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Abstract

We present an auxiliary task to Mask R-CNN, an instance segmentation network, which leads to faster training of the mask head.
Our addition to Mask R-CNN is a new prediction head, the Edge Agreement Head, which is inspired by the way human annotators
perform instance segmentation. Human annotators copy the contour of an object instance and only indirectly the occupied instance
area. Hence, the edges of instance masks are particularly useful as they characterize the instance well. The Edge Agreement Head
therefore encourages predicted masks to have similar image gradients to the ground-truth mask using edge detection filters. We
provide a detailed survey of loss combinations and show improvements on the MS COCO Mask metrics compared to using no
additional loss. Our approach marginally increases the model size and adds no additional trainable model variables. While the
computational costs are increased slightly, the increment is negligible considering the high computational cost of the Mask R-CNN
architecture. As the additional network head is only relevant during training, inference speed remains unchanged compared to Mask
R-CNN. In a default Mask R-CNN setup, we achieve a training speed-up and a relative overall improvement of 8.1% on the MS
COCO metrics compared to the baseline.
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1. Introduction

Significant improvements in computer vision techniques
have been made possible by the rapid progress of training
Deep Convolutional Neural Networks in recent years. Ap-
plication areas include image classification (Krizhevsky et al.,
2012} Szegedy et al.l |2015; [Simonyan and Zisserman) 2015}
He et al.| 2016) and object detection (Girshick, 2015; [Redmon
et al.,2016; Liu et al.,|2016). One of the most demanding com-
puter vision tasks is instance segmentation, as it involves lo-
calizing and segmenting object instances. Recently, there have
been multiple methods (Li et al., 2017} |Bai and Urtasun, 2017
Liu et al.,[2018; He et al.||2017) proposed to perform this task.

Another beneficial factor to the success of these Deep Learn-
ing architectures is the availability of large labeled datasets
such as MS COCO (Lin et al., 2014)) and the Cityscapes dataset
(Cordts et al., 2016). Labeling an image dataset for instance
segmentation is particularly time-consuming, because it re-
quires segmenting all objects in a scene. It is therefore highly
desirable to speed up training of an instance segmentation
model to be more data efficient. In this work, we propose a
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conceptually straightforward addition to the Mask R-CNN (He
et al. [2017) architecture which reduces training time of the
mask branch.

The Mask R-CNN architecture is based on Faster R-CNN
(Ren et al., 2017), which introduced an efficient Region Pro-
posal Network (RPN) design to output bounding box proposals.
The proposals are computed using a sliding window approach
to make them translation invariant. A feature extractor such as
ResNet (He et all 2016), Inception (Szegedy et al.l 2017) or
VGGNet (Simonyan and Zisserman, 2015)) is used as input to
the region proposal network. The regions and features are used
in the bounding box regression head, that refines the bounding
box localization and the softmax classification head, which de-
termines the instance class. This second stage is the architecture
as described in Fast R-CNN (Girshick, 2015)).

Mask R-CNN is a simple but effective addition to the Faster
R-CNN architecture that adds a head for instance mask predic-
tion. Using a small Fully Convolutional Neural Network (FCN)
(Long et all 2015), it can predict pixel level instance masks.
Besides the mask branch, it uses a Feature Pyramid Network
(FPN) backbone as proposed by |Lin et al.[(2017). This addition
allows the network to make use of both high-resolution feature
maps in the lower layers for accurate localization, as well as
semantically more meaningful higher-level features, which are
of lower resolution. Another contribution is ROI Align which
maps arbitrarily sized spatial regions of interest in the features
to a fixed spatial resolution using bilinear interpolation. This
modification improves the COCO Mask metrics and enables the
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use of instance masks which require precise localization.

For the mask head, a new loss term L, has been intro-
duced, which calculates the pixel-wise cross entropy between
the predicted and target masks. The Mask R-CNN loss func-
tion

Lyrenn = Lciass + Lpox + Lask (D

is a multi-task loss based on the Faster R-CNN loss.

We propose to attach an Edge Agreement Head to the mask
branch of Mask R-CNN which acts as an auxiliary task to Mask
R-CNN. This head uses traditional edge detection filters such as
Sobel and Laplacian kernels (Sobel and Feldman||1973; [Forsyth
and Poncel [2002) on both the predicted mask and the ground-
truth mask to encourage their edges to agree. Instances in nat-
ural images are bounded by the edges that annotators use to
mark the instance. Therefore, we show that encouraging the
edges in the predicted and ground-truth mask to agree leads to
faster training of our mask head. We argue that this is a result
of the instance boundary being a robust feature to mask pre-
diction, which can be easily propagated from the image to the
mask branch.

2. Related Work

Multi Task Learning. The Edge Agreement Head acts as
an auxiliary task (Ruder 2017) to the multi-task model Mask
R-CNN, which is performing both object detection and in-
stance segmentation. Auxiliary tasks have shown to encourage
models to learn robust representations of their input in a variety
of applications, such as facial landmark detection (Zhang et al.,
2014), natural language processing (Collobert and Westonl
2008)) or steering prediction in autonomous driving (Caruanal
1997). Even seemingly unrelated tasks, e.g. weather prediction
to semantic scene segmentation, can improve the model’s
overall performance (Liebel and Korner, [2018)).

Monocular Depth Estimation. Godard et al.| (2017) use
image gradients to encourage consistency between input
images and predicted disparity maps. However, the left-right
disparity consistency loss does not ensure image gradients of
the predicted disparity of the left and right camera to exhibit
similar edge detection filter responses.

Scene segmentation. Chen et al.| (2016) show a two-part
model predicting both semantic segmentations and edges. The
semantic segmentation model is based on the DeepLab model
(Chen et al.l 2018a) and the edge detection filter is created
using intermediate convolutional filters of the DeepLab model.
The task specific edge-detection on the input image is used
to refine the coarse segmentation using domain transform.
Our approach determines edges in fixed size, low dimensional
instance mask images, for which traditional edge detection
filters have been proven to be effective. Similarly, Marmanis
et al| (2018) predict both semantic scene segmentation and
semantic boundaries. The network responsible for predicting
semantic boundaries is trained using a Euclidean loss before
each pooling layer to enforce each layer to predict edges at

different scales. Our approach uses predefined edge detection
filters with well-known properties, which are kept constant
during training, leaving us with a significantly lower additional
memory footprint and computational costs.

Edge detection. The detection of edges has been a research
topic for many decades and numerous methods have been
proposed (Sobel and Feldman) {1973} |Konishi et al., 2003).
This field has seen large improvements due to deep learning
techniques (Bertasius et al.l 2015} [Shen et al., 2015} Xie and
Tu| [2015). Our work uses the Sobel image gradient filters
proposed in (Sobel and Feldman), |1973)), because it keeps the
computational overhead to a minimum. Furthermore, our edge
detection filters are used on 28 x 28 sized masks with only
one channel depicting a single instance and not high-resolution
color images. This significantly reduces the complexity of the
problem and justifies our choice of simple edge detection filters.

Instance segmentation. [Hayder et al.| (2017) propose a
model that predicts the truncated distance transform (Borge-
fors, [1986)) of the mask, making it more resilient towards non-
instance enclosing bounding box proposals. The proposed ar-
chitecture for the boundary-aware instance segmentation net-
work has many similarities to Mask R-CNN as they are both
based on the Faster R-CNN architecture by Ren et al.|(2017).
However, they achieved lower results on the instance segmen-
tation benchmark on the Cityscapes dataset compared to Mask
R-CNN, which we are basing our work on. Yang et al. (Yang
et al., 2016) propose an encoder - decoder architecture which
predicts object contours. For training on the MS COCO dataset
(Lin et al.l 2014)) the coarse polygon ground-truth edges are re-
fined to follow the object contours more closely by applying a
dense conditional random field (Krahenbiihl and Koltun, 2011])
or applying graph cut (Boykov and Jollyl 2001)). This is par-
ticularly necessary in this case since the model predicts high
resolution edges. Since the instance masks by Mask R-CNN
only have a low resolution of e.g. 28 x 28, we argue that the
preprocessing is unnecessary in this case, since most details are
lost at this scale. It was also not used by the original Mask R-
CNN Paper by |[He et al.|(2017). Kirillov et al. (Kirillov et al.,
2017)) propose a model combination which predicts both a se-
mantic segmentation and edges. The output of the edge score
is used to compute super pixels which, alongside the predic-
tions and the edge score, are used to solve a Multi Cut problem
(Chopra and Rao} [1993) which predicts instances. This work
is different from our experiments since we first find instance
masks and then compare the predicted and ground-truth edges
of these. In addition, this work operates on high resolution im-
ages, which complicates training, since the ground-truth edges
only occupy a very small region of the overall area. The au-
thors therefore rescale the cost function for underrepresented
classes. This step is less relevant for the Edge Agreement Head
applied to Mask R-CNN since the masks are predicted based
on a proposed bounding box and because the class and mask
prediction are decoupled in the Mask R-CNN architecture (He
et al., [2017).
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Figure 1: Overview of different example masks to illustrate the effect of the
Edge Agreement Loss. GT corresponds to the ground truth and 7 to IV represent
four example mask predictions which demonstrate early-stage predictions of
the Mask R-CNN during training.

3. Edge Agreement Loss

When training a Mask R-CNN for instance segmentation
one often observes incomplete or poor masks, especially dur-
ing early training steps. Furthermore, the masks often do not
follow the real object boundaries. Possible mistakes such as
missing parts or oversegmentation are illustrated in Figure|[T]

To reduce this problem, we draw our inspiration from how
a human would perform instance segmentation: instead of im-
mediately assigning parts of the image to specific objects one
often identifies at first the boundaries of the object and fills the
enclosed area. To help the network perform the segmentation
in an analogous way, i.e. show the importance of edges and
boundaries of objects, we have constructed an auxiliary loss
called Edge Agreement Loss Lggg.. It is defined as the L? loss
between the edges in the predicted mask and the ground-truth
mask. The total loss Ly, consists of the original Mask R-CNN
loss Lyryy (€q. |I[) and the new Edge Agreement Loss Lgg.
which are summed. To compute this new loss, the first step is
to identify the edges in the predicted and the ground-truth mask.

3.1. Edge Detection

In detail, we examined edge detection filters which can be
described as a convolution with a 3 X 3 kernel, such as the
well-known Sobel and Laplacian filters.

The Sobel filters (Sobel and Feldman, [1973) are two-
dimensional filters to detect edges. As the filters describe a first-
order gradient operation they are rotation-dependent. There are
two filters
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which describe the horizontal and the vertical gradient respec-
tively. An edge in the image corresponds to a high absolute
response along the filter’s direction. In the following the
concatenation of both filters into a 3 X 3 X 2 dimensional tensor
is referenced as the Sobel filter S.

The Laplacian filter is a discretization of the two-dimensional
Laplacian operator (i.e. the second derivative). The filter
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is the direct result of a finite-difference approximation of the
derivative (Forsyth and Poncel |2002). The operator is known

to be rotation invariant which means that it can detect edges
in both x and y direction. As it is a second-order operator, an
edge in the image corresponds to a zero-crossing, rather than a
strong filter response. By including the main- and anti-diagonal
elements the filter can be made responsive to 45° angles
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This is the Laplacian kernel (L) used in all further experi-
ments.

In addition to these exemplary kernels we also used the Pre-
witt operator (Lipkinl [1970), Kayyali filter (Kawalec-Latatal
2014) and the Roberts operator (Roberts, |1963).
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Figure 2: Edge Agreement Head: We extend the existing mask branch archi-
tecture. Of the 28 X 28 x 80 dimensional output of the mask branch, the mask
corresponding to the correct class is selected. The head computes a convolution
of the selected mask and the ground-truth mask with the 3 x 3 X D dimensional
edge detection filter (turquoise). Between these a L” loss is calculated, which
results in the term Lggg. (Best viewed in color).

Figure 3: L? errors for the four example predictions and the different methods.
Each column / to IV corresponds to one of the examples in Figurem The first
row shows the L? error based on the Sobel filter magnitude, while for the second
row the Laplace filter is used.
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3.2. Loss Construction

To calculate the final loss Lgge. We propose an additional net-
work head, called the Edge Agreement Head. It uses the pre-
dicted and the matched ground-truth masks as input, which are
then convolved with a selection of edge detection filters. After-
wards, the difference between the predicted and ground-truth
edge maps are determined. The entire procedure is illustrated
in Figure 2] in the left half. For this task, we choose the set of
L? loss functions. Mathematically they can be expressed as the
p-th power of the generalized power mean M, of the absolute
difference between the target § and the prediction y

LP(y.§) = My(ly - §1". &)

For p = 2 this equals the mean square error, commonly used in
deep learning.



The edge agreement head can be calculated with only mini-
mal additional computational and memory requirements. This
means, that the method can be integrated in existing systems
for training Mask R-CNN without requiring new or additional
hardware.

4. Implementation Details

A mask size of 28 x 28 pixels and an image resolution of
1024 x 800 pixels are used. All training images are resized to
this size preserving their aspect ratio. As the training images
may have different aspect ratios, the remaining space of the
image is zero padded. This method differs from the one used
in the original Mask R-CNN implementation (He et al., [2017),
where resizing is done such that the smallest side is 800 pixels
and the largest is trimmed at 1000 pixels.

The ResNet (He et al., 2016) feature extractor is initialized
with weights trained on ImageNet (Deng et al.,[2009); all other
weights (e.g. in the region proposal network) are initialized
using Xavier initialization (Glorot and Bengiol [2010).

A similar training strategy to other Mask R-CNN work (He
et al.l 2017) is followed. We choose to train the network for
160k steps on the MS COCO 2017 train dataset with a batch
size of 2 on a single GPU machine, while for Mask R-CNN an
effective batch size of 16 was used. The training consists of
three stages each lasting for 40k, 80k, 40k steps respectively:
in the first stage only the Mask R-CNN branches and not the
ResNet backbone are trained. Next, the prediction heads and
parts of the backbone (starting at layer 4) are optimized. Fi-
nally, in the third stage, the entire model (backbone and heads)
is trained together. For the first two training stages we use a
learning rate of 0.001 and for the last one a decreased learn-
ing rate of 0.001/10. The optimization is done by SGD with
momentum set to 0.9 and weight decay set to 0.0001.

5. Experiments

We perform our experiments using the implementation of
Mask R-CNN by matterport (Abdulla, 2017), based on the
Keras framework (Chollet et al., 2015) with a TensorRFLow
backend (Abadi et al.| 2015). Each training is carried out on
a single GPU using either an NVIDIA Titan X or an NVIDIA
GeForce GTX 1080 Ti.

We examine three aspects of the proposed Edge Agreement
Head. At first, we inspect the influence of the edge detection
filters on the training speed (section [5.I). In section the
different metrics of the L” family are used to examine the in-
fluence of the loss function’s steepness on the training speed.
Section [5.3] shows the impact weighting the Edge Agreement
Loss has on the overall loss. We investigate the influence of the
Edge Agreement Head with varied mask size in section[5.4} In
section[5.5|we show the results on the metrics after longer train-
ing. Finally, in section[5.6|we elaborate on modifications to the

Edge Agreement Head which did not have a positive effect on
the training.

For all experiments, we follow the same scheme: every net-
work configuration examined is trained and evaluated three
times. The resulting training curves and metrics displayed are
the averaged values. Furthermore, to be able to compare all
runs and to reduce the time required for all experiments we do
not train the networks until they have converged, but only for a
fixed and limited number of training steps. The only data aug-
mentation used in all three steps are random horizontal flips.

We present the COCO metrics for our experiments and com-
pare them with the results obtained using a Mask R-CNN
model without modifications (baseline) for every experiment
conducted. A significant disadvantage of using the COCO
Mask metrics is that they do not compare the ground-truth and
predicted mask pixel per pixel since they only consider the
area and the instance enclosing bounding box. As a result, the
COCO Mask metrics are unsuitable to compare the improve-
ment in the details of instance masks which are located on the
inside of the mask and do not affect the extremities. We use
the COCO metrics because of their dominance in other pub-
lications. The mask loss however, can be regarded as a better
metric to compare the quality of the instance mask, because it is
computed using a cross entropy between matched ground-truth
and predicted mask.

5.1. Influence of Filters

In the first experiment the choice of edge detection filters on
the training speed and the mask quality is analyzed. The Edge
Agreement Loss is computed using the L? loss. The mask loss
Lasi and the original Mask R-CNN loss Lyrenw are displayed
in Figure[da] The graphs show that using the Sobel filter leads
to a faster decrease of the Lyrcyy and the Ly g loss. This is
underlined well by plotting Lygcyy While using the Sobel filter
relative to the baseline (dotted curves with respect to the right
y-axis in Figure which demonstrates a consistent improve-
ment at every training step.

To allow for a comparison between different edge detection
filters, we analyzed their performance based on their impact on
the other loss terms, as their Edge Agreement Loss magnitude
varies depending on the filter. The results on the COCO Mask
metrics are shown in Table[T] Note, that these results are lower
than the results reported by (He et al.|, [2017), since we use a
different batch size, input image resolution and implementation
of Mask R-CNN ((Abdulla, 2017) not (Girshick et al., [2018))).
Using the Sobel edge detection filter gave a 7% relative im-
provement on the AP score. Notably the Sobel filter resulted
in a 12% relative improvement on the AP75 and a 10% relative
improvement on the APy compared to the respective baseline
scores. On average, the COCO metrics have been improved
relatively by 8.1%. Using the Laplacian kernel showed only
marginal improvements over the baseline. The combination of
multiple filters, e.g. Sobel and Laplacian (S & L), showed no
increase in performance.

A possible explanation for the superiority of the Sobel filter
is its structure: as it consists of two filters, not only the strength
of an edge along the x and y axis but also the edge’s orientation
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Figure 4: Comparison of different Edge Agreement Head configurations on the MS COCO dataset. The left y-axis corresponds to the absolute loss values (solid
lines) and the right y-axis corresponds to the relative improvement compared to the baseline (dotted lines). The first row shows the original Mask R-CNN Loss
Lyrcenn while the second row shows the Mask Loss Lyss. The first column illustrates the influence of different edge detectors used in the Edge Agreement
Head, while the second demonstrates the influence of Gaussian smoothing when using a Sobel edge detection filter (see section@). The last column compares the
performance of different L? loss functions for the Edge Agreement Loss (Best viewed in color).
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Figure 5: Comparison between masks predicted by Baseline Mask R-CNN and Mask R-CNN with Edge Agreement Head on the MS COCO dataset using a Sobel
edge detection filter after 160k steps on images taken from the MS COCO 2017 dataset 2014) (Best viewed in color).

can be used during the gradient descent to minimize the total
loss. This additional information accelerates the training. Due
to its similar structure, the Prewitt filter showed a comparable
effect on the training.

A qualitative comparison between computed masks is shown
in Figure 5] We observe that the models trained with Edge
Agreement Loss tend to be less likely to propose bounding
boxes which do not contain any object, therefore reducing false
positives. This indicates that the features needed to minimize
the Edge Agreement Loss are also useful to the Region Pro-
posal Network.

5.2. Influence of the Choice p in L? loss

Next, the influence of the exponent p in L? chosen for the
Edge Agreement Loss is analyzed. For all previous exper-
iments, an L? loss was used; now different values of p €
{1,2,3,4} are applied. As an increasing value of p increases
the steepness of the loss, falsely detected edges are penalized

more strongly. For this evaluation we used the Sobel edge de-
tection filter without smoothing the ground truth.

The two losses Lygeyn and Lyy,q are displayed in Figure
While a higher value for p causes the mask loss to decrease, it
also increases the overall loss. The metrics obtained in these
experiments are listed in Table @ Overall, choosing the L% loss
appears to be the best choice, as it yields the best results on the
COCO metrics.

5.3. Influence of Weighting Factor on Edge Agreement Loss

By choosing a higher value of p for the L” Edge Agree-
ment Loss, the loss becomes steeper and yields higher values
for wrongly predicted masks. This increment also implies a
higher relative importance of the Edge Agreement Loss com-
pared to the other loss functions in the sum of the total loss
which usually stay in the range [0, 1].

In these trainings we used the Sobel edge detection filter.



Table 1: Influence of the choice of edge detection filters on the instance segmentation mask COCO AP metrics on the MS COCO dataset after 160k steps. Higher

is better.
‘ AP AP50 AP75 ‘ APS APM APL
Sobel 202+017 375+037 200+007 | 88+0.27 219+0.18 289+0.30
Prewitt 200+031 375+025 196+038 | 85+045 21.6+031 28.1+0.61
Kayyali | 19.7+0.16 363 +0.25 195+0.18 | 8.4+0.32 21.3+0.14 28.1+0.46
Roberts 189+0.31 364+044 179+0.28 | 79+0.21 20.5+041 26.7+0.53
Laplace | 19.4+0.12 365+0.19 189+0.18 | 8.0+£0.22 21.0+0.10 27.8+0.11
S&L 20.0+0.25 37.0+036 196+0.24 | 83+0.03 21.7+0.30 28.4+0.47
Baseline | 18.8 +0.14 36.5+0.24 17.8+0.13 | 8.0+0.21 204+0.29 26.6+0.24

Table 2: Influence of the chosen L? loss on the instance segmentation mask AP COCO metrics on the MS COCO dataset after 160k steps. Higher is better.

| AP APs, AP;s | APs AP, AP,
LT 195+028 366+041 189=041 | 82+030 21.0+032 27.7+05
12 202+017 375+037 200+0.07 | 88027 219+018 289+0.30
3 202+020 37.0+041 201022 | 8.6+0.14 21.8+024 285+0.53
* 178+0.13 335+0.12 174+0.13 | 7.6+0.12 193+023 24.7+0.24
Baseline | 188 +0.14 365+0.24 17.8+0.13 | 8.0=021 204+029 26.6+0.24

To examine the influence of the relative importance of the
new Edge Agreement Loss to the other losses, we include a
factor @ which scales the Edge Agreement Loss. We test its in-
fluence on the usage of the L? and L* losses to investigate the
impact of the Mask Edge Loss on the total loss. For this com-
parison all trainings are performed only once and up to 120k
steps instead of 160k steps, as already after 120k steps a clear
trend has been recognizable.

Figure [@ shows the Mask R-CNN loss, while the Edge
Agreement Loss is scaled by @ € {0.5, 1, 8, 16}. The Mask R-
CNN loss increases with higher weight factor, despite faster
decreasing Mask Loss, the other loss terms remain higher. In
fact, the L* loss with weight factor 1.0 already appears to be
a good trade-off between enforcing better predicted masks and
optimizing the other objectives of the network.

The L* loss yields high values compared to the L? loss.
Therefore, we scale it by @ = 1/16, which is approximately the
ratio of Edge Agreement Loss between using L? and L* in the
first few steps. The training progression for the Mask R-CNN
loss is shown in Figure[6b] Reducing the Edge Agreement Loss
improves training significantly, making the loss stay below the
Baseline for most of the steps.

5.4. Influence of Mask Size

We investigate the influence of the size of the predicted mask
on the performance of the Edge Agreement Head (see Table [3).
For this we compare the performance of models trained for the
original mask size of 28 x28 and for an increased size of 56x56.
The models were trained following the same training schedule
as outlined in section[d] For both mask sizes we observe a clear
increase in performance when using the Edge Agreement Head
as an auxiliary loss. However, we find that the overall perfor-
mance of the model trained at mask size 56 X 56 is worse than
the model trained with mask size 28 x 28. We hypothesize that
this is the case, because predicting twice the resolution would
require longer training.

5.5. Longer training

To measure the effect of the Edge Agreement Head after
longer training, we increased the number of steps previously
used (320k and 640k steps rather than 160k). In this case the
last step of the training schedule, in which all layers are trained,
was extended from 40k steps to 200k and 520k steps (a total
of 320k and 640k training steps respectively). The results are
shown in Table 4

All metrics improved as expected when trained for additional
steps. Interestingly, in most metrics the Mask R-CNN model
trained with Edge Agreement Head trained for 160k steps was
not only superior to the baseline trained for 160k steps but also
to the one trained 320k steps. No significant influence of the
Edge Agreement Loss on losses other than the Mask Loss is ob-
served. We notice that the difference in the Mask Loss between
a baseline Mask R-CNN and one trained with Edge Agreement
Loss remains constant with later training steps. This was con-
trary to our own intuition that the Edge Agreement Loss would
primarily be helpful early in training. It was expected that the
Mask Loss of the two models would approach each other, but
this was not found to be the case. We conclude that the Edge
Agreement Head is not only useful early on in training, but can
guide the training even in later training steps and change the
point of convergence.

It should be noted that our results on the MS COCO dataset
(Lin et al., |2014) are significantly lower than the results re-
ported by He et al.|(2017). Firstly, we are not using the official
implementation of Mask R-CNN made available in the Detec-
tron (Girshick et al.}2018)), but an independent implementation
which reported lower results of their pretrained models (Ab-
dulla, 2017). Secondly, we use a batch size of 2, while Mask
R-CNN used an effective batch size of 16. We argue that this
does not hurt the generality of our method.

5.6. Other experiments

The configuration of the Edge Agreement Loss we describe
above was found to have the optimal impact on the training. We
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Table 3: Influence of the size of the predicted and ground-truth masks on the Edge Agreement Head. Shown are the instance segmentation mask AP COCO metrics

on the MS COCO dataset.

Mask shape ‘ AP APS() AP75 ‘ APS APM APL
28 % 28 Baseline | 18.8 £0.14 365+024 17.8+0.13 | 8.0+x0.21 204+0.29 26.6+0.24
Ours 202+017 375+037 200+0.07 | 88+027 21.9+0.18 28.9+0.30
56 % 56 Baseline | 18.0+0.23 350+030 17.0+037 | 7.6+0.24 19.3+0.28 25.5+0.31
Ours 193+0.03 36.0+0.07 19.0+0.07 | 8.1+0.13 21.0+0.07 27.6+0.19
tried a variety of modifications which showed either no effect or 3.0
had a negative impact on the training. Sobel

5.6.1. Smoothing of ground-truth or predicted Masks

Figure [3|illustrates how the L? loss between the edge maps,
calculated as mentioned above, does not only contain important
information but even possibly distracting information: the im-
ages in the rows for Sobel and Laplace depict a high error rate
which is not limited to areas in which the person has not been
segmented but also occurs around the entire boundary. This is
mainly caused by the fact, that the ground-truth mask is binary
and the mask branch’s output is continuous and shows often
smooth transitions.

To overcome this problem, we add an additional step in our
branch which performs Gaussian smoothing on the ground-
truth mask, yielding a smooth version of the binary ground
truth. For this we use an approximate 3 X 3 Gaussian kernel.
The calculated L? distance using this head proposal is shown in
Figure[7] Notably, the loss calculated on the smoothed ground
truth focuses particularly on areas with missing parts, while the
Edge Agreement Loss on the default ground truth has a higher
value on the overall mask boundary.

Contrary to expectation, the Sobel filter was more effective
when used without smoothing the ground truth, as the Mask
R-CNN training loss fell faster and was lower in this case, as
shown in Figure[@b] Particularly the Mask Loss during training

| Il 11l I\

0.0

4.0
Laplacian
w/ Smoothing 2.0
0.0

Figure 7: L? errors for the four example predictions and the different filters
calculated on the Gaussian smoothed ground truth. Each column 7 to /V cor-
responds to one of the examples in Figure The first row shows the L? error
based on the Sobel filter magnitude, while for the second row the Laplace filter
is used. While the losses calculated on the default ground truth (see Figure@)
do not respond strongly to missing areas, the losses on the smoothed ground
truth are particularly pronounced in these areas.

is lower.

The results obtained contradict the theoretical considerations
of the possible benefit to smoothing the ground truth. The
smoothing of the ground truth was designed to ignore minor
mistakes at the boundary of an almost perfectly predicted mask,
but only focusing on major mistakes. Apparently, the network
does not only profit from highlighting the most crucial mistakes
in the predicted masks, but rather from all mistakes done.

We investigated whether smoothing both the ground truth

and the predicted mask or only the predicted mask would help
the network during training. The reasoning for this was that it



Table 4: Comparison of the instance segmentation mask AP COCO metrics on the MS COCO dataset of our best performing model with the baseline after an
extended training duration. The best performing model uses the Edge Agreement Head with Sobel edge detection filter and L?> Edge Agreement Loss.

‘ AP AP50 AP75 ‘ APS APM APL
Ours 160k steps 20.2+0.17 375+0.37 20.0+0.07 | 8.8+0.27 21.9+0.18 28.9+0.30
Ours 320k steps 21.3 38.7 21.1 8.9 23.2 30.0
Ours 640k steps 227 41.0 23.1 10.2 24.6 32.0
Baseline 160k steps | 18.8 +0.14 36.5+0.24 17.8+0.13 | 8.0+0.21 204+0.29 26.6+0.24
Baseline 320k steps 20.0 38.5 19.1 8.6 21.6 28.2
Baseline 640k steps 21.5 40.5 20.8 9.0 22.9 30.7

could be beneficial to penalize the network less for pixel accu-
rate mask and more for the general shape. Since the instance
boundaries become much wider due to the smoothing, the Edge
Agreement Loss becomes less sensitive to small spatial dis-
placements. However, we found this modification to have a
negative impact on the training.

5.6.2. Balancing Losses

As discussed in section [5.3] the magnitude of the Edge
Agreement Loss appears to have a high influence on the
Lyrenn loss. In an attempt to balance the loss terms we tried
homoscedastic task uncertainty as proposed by |Kendall et al.
(2018). Our approach was to weigh all the loss terms including
the Edge Agreement Loss. However, the results were consis-
tently worse than the baseline and therefore not included in this

paper.

5.6.3. Alternative Edge Loss Definitions

Furthermore, we tried to weigh the cross entropy mask loss
Lyrask with the Edge Agreement Loss. Two different formula-
tions for this weighted cross entropy loss were tried out, which
can be expressed as

Legge = Luask-pw * LEdge-PW
or
Lgage = Lyask—pw - €XP (LEdge—PW/ 4) ,

using Lyask-pw and Lggge—py to denote the pixel-wise Mask
Loss and pixel-wise Edge Agreement Loss respectively. For
both formulations the results were identical with the more con-
cise formulation of the Edge Agreement Loss that we used in
the rest of the paper.

In addition, when using the Sobel filter, we did not solely
consider the horizontal and vertical image gradient but also the
gradient’s magnitude for calculating the L” Edge Agreement
Loss. No improvement compared to not including the magni-
tude was found. Therefore, it was not used in the rest of the

paper.

5.7. Cityscapes

To verify that our findings could be reproduced on a differ-
ent dataset, we trained our models on the Cityscapes dataset
(Cordts et al.,2016) with the Edge Agreement Head with Mask
shape 28 x 28 and 56 X 56 pixels (see Table [5). In contrast
to MS COCO, the annotations in Cityscapes have much finer
details. We followed the training schedule of the authors of

Mask R-CNN (He et al.l |2017), but instead of using an effec-
tive batch size of 8 we used a reduced size of 4. The findings
are easily compared to Table[3] since we see very similar trends.
Training with the Edge Agreement Head is demonstrated to be
beneficial since it consistently outperforms the respective base-
line. Increasing the predicted mask size leads to an overall re-
duction in the accuracy of the predicted mask for the baseline
experiments, but this could potentially be remedied by longer
training, to account for the higher number of parameters in the
additional layer of the mask branch.

6. Conclusion

In this paper we have analyzed the behavior of Mask R-CNN
networks during early training steps. By inspecting the pre-
dicted masks of the mask branch, we recognized that these often
have blurry boundaries which do not follow sharp and fine con-
tours of the original masks. To reduce this symptom, we suc-
cessfully introduced a parameter free network head, the Edge
Agreement Head. This head uses classical edge detection filters
applied on the instance masks to calculate a L” loss between the
predicted and ground-truth mask contours.

By including the new Edge Agreement Loss in the training,
we achieved a relative performance increment of 8.1% averaged
over all the MS COCO metrics after a fixed number of 160k
training steps.

The ablation studies performed showed that the Sobel filter
yields a better performance than the Laplace filter. Beyond ex-
pectations, the proposed smoothing of the ground-truth mask
did not improve but hinder the performance. Out of all losses
examined the often-used L? loss performs the best.

When trained longer, the difference in Mask Loss between
a baseline Mask R-CNN and one with Edge Agreement Head
persists, demonstrating the effectiveness of the additional loss
not only early during training but also during later steps.

Finally, we demonstrated that the Edge Agreement Head is
beneficial on Cityscapes, a dataset with much finer ground-truth
masks.

7. Future work

The idea to enforce edge agreement in predicted semantic
segmentation could be applied to scene segmentation for ex-
ample on the DeepLab architecture (Chen et al.l [2018a)) or the
U-Net architecture (Ronneberger et al.,|2015;|Kohl et al.,|2018]).
Monocular depth estimation could also potentially be enhanced



Table 5: Influence of the size of the predicted and ground-truth masks on the Edge Agreement Head with Sobel and an L? loss. Shown are the instance segmentation

mask AP COCO metrics on the Cityscapes dataset.

Mask shape ‘ AP AP50 AP75 ‘ APS APM APL

78 % 28 Baseline | 15.6+0.84 335+18 1243+1.03 | 22+0.25 11.2+043 25.6+1.21
Ours 177049 361+078 145+0.74 | 3.0+010 125+0.81 33.3+4.54

56 % 56 Baseline | 149+040 31.5+022 119+0.63 | 2.1+0.11 102+097 244+0.82
Ours 180+1.09 350+£265 1505+099 | 1.8+0.04 12.7+0.64 31.5+0.297

by encouraging the predicted depth map to have comparable
gradients to the ground-truth depth map image gradients.

Furthermore, balancing the different individual losses con-
tained in the total loss by introducing new scaling variables
might be a necessary step to further increase the training speed.
Instead of introducing new static hyperparameters for the multi-
task loss one could modify the gradients like |Chen et al.
(2018b).

As the Edge Agreement Loss accelerates the training of the
Mask Head, it enables Mask R-CNN to be used more easily
with sparse labels for object instance masks. This allows new
training strategies for new datasets, e.g. one could mix a few
hand segmented frames with datasets containing only object
bounding boxes, such as PASCAL VOC (Everingham et al.
2010) or the more recent Open Images dataset (Krasin et al.|
2017).
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