). This solution resulted in an in-
consistency between quantitative and qualitative results; we can
indeed observe that error values are slightly reduced, but the
corresponding 3D reconstructions are very noisy. As in the pre-
vious case, adding the RGB texture (DCE+RGB | DCE | DCE)
improves the accuracy, but still, the reconstructions present a
noisy surface. This behavior could be an effect of the large dif-
ference between the content of the three channels; the network,
in the attempt of optimizing with respect to the three compo-
nents, takes advantage of the additional geometric information
provided, but introduces additional noise in the single chan-
nels. To overcome this shortcoming, we decided to remove
the curvature and elevation channels from the discriminator’s
input, as described in Section 4. The other two network com-
ponents have been instead left unchanged, leading to the last
two configurations, i.e., (DCE | D | DCE) and (DCE+RGB | D |
DCE). Results for these configurations confirm our assumption
expounded in Section 4; indeed, if the discriminator is trained
to correctly classify the depth channel only, it will not be fooled
unless the reconstructions are very accurate, which is actually
what we aim at obtaining. The other two channels, instead, pro-
vide the right geometrical information needed to generate faith-
ful and self-consistent surfaces. Even though these solutions do
not provide the best quantitative results, it can be appreciated
that the resulting 3D reconstructions take both the advantages
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GT 3DMM D|D|D DCE|D|D DCE|DCE|DCE DCE|D|DCEDCE+RGB|D|D DCE+RGB|DCE|DCE DCE+RGB|D|DCERGB

Fig. 3: Reconstructions with different network configurations. The sole depth channel is not sufficient to reproduce fine grained details (third to fifth column with
reconstructed models); the curvature and elevation channels bring geometrical information, but induce noise to the reconstructions (sixth and seventh columns);
reconstructing all the three channels while discriminating only the depth provides good results both in terms of geometry, surface details and absence of noise
(rightmost two columns).

Table 3: Mean absolute error (MAE) computed on the test set of the FRGC v2.0 dataset and on the Bosphorus dataset. Input for the generator, discriminator and
loss computation are indicated as: Depth (D); Depth-Curvature-Elevation (DCE); Depth-Curvature-Elevation + RGB Texture (DCE+RGB).

FRGC v2.0 Bosphorus
Input model Generator Discriminator Pixel-Loss MAE MAE

DL-3DMM (Ferrari et al., 2017b)

D D D 0.095 ± 0.030 0.176 ± 0.054
DCE D D 0.079 ± 0.026 0.178 ± 0.058
DCE DCE DCE 0.073 ± 0.026 0.160 ± 0.057
DCE D DCE 0.078 ± 0.025 0.159 ± 0.057

DCE + RGB D D 0.062 ± 0.022 0.218 ± 0.058
DCE + RGB DCE DCE 0.064 ± 0.020 0.237 ± 0.058
DCE + RGB D DCE 0.065 ± 0.023 0.233 ± 0.062

Coarse 0.119 ± 0.039 0.175 ± 0.057

DCNN-3DMM (Tran et al., 2017a)

D D D 0.079 ± 0.025 0.105 ± 0.058
DCE D D 0.066 ± 0.022 0.118 ± 0.059
DCE DCE DCE 0.067 ± 0.023 0.124 ± 0.062
DCE D DCE 0.069 ± 0.024 0.124 ± 0.058

DCE + RGB D D 0.060 ± 0.021 0.123 ± 0.053
DCE + RGB DCE DCE 0.065 ± 0.021 0.119 ± 0.052
DCE + RGB D DCE 0.067 ± 0.023 0.151 ± 0.052

Coarse 0.140 ± 0.039 0.132 ± 0.060

of the previous solutions by providing fine-grained details on a
well reconstructed global shape. In any case, the refined models
obtain a lower error with respect to both the coarse models.

In Figure 4, we report some absolute error heatmaps, with
respect to the ground-truth (GT), for each coarse reconstruction
and the respective refined models. From the figure, the lower er-
ror obtained with the refinement compared to the coarse coun-
terpart can be appreciated. Note that our framework aims to
enrich with fine-grained details an initial shape estimate; thus,
it cannot completely eliminate large errors due to the coarse
reconstruction, but still, it is able to reduce the error and cor-
rectly generate the details. This is evident in the example in
Figure 4, bottom row. In some other cases, the refinement can
fail because of wrong landmark localizations. However, note
that this only implies that the network is not able to reconstruct
a shape resembling the ground-truth, but is still able to improve
the shape and generate fine details.

5.6. Cross-dataset test on Bosphorus

We performed a cross-dataset experiment in order to under-
stand whether our architecture can generalize to new unseen
data from a different distribution, i.e., a different dataset. For

this experiment, we considered the Bosphorus dataset as test
set. Results for this test are reported in the last column of Ta-
ble 3. Here, the general error is higher with respect to the one
obtained on the FRGC. This result was predictable because the
proposed solution is trying to reconstruct fine details on face
models from a dataset that has been acquired with a different
device and presents different surface characteristics. However,
also in this case, the refined models obtain a lower error with
respect to the coarse reconstructions. In this regard, we note
that in a cross-dataset scenario, including the textured RGB
renderings has the effect of increasing the error. This is not
surprising since the RGB face images have large appearance
differences across the datasets and thus belong to very differ-
ent distributions. Nonetheless, one of the claimed advantages
of the proposed approach was that it is dataset independent to
a great extent; in fact, the 3-channel image representation of
the coarse 3DMM will be always the same, regardless of the
face images it has been fit to. This makes our approach appli-
cable to any dataset, once the coarse reconstruction approach
has been fixed. We further noted that, in this dataset, the land-
mark detector fails in correctly localizing the face landmarks
more often with respect to FRGC, which might be a concur-



11

Ferrari et al., 2017b Tran et al., 2017a

CoarseRefinedCoarse Refined

Fig. 4: Error heat maps with respect to the GT. Correctly refined models (DCE | D | DCE) are shown in the first three rows, while the last row shows a critical case.

rent cause of the higher general error. Moreover, this dataset
includes stronger expressions, pose variations and occlusions.

5.7. Comparison with state-of-the-art

In order to present a complete evaluation, we compared our
method with two state-of-the-art solutions, both quantitatively
and qualitatively. In particular, we trained a recent CGAN ar-
chitecture, namely Pix2Pix (Isola et al., 2017), to refine the
two coarse models considered in this work. From an architec-
tural point of view, it adopts the U-Net as a generator, and it
embodies a patch discriminator. We trained Pix2Pix on our
256 × 256 training images with the default settings for 20
epochs. We compared also against the end-to-end framework
proposed in (Tran and Liu, 2018), which takes an RGB face
image and produces a detailed 3D model through a 3DMM so-
lution. An important reason that guided us in choosing this spe-
cific approach is that the coarse model generated by the first step
of that method is actually the 3DMM of (Tran et al., 2017a),
which is used as coarse model in this work as well. This al-

lowed us to disentangle the two steps and derive a comparison
focusing on the refinement step.

Performance of our solution with respect to the state-of-the-
art are reported in Table 4, in terms of mean absolute error;
results are shown for both FRGC and Bosphorus. For compar-
ison, we selected our two best configurations as resulting from
the ablation study, that are (DCE | D | DCE) and (DCE+RGB
| D | DCE). For Pix2Pix instead, we chose the two configura-
tions that takes both DCE and DCE+RGB as input and outputs
the depth channel only, i.e., (DCE | D | D) and (DCE+RGB
| D | D). This because, as reported in Figure 3, trying to re-
construct with respect to all the three DCE channels results in
a very noisy reconstructed surface; we experimentally found
that such behavior applies also for Pix2Pix. Results in Table 4
show that our solution gets favorable MAE with respect to the
compared approaches on the FRGC dataset; on the Bosphorus
dataset, errors tend to be generally higher. As a first note, we
wish to point out that results of the method in (Tran and Liu,
2018) (indicated with a ‘∗’ in the table) are not totally compa-
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Table 4: Comparison with the state-of-the-art in terms of mean absolute error (MAE) computed on the test set of the FRGC v2.0 dataset and on the Bosphorus
dataset. Input for the generator, discriminator and loss computation are indicated as: Depth (D); Depth-Curvature-Elevation (DCE); RGB Texture (RGB); Depth-
Curvature-Elevation + RGB Texture (DCE+RGB).

FRGC v2.0 Bosphorus
Input model Refinement Generator Discriminator Pixel-Loss MAE MAE

DL-3DMM (Ferrari et al., 2017b)

Our DCE D DCE 0.078 ± 0.025 0.159 ± 0.057
Pix2Pix DCE D D 0.083 ± 0.029 0.164 ± 0.062

Our DCE+RGB D DCE 0.065 ± 0.023 0.233 ± 0.062
Pix2Pix DCE+RGB D D 0.079 ± 0.028 0.211 ± 0.062

DCNN-3DMM (Tran et al., 2017a)

Our DCE D DCE 0.069 ± 0.024 0.124 ± 0.058
Pix2Pix DCE D D 0.067 ± 0.024 0.119 ± 0.064

Our DCE+RGB D DCE 0.067 ± 0.023 0.151 ± 0.052
Pix2Pix DCE+RGB D D 0.062 ± 0.021 0.123 ± 0.055

DCNN-3DMM (Tran et al., 2017a) (Tran and Liu, 2018) RGB – D 0.129 ± 0.037 0.130 ± 0.058∗

∗It was not possible to use 848 out of 3500 test images on Bosphorus

rable because the approach failed in detecting and thus recon-
structing 848 faces out of 3500 of the test set of the Bosphorus
dataset, most likely for the tight crop or the strong expressions
portrayed. With respect to Pix2Pix, instead, in this dataset our
approach seems to struggle; however, qualitative results in Fig-
ures 5 and 6 show that the reconstructed models of Pix2Pix
present a pronounced noise on the whole surface in both the
datasets, and the reconstructions appear evidently worse than
ours. Indeed, the method is actually able to somewhat capture
the underlying geometry, but fails in reproducing a pleasant and
clean detailed surface. The lower error could be ascribed to the
noisier nature of the Bosphorus scans (note Figure 6, last two
rows); most of the ground-truth models with respect to which
the error is computed, present a noise pattern that is similar to
the one produced by the Pix2Pix reconstructions. Thus, we ar-
gue that when comparing the two, the final error results lower.
Our solution, instead, is able to generate highly detailed and ge-
ometrically faithful reconstructions, introducing far less noise.
Finally, consistently with the quantitative results reported, the
variants including the RGB texture eventually led to worse re-
constructions in a cross-dataset scenario.

6. Conclusions

In this work, we proposed an approach based on a Condi-
tional Generative Adversarial Network (CGAN) for refining the
coarse reconstruction of face images provided by a 3DMM. The
reconstruction is represented as a three channel image, where
the pixel intensities represent the depth, curvature and elevation
values of the 3D model’ vertices. We proposed an encoder-
decoder architecture, which is trained progressively; this tech-
nique allowed a more stable training, which led to the gener-
ation of artifact-free images even at higher resolutions. Ex-
perimental results showed that our method can generate re-
constructions with fine-grained realistic details for all the two
different coarse 3DMM reconstructions taken into account. A
cross-dataset evaluation finally showed that the architecture re-
tains good generalization capabilities as well. However, our ap-
proach is not exempt from limitations; first, if the shape of the
3DMM differs too much with respect to the ground-truth ones,
the network might eventually overfit the data in the attempt of

transforming the shapes and thus lose its generalization capa-
bilities or, on the contrary, fail in generating pleasant outputs.
Another limitation is that if we want to change the coarse 3D
reconstruction model to be refined, a new instance of the net-
work has to be trained from scratch. Even though the training
procedure is rather fast and does not require as many images as
other architectures, we still might want to investigate if a fea-
sible solution to make it independent from the coarse 3D input
can be found.

Overall, we demonstrated that a progressive CGAN can be
effectively trained on distinctive image data and employed to
generate highly detailed 3D surfaces from their smoother coun-
terparts. The solutions that have been investigated and pre-
sented in this manuscript actually represent only a small portion
of the possible alternatives, for which there is a lot of room for
improvements. As an example, we will further investigate how
to exploit the correlations that occur between the three channels
encoding surface geometric properties to our advantage.
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