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Abstract

This paper considers to recognize products from daily
photos, which is an important problem in real-world ap-
plications but also challenging due to background clutters,
category diversities, noisy labels, etc. We address this prob-
lem by two contributions. First, we introduce a novel large-
scale product image dataset, termed as Product-90. Instead
of collecting product images by labor-and time-intensive
image capturing, we take advantage of the web and down-
load images from the reviews of several e-commerce web-
sites where the images are casually captured by consumers.
Labels are assigned automatically by the categories of e-
commerce websites. Totally the Product-90 consists of
more than 140K images with 90 categories. Due to the
fact that consumers may upload unrelated images, it is in-
evitable that our Product-90 introduces noisy labels. As
the second contribution, we develop a simple yet efficient
guidance learning (GL) method for training convolutional
neural networks (CNNs) with noisy supervision. The GL
method first trains an initial teacher network with the full
noisy dataset, and then trains a target/student network with
both large-scale noisy set and small manually-verified clean
set in a multi-task manner. Specifically, in the stage of
student network training, the large-scale noisy data is su-
pervised by its guidance knowledge which is the combina-
tion of its given noisy label and the soften label from the
teacher network. We conduct extensive experiments on our
Products-90 and public datasets, namely Food101, Food-
101N, and Clothing1M. Our guidance learning method
achieves performance superior to state-of-the-art methods
on these datasets.

1. Introduction
This paper studies a crucial problem in real-world appli-

cation: recognize products from consumer photos without
much supervision. More specifically, we want to recognize
the fine-grained products taken by consumer’s mobile cam-

Figure 1. Example images from our Products-90. We illustrate 5
different categories in column. Visually correct images are shown
in the first two rows. Visually confused or unrelated images are
shown in the last two rows.

eras, with unconstrained viewing directions, cluttered back-
ground, and different lighting conditions. One can imagine
an application that you are recommended where the prod-
ucts can be found and what the prices are by recognizing
your casually-captured product photos.

To address this real-world product image recognition
task, we build a novel large-scale dataset, termed as
Product-90, which consists of 90 generic product cate-
gories. Instead of collecting daily images by labor-and
time-intensive image capturing, we take advantage of the
web and download images from the reviews of several e-
commerce websites where the images are casually captured
by consumers. Totally, we collected more than 140k prod-
uct images from the customer reviews. The associated 90
categories are borrowed the categories of e-commerce web-
sites. Figure 1 shows some examples of this dataset. We
can see there are several challenges brought by Product-90
dataset: i)The visual contents in Product-90 contains a wide

1

ar
X

iv
:1

90
7.

11
38

4v
1 

 [
cs

.C
V

] 
 2

6 
Ju

l 2
01

9



range of subjects. ii) Some categories are very similar in ap-
pearance, e.g. Hair Care vs. Body Care. iii) Some photos
are not related to the category, which suggests a significant
level of noise exists in the dataset.

To evaluate product image recognition algorithms on our
Product-90, we build a small manually-clean subset for tra-
ditional training and testing, and remain the rest of Product-
90 as noisy data which can be used for extra training. To
take full advantage of the small clean training subset and the
massive noisy labeled data for daily product recognition, we
propose a novel guidance learning framework for noisy data
learning. It mainly includes two training stages. At the first
stage, we train a baseline CNN model, or a teacher model,
on the full Product-90 dataset (without the clean test set).
At the second stage, we train a student or target network
on the large-scale noisy set and the small clean training set
with multi-task learning. Specifically, in the stage of stu-
dent training, the large-scale noisy data is supervised by the
guidance knowledge which consists of two supervision sig-
nals, namely the noisy ground truths and the soften labels
from the teacher network. We fuse these one-hot ground
truths with the soften multi-hot labels, and optimize the net-
work by Kullback–Leibler Divergence (KLDiv) loss.

Our guidance learning framework considers the follow-
ing issues. The first stage of our guidance learning ensures
that we can obtain a powerful teacher model instead of us-
ing the noisy set or clean set only like in [25].We fuse both
ground truths and soften labels for the large-scale noisy
data, since i) the teacher model provides useful informa-
tion but is far from perfect, and ii) there exist both false and
correct labels in noisy labels.

In summary, our contributions can be concluded as fol-
lows:

• We introduce a new task, i.e. daily product image
recognition, and a novel large-scale dataset, termed as
Product-90 which is collected from the reviews of e-
commerce websites.

• To advance the performance of daily product image
recognition, we propose a generic guidance learning
method to take full advantage the small clean subset
and the large-scale noisy data in Product-90.

• We conduct comprehensive evaluations with our guid-
ance learning method on our Products-90, Food-
101 [1], Food-101N [14], and Clothing1M [33], and
achieve state-of-the-art results.

2. Related Work
Our work is related to product image recognition and

noisy data learning. In this section, we first review some
related product image datasets and noisy datasets, and then
present existing noisy data learning methods.

2.1. Related Datasets

Product image datasets. As for product images in
computer vision and multimedia conmmunity, researchers
mainly focus on the products of retails and groceries such
as Supermarket [27], Grocery Products [5], Gorzi-120 [20],
Feribur Groceries [12], RPC [32]. Supermarket [27] is
introduced for automatic fruit and vegetable classification
from images. It has 15 product categories with 2,633 im-
ages captured under diverse conditions. Grocery Prod-
ucts [5] is another dataset aiming at grocery product recog-
nition. It contains 80 grocery product categories with 8,350
training images and 680 test images. Grozi-120 [20] is a
dataset proposed for groceries recognition in natural envi-
ronment. It contains 120 grocery product categories. For
each product category, two types of images are collected,
one from the web, the other from inside a grocery store.
In total, 11,870 images are collected with 676 from the
web and 11,194 from the store. Freiburg Groceries [12]
is another grocery dataset comprising 5,021 images of 25
grocery classes. The images are divided into two sets: a
training set that consists of 4,947 images taken by smart-
phone cameras, each containing one or more instances of
one class; a test set with 74 images of 37 clutter scenes,
each containing objects of multiple classes. RPC [32] is
a recently-published retail product image dataset aiming
at automatic checkout application. This dataset also pro-
vides images of two different types. One type is taken in a
controlled environment and only contains a single product.
Another type represents images of user-purchased products
and these images usually include multiple products. In total,
it contains 83,739 images of 200 fine-grain classes. Differ-
ent from these retail or grocery product image datasets, our
proposed Product-90 is a label noisy dataset collected by
mobile cameras in daily life, and contains categories from
retail products to clothing and shoes. Liu et al. [17] also
propose a daily photo dataset but it limited on clothing im-
ages.

Noisy datasets. In recent research, both synthetic and
real-world noisy datasets are widely used. For example,
MNIST and CIFAR-10 are used as synthetic noisy datasets
in [25, 29]. Synthetic label noise usually mimics random
class noise and confusing class noise by corrupting the orig-
inal clean datasets. To explore noisy data learning meth-
ods, three real-world noisy datasets are introduced more re-
cently. Xiao et al. [33] present the Clothing1M fashion im-
age dataset which consists of 14 classes with more than a
million images crawled from online shopping websites. Li
et al. [15] introduce the WebVision dataset which contains
2.4M noisy labeled images crawled from Flickr and Google
using the ILSVRC taxonomy [3]. Lee et al. [14] collect
the Food-101N dataset which contains 310k images from
Google, Bing, Yelp, and TripAdvisor using the Food-101
taxonomy [1]. Our Products-90 is related to Clothing1M

2



but contains much more categories including clothing, bags,
jewelry, shoes, home products, personal care products, sta-
tionery, etc. Meanwhile, the Products-90 is crawled from
the customer reviews of online shopping websites which in-
cludes more complex background clutter and noise.

2.2. Noisy Data Learning Methods

We focus on the label noise problem and refer to [4] for
a comprehensive overview. Methods on learning with label
noise can be roughly grouped into three categories: noise-
robust methods, semi-supervised noisy data learning meth-
ods, and noise-cleaning methods.

Noise-robust methods. The noise-robust or noise-
tolerance learning methods are assumed to be not too sen-
sitive to the presence of label noise, which directly learn
models from the noisy labeled data [11, 13, 22, 25, 18].
Nettleton et al. [24] show that the Naive Bayes probabilistic
learner is less sensitive to label noise. Manwani [19] present
a noise-tolerance algorithm under the assumption that the
corrupted probability of an example is a function of the fea-
ture vector of the example. Mnih et al. [23] propose two ro-
bust loss functions to deal with label noise. With synthetic
noisy labeled data, Rolnick et al. [28] demonstrate that deep
learning is robust to noise when training data is sufficiently
large with large batch size and proper learning rate. Guo et
al. [6] develop a curriculum training scheme to learn noisy
data from easy to hard. Jiang et al. [10] design a MentorNet
to adjust the loss weights of noisy samples in the training
process.

Semi-supervised noisy data learning methods. Semi-
supervised methods aim to improve performance using a
small manually-verified clean set. These methods usually
obtain higher performance than the other methods since ex-
tra human supervision is added. Lee et al. [14] train an aux-
iliary CleanNet using manually-verified data to detect label
noise and adjust the final sample loss weights. Similarly,
Veit et al. [31] also use the clean set to train a label cleaning
network but with a different architecture. These methods as-
sume there exists such a label mapping from noisy labels to
clean labels. Xiao et al. [33] mix the clean set and noisy set,
and train an extra label noise type CNN and a classification
CNN to estimate the posterior distribution of the true la-
bel. Our guidance learning belongs to the semi-supervised
noisy data learning which leverages a teacher-student train-
ing strategy to take full use of the whole data space (noisy
set and clean set) and the student network trades off the
noisy ground truths and soften labels by guidance knowl-
edge.

Noise-cleaning methods. Noise-cleaning methods aim
to identify and remove or relabel noisy samples with fil-
ter approaches [21]. Brodley et al. [2] propose to filter
noisy samples using ensemble classifiers with majority and
consensus voting. Sukhbaatar et al. [29] introduce an ex-

tra noise layer into a standard CNN which adapts the net-
work outputs to match the noisy label distribution. Daiki
et al. [30] propose a joint optimization framework to train
deep CNNs with label noise, which updates the network pa-
rameters and labels alternatively. Based on the consistency
of the noisy groundtruth and the current prediction of the
model, Reed et al. [26] present a ‘Soft’ and a ‘Hard’ boot-
strapping approach to relabel noisy data. Similarly, Li et
al. [16] relabel noisy data using the noisy groundtruth and
the current prediction adjusted by a knowledge graph con-
structed from DBpedia-Wikipedia. Our guidance learning
framework is also related to [26] and [16] but differs in that
i) we consider a small clean set instead of noisy data only
which inherits the advantage of semi-supervised methods
and ii) we train the teacher model with the full dataset and
the student model with guidance knowledge in a multi-task
learning manner.

3. The Product-90 Dataset
Considering the applications of generic product image

recognition, we collect the Products-90 dataset. It is col-
lected by crawling images in consumer reviews from sev-
eral e-shopping websites. Labels are assigned by cate-
gories provided by the sellers like in [33]. Several image
samples along with the annotation are shown in Figure 2.
The 90 classes are mainly selected according to the cate-
gories of these websites and filtered by their definition am-
biguity. We keep the original fine-grain classes since it is
useful in practice. These product classes can be mainly
grouped into 13 meta categories, namely tools, baby and
kids, home, beauty and personal care, shoes, clothing, ac-
cessories, sports/outdoors, grocery, health, luggage, elec-
tronics, and background. There exist fine-grain classes in
most of the meta categories. For example, there are 21
categories in the beauty and personal care including eye
makeup, lip makeup, cheek makeup, facial care, eye care,
lip care, etc.

Our current version of Products-90 consists of 142,466
images, with hundreds or thousands of samples for each
class. Figure 3 shows the statistics of Products-90 where
each color corresponds to a certain meta categories. All cat-
egories are relatively balanced except for the ‘facial care’
and ‘women tops’. To separate product classes from non-
product class, the background category is added by crawl-
ing scene images (keywords such as landscape, building)
in several searching engines. The number of images for the
background is comparable to the one of the largest class (i.e.
facial care).

Protocols. Due to the fine-grain classes in Products-90,
we find that it is hard to relabel or refine manually as in [33].
Instead, we manually verify about 17K of all the images in
the dataset which are correctly-labeled. We further split it
into training (Dc) and test sets, which contains 8,795 and
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Figure 2. Illustration of the Products-90 dataset. Each image represents one class which is selected from clean data. Different image
boundary colors correspond to different meta categories. (Zoom in for better view.)

Figure 3. Statistics of the collected Products-90. Each color indicates a meta category. (Zoom in for better view.)

8,787 images, respectively. This small training subset is
used as clean set. The remaining of Products-90 is used as
noisy training set (Dn). We report the overall accuracy on
the clean test set.

4. Guidance Learning

We propose the guidance learning framework to deal
with the problem of product image recognition with noisy
supervision. The guidance learning framework is illustrated
in Figure 4. Our framework consists of two stages: 1)
teacher network training 2) student network training. In the
first stage, we use all the training data to train a basic CNN
model, which is called the teacher model. In the second
stage, we use the noisy training dataset and the clean train-
ing dataset to train a student model in a multi-task learning
manner.

4.1. Teacher Network

The teacher network is trained on the full dataset which
contains mislabeled and correctly-labeled samples. More
specifically, given dataset D = {(xi, yi) | i = 1 . . . N},
where xi denotes the i−th observed image and the corre-
sponding label yi ∈ {1, . . . , C} and C is the number of the
categories, we use all the training dataD to learn the teacher
model.

At this stage, the teacher network training is considered
identical with the classical classification problem, assuming
all the samples are correctly labeled. The loss function of
teacher network is the cross entropy between the softmax
output p and the ground-truth distribution over labels q.

Lteacher = −
C∑
i=1

qi log pi (1)
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Figure 4. The proposed guidance learning framework. At the first stage, we utilize all training data to train a teacher model. At the second
stage, we separate the training data into a noisy subset and a clean subset to train the student network with a multi-task learning mechanism.

where qi is the ground-truth distribution of the ith true class
label.

4.2. Student Network

Once we finished the first stage, we obtain a teacher
model which contains implicit information of the dataset.
At the second stage, we train a target network in a multi-
task manner with the large-scale noisy set and a small clean
training set. We refer this set as the clean subset and the
remaining noisy dataset as the noisy subset. We denote
the clean training subset Dc = {(x̂i, yi) | i = 1 . . .K} and
noisy subset Dn = {(x∗i , y∗i ) | i = 1 . . .M}. In our case,
the clean training data is a small portion of the training data.
We have N = |Dc| + |Dn| with |Dc| � |Dn|. Since the
clean subset is built based on the selected samples with the
right annotation, the noisy subset and the clean subset could
have different distribution. However, the clean training sub-
set share the same distribution with the clean test set. To
take full advantage of the whole training dataset, we pro-
pose the guidance learning method which leverages differ-
ent supervision information for the noisy subset and clean
subset, and combine them with a multi-task learning (MTL)
framework.

For the clean subset, it is natural to choose the traditional
cross entropy loss for training since we are confident about
the sample labels. For the noisy subset, instead of using
the original label which may be totally wrong, we aim to
alleviate the effects of the noisy label and to maintain the
right label functioning well at the same time. To achieve this
goal, we resort to the noisy labels as well as the knowledge
included in the soften predictions of the teacher network.

Specifically, we first input the noisy subset into the
teacher network to obtain logit scores zi ∈ RC for the
i-th sample. Then, we feed the predictions into the soft-
max layer with a score-soften operation to obtain the target
soft probabilities pi. In the soften operation, inspired by
[8] we introduce a temperature to transfer the knowledge of
teacher. The target soft probability pi is defined as follows,

pi =
exp(zi/T )∑
j exp(zj/T )

, (2)

where zi is the pre-softmax activations of teacher network
and T is the temperature which softens the signals. As men-
tioned in [8], the soften operation can provide more infor-
mation or knowledge about the model’s prediction.

To achieve the final soft target of a sample, we fuse the
knowledge from the teacher network pi and its noisy label
yi which is a one-hot vector as follows,

gi =
1

(1 + β)
(pi + βyi), (3)

where β is a trade-off weight of the two parts. We call gi
as guidance knowledge in the paper since it contains both
transferred and noisy clues.

Once we obtain the soft targets, the noisy subset is su-
pervised by KL-divergence Loss as implemented in most of
deep learning toolbox. Formally, it is defined as,

Lg(θ) =

N∑
i

gilog(
gi
qi
), (4)

where q denotes the softened prediction of networks, g is
the soft target label.
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Table 1. Comparison on Products-90.
Model # Method Training Data Initialization Test Accuracy

1 ResNet-101 noisy data Dn ImageNet 60.97%
2 ResNet-101 clean data Dc ImageNet 62.15%
3 ResNet-101 Dn and Dc ImageNet 66.78 %
4 Guidance Learning Dn and Dc model#3 68.86 %

Finally, the student network is trained by integrating the
KL-divergence loss for the noisy subset and cross entropy
loss for the clean subset. The total loss is as follows:

Ltotal(θ) = αT 2Lg + Lc (5)

where T 2 is used to compensate the impact of soften opera-
tion in Eq.(2), α is the hyper-parameter which balances the
importance between these two tasks, and Lc is the cross-
entropy loss on clean dataset whose formulation is the same
with Eq.(1).

5. Experiments
In this section, we first present the implementation de-

tails, and then conduct extensive evaluations with our guid-
ance learning method on the Products-90, and finally apply
our method on Food-101 and Food-101N.

5.1. Implementation Details

We implement our method with Pytorch. For data aug-
mentation, we resize images to scale 256×256, and ran-
domly crop regions of 224×224 with random flipping. We
crop the middle 224×224 regions for testing. We use
ResNet-101 [7] architecture on Products-90, and ResNet-
50 on Food-101N and Clothing1M. All networks are pre-
trained on the ImageNet dataset. In the teacher network
training step, we initialize the learning rate (lr) to 10−3, and
divide it by 10 after 10, 15 and 20 epochs. We stop training
after 25 epochs. In the student network training step, we set
the lr to 10−4, and divide it by 10 after 5, 8 and stop training
after 11 epochs. We use the SGD method for optimization
with a momentum of 0.9 and a weight decay of 10−3. The
batch size is set to 64 for all steps. For the hyper-parameters
α, β, and T in our guidance learning framework, the default
values are 0.1, 0.3, and 5, respectively.

5.2. Exploration of Guidance Learning on
Products-90

In this section, we first compare our guidance learning
method to several well-known baseline methods, and then
evaluate the hyper-parameters.

Table 1 presents the test accuracy comparison between
our methods and several baselines, i.e. model #1, #2, and
#3. These baselines ignore the noisy label problem and
view all labels as ground truth. Traditional cross-entropy
loss are used for all these baselines. As shown in Table 1,

training on the noisy set Dn gets the worst result 60.97%,
which even inferior to the one trained on the small clean
set (i.e., 62.15%). It suggests that i) the noisy subset may
show different distribution compared to the clean one and
ii) noisy labels degrade CNNs significantly even there is a
large scale of data. As found in [33], training on both clean
and noisy sets is a better choice which achieves 66.78%
on our collected dataset. We use this model as the teacher
model of our guidance learning framework. With the same
full dataset, our guidance learning framework further im-
proves the teacher model by 2.08%. As another useful trick
in noisy data learning [25, 6], fine-tuning the model trained
with noisy data on clean set further boosts the final per-
formance.This trick improves our guidance learning from
68.86% to 71.4%, and boosts the model#3 from 66.78% to
68.6% .

The effect of noise. To investigate the effect of noise for
our guidance learning framework, we change the ratio of
clean images. Specifically, we reduce the number of clean
images to 10%, 30%, 50%, and 80% of the original clean
training set (i.e. Dc). Figure 5 presents the results of the
teacher models and student models on the test set. We also
compare our method to the most related work in [16] which
also uses knowledge distillation where the teacher model
is trained on clean data and the student model on the full
data with modified soft labels. We do not use knowlegde
graph to refine soft labels as [16] since we do not have.
Our teacher model is slightly impacted by the decreasing
of clean images (i.e. we remove partial clean training im-
ages). Our guidance learning framework consistently im-
proves the teacher model by more than 2%. [16] is inferior
to our method consistently and degrades significantly when
the ratio of clean images is reduced. For example, reduc-
ing the number of clean images to 10% (about 10 images
for each class) degrades about 20%, and both the teacher
model and student model achieve less than 40%. However,
it only leads to 2.22% degradation (66.64% vs. 68.86%) for
our student model which demonstrates the robustness and
efficiency of guidance learning framework even with tiny-
scale of clean images. This can be explained by that i) train-
ing with tiny-scale clean data, leads to overfitting easily and
ii) a bad teacher model impacts the final performance of its
student models.

Evaluation of α, T and β. β is a trade-off weight be-
tween noisy labels and the predictions of teacher model in
our guidance learning. Taking the default values of α and T,
we evaluate different β from 0 to 1. The results are shown in
Figure 6. We observe that increasing β boosts performance
but saturates above 0.3. α balances the importance between
the losses of noisy set and clean set, T is the temperature
used for softening. We evaluate α and T by fixing β to 0.3.
The results are illustrated in Figure 7. From Figure 7, sev-
eral observations can be found. First, ‘T=5’ consistently
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Figure 5. Evaluation of clean image ratios w.r.t. the original clean
set.

Figure 6. Evaluation of β in Eq.(3).

Figure 7. Evaluation of α and T in Eq.(5).

outperforms the others regardless of α. Second, increasing
β boosts performance in the beginning but degrades after 5,
which indicates that a highly-soften operation corrupts su-
pervision knowledge. Third, α and T impact performance
jointly which change the loss of noisy set in Eq. (5).

5.3. Experiments on Food-101 and Food-101N

Food-101 and Food-101N. The Food-101 dataset [1] is
a benchmark for visual food evaluation. It contains 101
food categories, with 101,000 real-world food images to-
tally. For each class, 750 images are used for training,
the other 250 images for testing. It is a clean dataset re-
viewed manually. The training set of Food-101 is used as
clean trainset Dc. To conduct experiments with label noise,
we utilize the Food-101N noisy dataset as Dn. The Food-
101N dataset [14] is collected from Google, Bing, Yelp, and
TripAdvisor with the concepts of Food-101, and is filtered

Table 2. Comparison between our method and recent state-of-the-
arts on Food-101. ∗60K extra images have been used which have
both correct labels and noisy labels introduced in [14]. It is worth
noting that 60K is comparable to the number of training images in
Food-101. †BNInception is used for backbone network which is
pre-trained on the full ImageNet dataset with 21k classes. The re-
sults in brackets are our best reimplementation of CleanNet using
Pytorch.

# Method Training Data Init. Accuracy

1 ResNet-50[14] Food-101N ImageNet 81.44

2 ResNet-50 [14] Food-101 ImageNet 81.67

3 ResNet-50 Food-101 and
Food-101N

ImageNet 85.80

4 ResNet-50 Food-101N∗ ImageNet 79.83

5 CleanNet(hard) [14] Food-101N∗ ImageNet 83.47(82.39)

6 CleanNet(soft) [14] Food-101N∗ ImageNet 83.95(82.99)

7 Curriculum [6]† Food-101 and
synthetic data

ImageNet 87.3

8 Guidance Learning Food-101N∗ model#4 84.20

9 Guidance Learning Food-101 and
Food-101N

model#3 87.36

out from foodspotting.com where the Food-101 is collected.
We use all the 310k images of Food-101N as the noisy
dataset in our experiments, and report the overall accuracy
on the Food-101 test set.

We futher validate our method on Food-101 and Food-
101N. The performance comparison is presented in Ta-
ble 2. The first two baselines are provided in [14]. Our
teacher model trained on both the training set of Food-
101 and Food-101N obtains 85.8% which outperforms the
baselines and CleanNet [14] in a large margin. It demon-
strates that more data is better even there has label noise.
Our guidance learning method improves the baseline re-
sult from 85.8% to 87.36%, which outperforms the current
state-of-the-art methods. It is worth noting that CleanNet,
which is a state-of-the-art semi-supervised noisy data learn-
ing method, leverages additional 60K manually-verified im-
ages within the Food-101N. The number of 60K is com-
parable to 75K of the original training images on Food-
101. For a fair comparison, we conduct an extra experi-
ment with the same 60K manually-verified set, and obtain
84.2% which is better than both the hard (82.39%) and soft
(82.99%) version of CleanNet.

5.4. Experiments on Clothing1M

Clothing1M. The Clothing1M dataset [33] is a public
large-scale fashion dataset to evaluate recognition accuracy
from noisy data with human supervision. It contains 1 mil-
lion images with noisy class labels from 14 fashion classes
and thousands of human-annotated images. All the images
are crawled from several online shopping websites. The
human-annotated set is used as the clean set which is fur-
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Table 3. Performance comparison between our method and recent state-of-the-art methods on Clothing1M. ∗32K images have both correct
labels and noisy labels which are used to train CleanNet. ‡BNInception is used for backbone network which is pre-trained on the full
ImageNet dataset with 21k classes.

# Method Training Data Initialization Accuracy

1 ResNet-50 1M noisy ImageNet 68.94
2 ResNet-50 50K clean ImageNet 75.19
3 ResNet-50 1M noisy + 50K clean ImageNet 71.61
4 CleanNet(hard) [14] 1M noisy∗ ImageNet 74.14
5 CleanNet(soft) [14] 1M noisy∗ ImageNet 74.69
6 CleanNet(soft) [14]+ Dc Finetuning 50k clean model#5 79.90
7 Loss correction [25] 1M noisy ImageNet 69.84
8 Loss correction [25] + Dc Finetuning 50k clean model#7 80.38
9 Curriculum [6]‡ 1M noisy ImageNet 75.80
10 Curriculum [6]‡ + Dc Finetuning 50k clean model#9 81.50
11 Guidance Learning 1M noisy + 50K clean ImageNet 75.76
12 Guidance Learning + Dc Finetuning 50k clean model#11 80.31
13 Guidance Learning ‡ 1M noisy + 50K clean ImageNet 78.77
14 Guidance Learning + Dc Finetuning ‡ 50k clean model#13 81.13

ther split into training Dc, validation and test sets with the
size of 50k, 14k, 10k, respectively. A confusion matrix be-
tween the human annotations and the original noisy labels
shows that the overall accuracy is 61.54% in [33]. We report
the overall accuracy on the test set of Clothing1M.

The first two baselines are provided in [25]. Our baseline
trained on mixed noisy and clean data is 71.61% which is
slightly lower than those in [25]. Both [14] and [25] use
ResNet-50 as backbone network, and respectively obtain
74.69% and 69.84% without the final finetuning process on
clean data. With the same backbone, our guidance learning
method improves the teacher model from 71.61% to 75.76%
which outperforms [14] and [25]. CurriculumNet [6] uses
the BNInception [9] network which is pre-trained on the full
ImageNet with 21k classes as its backbone model, and is
implemented with Caffe1. For a fair comparison, we replace
the ResNet-50 as the same BNInception model, and obtain
78.77% without finetuning on clean set which is 2.93% bet-
ter than CurriculumNet (78.77% vs. 75.8%).

For the results with a further finetuning on clean set, the
accuracies are 79.9%, 80.38%, and 81.5% in [14], [25],
and [6], respectively. We obtain 81.13% with the finetun-
ing trick which is comparable to the state of the arts. [25]
estimates a confusion matrix which indicates the probabil-
ity of each class being corrupted into another. This method
is based on the assumption that the noisy label can be cor-
rected to another. [6] designs a curriculum to train noisy
data from easy to hard which utilizes a clustering process
and a training process repeatedly. Compared to these two
state-of-the-art methods, our guidance learning method is
more efficient and simpler.

1http://caffe.berkeleyvision.org/

6. Conclusion

In this paper, we present a large-scale daily product im-
age dataset, termed as Product-90, for recognizing prod-
uct in daily life. Compared to exsiting product datasets,
our product dataset is more diverse in product categories
and owns more images. Since our Product-90 introduces
noisy labels, we also propose a simple yet efficient guid-
ance learning framework to address the problem of training
CNNs from noisy data. It first trains an initial teacher net-
work from the full dataset including both clean and noisy
data, and then separates the noisy part and clean part, and
finally trains a target network with multi-task learning. In
the target network training step, the noisy data is supervised
by the guidance knowledge which is the combination of its
noisy label and soft label from the teacher network. Exper-
iments on several public datasets and our dataset show that
our guidance learning method improves the base model sig-
nificantly and achieves state-of-the-art performance. All the
code will be publicly available including the reimplementa-
tion of CleanNet.

References

[1] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101–
mining discriminative components with random forests. In
ECCV, pages 446–461. Springer, 2014.

[2] C. E. Brodley and M. A. Friedl. Identifying mislabeled train-
ing data. Journal of artificial intelligence research, 11:131–
167, 1999.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, pages 248–255. Ieee, 2009.

8



[4] B. Frénay and M. Verleysen. Classification in the presence of
label noise: a survey. IEEE transactions on neural networks
and learning systems, 25(5):845–869, 2014.

[5] M. George and C. Floerkemeier. Recognizing products: A
per-exemplar multi-label image classification approach. In
ECCV, pages 440–455. Springer, 2014.

[6] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R.
Scott, and D. Huang. Curriculumnet: Weakly supervised
learning from large-scale web images. arXiv preprint
arXiv:1808.01097, 2018.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[10] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Men-
tornet: Regularizing very deep neural networks on corrupted
labels. arXiv preprint arXiv:1712.05055, 2017.

[11] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.
Learning visual features from large weakly supervised data.
In ECCV, pages 67–84. Springer, 2016.

[12] P. Jund, N. Abdo, A. Eitel, and W. Burgard. The freiburg
groceries dataset. arXiv preprint arXiv:1611.05799, 2016.

[13] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev,
T. Duerig, J. Philbin, and L. Fei-Fei. The unreasonable effec-
tiveness of noisy data for fine-grained recognition. In ECCV,
pages 301–320. Springer, 2016.

[14] K.-H. Lee, X. He, L. Zhang, and L. Yang. Cleannet: Trans-
fer learning for scalable image classifier training with label
noise. arXiv preprint arXiv:1711.07131, 2017.

[15] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool. We-
bvision database: Visual learning and understanding from
web data. arXiv preprint arXiv:1708.02862, 2017.

[16] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning
from noisy labels with distillation. In ICCV, pages 1928–
1936, 2017.

[17] S. Liu, Z. Song, G. Liu, C. Xu, H. Lu, and S. Yan. Street-to-
shop: Cross-scenario clothing retrieval via parts alignment
and auxiliary set. In CVPR, pages 3330–3337. IEEE, 2012.

[18] Y. Lu, C. Yuan, Z. Lai, X. Li, W. K. Wong, and D. Zhang.
Nuclear norm-based 2dlpp for image classification. IEEE
Transactions on Multimedia, 19(11):2391–2403, 2017.

[19] N. Manwani and P. Sastry. Noise tolerance under risk min-
imization. IEEE transactions on cybernetics, 43(3):1146–
1151, 2013.

[20] M. Merler, C. Galleguillos, and S. Belongie. Recognizing
groceries in situ using in vitro training data. In CVPR, pages
1–8. IEEE, 2007.

[21] A. L. Miranda, L. P. F. Garcia, A. C. Carvalho, and A. C.
Lorena. Use of classification algorithms in noise detection
and elimination. In International Conference on Hybrid Ar-
tificial Intelligence Systems, pages 417–424. Springer, 2009.

[22] I. Misra, C. Lawrence Zitnick, M. Mitchell, and R. Girshick.
Seeing through the human reporting bias: Visual classifiers
from noisy human-centric labels. In CVPR, pages 2930–
2939, 2016.

[23] V. Mnih and G. E. Hinton. Learning to label aerial images
from noisy data. In ICML, pages 567–574, 2012.

[24] D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of
the effect of different types of noise on the precision of su-
pervised learning techniques. Artificial intelligence review,
33(4):275–306, 2010.

[25] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu.
Making deep neural networks robust to label noise: A loss
correction approach. In CVPR, pages 2233–2241, 2017.

[26] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and
A. Rabinovich. Training deep neural networks on noisy la-
bels with bootstrapping. arXiv preprint arXiv:1412.6596,
2014.

[27] A. Rocha, D. C. Hauagge, J. Wainer, and S. Goldenstein. Au-
tomatic fruit and vegetable classification from images. Com-
puters and Electronics in Agriculture, 70(1):96–104, 2010.

[28] D. Rolnick, A. Veit, S. Belongie, and N. Shavit. Deep
learning is robust to massive label noise. arXiv preprint
arXiv:1705.10694, 2017.

[29] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fer-
gus. Training convolutional networks with noisy labels.
arXiv preprint arXiv:1406.2080, 2014.

[30] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint
optimization framework for learning with noisy labels. arXiv
preprint arXiv:1803.11364, 2018.

[31] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and
S. J. Belongie. Learning from noisy large-scale datasets with
minimal supervision. In CVPR, pages 6575–6583, 2017.

[32] X.-S. Wei, Q. Cui, L. Yang, P. Wang, and L. Liu. Rpc: A
large-scale retail product checkout dataset. arXiv preprint
arXiv:1901.07249, 2019.

[33] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang. Learning
from massive noisy labeled data for image classification. In
CVPR, pages 2691–2699, 2015.

9


