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ABSTRACT

With deep learning’s success, a limited number of popular deep nets have been widely adopted for var-
ious vision tasks. However, this usually results in unnecessarily high complexities and possibly many
features of low task utility. In this paper, we address this problem by introducing a task-dependent
deep pruning framework based on Fisher’s Linear Discriminant Analysis (LDA). The approach can
be applied to convolutional, fully-connected, and module-based deep network structures, in all cases
leveraging the high decorrelation of neuron motifs found in the pre-decision space and cross-layer
deconv dependency. Moreover, we examine our approach’s potential in network architecture search
for specific tasks and analyze the influence of our pruning on model robustness to noises and adver-
sarial attacks. Experimental results on datasets of generic objects (ImageNet, CIFAR100) as well
as domain specific tasks (Adience, and LFWA) illustrate our framework’s superior performance over
state-of-the-art pruning approaches and fixed compact nets (e.g. SqueezeNet, MobileNet). The pro-
posed method successfully maintains comparable accuracies even after discarding most parameters
(98%-99% for VGG16, up to 82% for the already compact InceptionNet) and with significant FLOP
reductions (83% for VGG16, up to 64% for InceptionNet). Through pruning, we can also derive
smaller, but more accurate and more robust models suitable for the task.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we explore the premise that less useful fea-
tures (including their possible redundancies) in overparameter-
ized deep nets can be pruned away to boost efficiency and ac-
curacy. In our opinion, optimal deep features should be task-
dependent. Prior to deep learning, features were usually hand-
engineered with domain specific knowledge (Lowe,|1999;|Ojala
et al.,[1996; |Ahonen et al.| |2004; Kumar et al., [2009; Struc and
Pavesic,2009). With the success of deep learning, we no longer
need to handcraft features, but people are still handcrafting var-
ious architectures, which impacts both the quality and quantity
of features to be learned. Some features learned via arbitrary
architectures may be of little utility for the current task at hand.
Such features not only add to the storage and computational
burden but may also skew the data analysis (e.g. image classifi-
cation in this paper) or result in over-fitting when data is limited.
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Furthermore, many researchers hand-design deep architectures
on a particular large benchmark dataset (e.g. ImageNet), but
expect to achieve an overall generalization ability. It is possi-
ble that such architectures hand-designed on one dataset can-
not produce optimal features for other tasks, despite the large
enough capacity.

Instead of handcrafting fixed nets and assuming their gen-
eralizability to various tasks, in this paper, we attempt to de-
rive a range of deep models well-suited to the current task
through task dependent network pruning (feature selection). We
develop a deep Linear Discriminant Analysis (LDA) (Fisher,
1936) based neuron/filter pruning framework that is aware of
both class separation and holistic cross-layer dependency. The
pruning approach strategically selects useful deep features from
a discriminative dimension reduction perspective. Since pos-
sible harmful dimensions can interfere or skew the classifica-
tion, our pruning approach has a potential to help with accuracy
aside from efficiency gains. Key contributions that distinguish
our approach from previous ones include: (1) Our pruning has
a deep LDA neuron utility measure that is derived from final
task-dependent class separation. The LDA-based utility is cal-



culated, unraveled, and traced backwards from the final latent
space where the linear assumption of LDA is reasonable and
variances are more disentangled (Bengio et al., 2013). Those
two factors make our LDA-based pruning directly along neu-
ron dimensions well-grounded, which we will show in Sec. @]
through solving a generalized eigenvalue problem. In contrast,
most previous pruning approaches have hard-coded or human-
injected utility measures (e.g. magnitudes of weights, vari-
ances, activation) and reduce model complexity along a direc-
tion that is not necessarily desirable for the task. (2) Through
deep discriminant analysis, the proposed approach determines
how many filters, and of what types, are appropriate in a given
layer. By pruning deep modules, it provides a top-down strat-
egy for architecture search. This task-utility-aware deep dimen-
sion reduction is different from a wide range of popular com-
pact structures that employ k random 1 x 1 filter sets to arbi-
trarily reduce feature dimension to size k. A small k may cut
the information flow to higher layers, while a large k may lead
to redundancy, overfitting, and interference. Such arbitrariness
also exists for other filter types. (3) Through pruning large net-
works of high memorization capability, the proposed method
helps over-parameterized nets forget about task-unrelated fac-
tors and derive a feature subspace that is more invariant and
robust to irrelevant lighting, background, noises, and so on.
We also analyze the effect of our pruning on model robustness
against adversarial attacks and noises. At the time of writing,
few if any works have investigated such aspects in the exist-
ing literature on deep net pruning. (4) The approach presented
here handles a wide variety of structures such as convolutional,
fully-connected, modular, and hybrid ones and prunes a full net-
work in an end-to-end manner. While most computations usu-
ally come from conv layers, parameters easily explode when
neurons are fully connected. It is important to select discrimi-
native information in various deep structures.

In our experiments on general and domain specific datasets
(ImageNet, CIFAR100, Adience and LFWA), we show how the
proposed method leads to great complexity reductions. It brings
down the total VGG16 size by 98%-99% and that of the com-
pact InceptionNet (a.k.a. GoogLeNet) by up to 82% without
much accuracy loss (<1%). The corresponding FLOP reduc-
tion rates are as high as 83% and 62%, respectively. Addition-
ally, we are able to derive more accurate models at lower com-
plexities. Take age recognition on Adience for example, one
model is over 3% more accurate than the original net but only
about 1/3 in size. Also, we compare the method with some
of today’s successful pruned/compact nets, such as MobileNet,
SqueezeNet, Han et al.| (2015b), L1 et al.| (2016), Molchanov
et al.| (2019) and show the value of deep discriminative prun-
ing. Finally, in the above cases at least, we experimentally show
that the fewer unrelated and interfering parameters the model
has, the better it can generalize to unseen test data, and the less
likely the model will be hit by adversarial attacks and noises
(e.g. FGSM, Newton, Gaussian, Poisson, speckle).

2. Related Work

Early approaches to artificial neural networks pruning date
back to the late 1980s. Some pioneering examples include
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magnitude-based biased weight decay (Pratt, [1989), Hessian
based Optimal Brain Damage (LeCun et al. [1989) and Op-
timal Brain Surgeon (Hassibi and Stork, [1993). Since those
approaches are aimed at shallow nets, assumptions that were
made, such as a diagonal Hessian in|LeCun et al.|(1989), are not
necessarily valid for deep neural networks. Please refer toReed
(1993) for more early approaches.

In recent years, with increasing network depths comes more
complexity, which reignited research into network pruning.
Han et al.|(2015b) discard weights of small magnitudes. Small
weights are set to zero and are masked out during re-training.
Similarly, approaches that sparsify networks by setting weights
to zero include |Srinivas and Babu| (2015)); [Mariet and Sra
(2016);J1n et al.|(2016);|Guo et al.|(2016)); Hu et al.|(2016);Sze
et al.[(2017). With further compression techniques, this sparsity
is desirable for storage and transferring purposes. That said,
the actual model size and computation do not change much
without specialized hardware and software optimization such
as EIE (Han et al., [2016). [Park et al.| (2020) relate magnitude-
based pruning to minimizing a single layer’s Frobenius dis-
tortion induced by pruning. They develop lookahead prun-
ing as a multi-layer generalization of magnitude-based prun-
ing. In|Frankle and Carbin|(2019), the authors hypothesize that
within a large neural network (a bag of lottery tickets), there ex-
ists a small subnet (winning lottery ticket) that, when trained in
isolation, can achieve similar accuracy. That said, the structure
uncovered by pruning is experimentally shown to be harder to
train from scratch.

Compared to pioneering pruning approaches based on indi-
vidual weight magnitudes, filter or neuron level pruning has
its advantages. Deep networks learn to construct hierarchical
representations. Moving up the layers, high-level motifs that
are more global, abstract, and disentangled can be built from
simpler low-level patterns (Bengio et al., 2013} Zeiler and Fer-
gus| 2014)). In this process, the critical building block is the fil-
ter/neuron, which, through learning, is capable of capturing pat-
terns at a certain scale of abstraction. Higher layers are agnostic
as how the patterns are activated (w.r.t. weights, input, activa-
tion details). Single weights-based approaches run the risk of
destroying crucial patterns. For example, given uniform posi-
tive inputs, many small negative weights may jointly counter-
act large positive weights, resulting in a dormant neuron state.
Single weight pruning based on magnitude would discard all
small negative weights before reaching the large positive ones,
reversing the neuron state. Inner-filter relationship is especially
fragile at high pruning rates. Furthermore, instead of setting ze-
ros in weights matrices, filter or neuron pruning removes rows,
columns, depths in weight/convolution matrices, leading to di-
rect space and computation savings on general hardware.

Early works in neuron/filter/channel pruning include |Anwar
et al.| (2015); [Polyak and Wolf (2015); [Li et al.| (2016)); [Tian
et al.| (2017); Louizos et al.| (2017); |[Luo et al.[|(2017); [He et al.
(2017). They not only reduce the requirements of storage space
and transportation bandwidth, but also bring down the initially
large amount of computation in conv layers. Furthermore, with
fewer intermediate feature maps generated and consumed, the
number of slow and energy-intensive memory accesses is de-



creased, rendering the pruned nets more amenable to imple-
mentation on mobile devices. |[Anwar et al.| (2015)) locate prun-
ing candidates via particle filtering and introduce structured
sparsity at different scales. |Li et al.| (2016) equate filter util-
ity to absolute weights sum. [Polyak and Wolf|(2015) propose a
‘channel-level’ acceleration algorithm based on unit variances.
However, unwanted variances and noise may be preserved or
even amplified. In|Louizos et al.|(2017), the authors use hierar-
chical priors to prune nodes instead of single weights (and pos-
terior uncertainties to determine fixed point precision). He et al.
(2017) effectively prune networks through LASSO regression
based channel selection and least square reconstruction. [Luo
et al.|(2017) prune on the filter level guided by the next layer’s
statistics. In Zhuang et al.| (2018), the authors use additional
classification and reconstruction losses on intermediate layers
to help increase intermediate discriminative power and to select
channels. They aggregate weight importance (gradients w.r.t
weights) within a filter as filter importance. However, small
gradients do not necessarily indicate low utility (e.g. at conver-
gence). Similarly in Molchanov et al.| (2019), neuron impor-
tance is defined as the within-filter sum of weight importances
(Taylor expansion of squared error induced without a weight).
Although such methods prune on the filter level, there is still
an implicit weight-level i.i.d assumption. In|[Molchanov et al.
(2019), it is an interesting idea that the pruning is done after
several batches during retraining. That said, pruning impor-
tance based on only a few minibatches could be misleading and
structures ‘greedily’ pruned are unrecoverable. Lin et al.|(2019)
utilize generative adversarial learning to derive a pruning gen-
erator. During learning, they try to minimize the adversarial
loss of a two-player game between the baseline and the pruned
network, align the output of the two, and simultaneously en-
courage sparsity in the pruning soft mask. InHe et al.[(2019),
the authors point out two requirements of norm-based pruning,
i.e. large norm deviation and small minimum norm. They then
propose filter pruning via geometric median related redundancy
(of filter norms in a layer) rather than importance. Despite the
promising pruning rates achieved by previous approaches, most
of them possess one or both of the following drawbacks: (1) the
utility measure for pruning, such as magnitudes or variances of
weights or activation, is injected by human experts and is not
directly related to task-dependent class separation. (2) utilities
are often computed locally or considered on a local scale. Rela-
tionships within filter, layer, or across all layers may be missed.

In addition to pruning, there are some complementary and or-
thogonal approaches that can help constrain space and/or com-
putational complexity. One is bit reduction such as weight
quantization (Rastegari et al., 2016) and Huffman encod-
ing (Han et al., 2015a). Some boost efficiency via decomposi-
tion of filters with a low-rank assumption, such as|Denton et al.
(2014); Jaderberg et al.| (2014); Zhang et al.| (2016). Another
method is knowledge distillation (Hinton et al., [2015) where a
small ‘student” model tries to achieve similar predicting power
as a bigger ‘teacher’ model on certain tasks. A bit of trial and
error is usually involved in searching for the student net archi-
tecture. There are also some methods that utilize depth-wise
separable convolution instead of the regular one to constrain
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model complexity (Chollet, 2017; [Howard et al., 2017). Last
but not least, compact layers or modules with a random set of
1 x 1 filters are widely adopted to constrain dimensions, e.g.
Inception nets (Szegedy et al., 2015), ResNets (He et al.,|2016),
SqueezeNet (landola et al., [2016)), MobileNet (Howard et al.,
2017), and NiN (Lin et al.| [2014). However, with an inappro-
priate filter number, it runs the risk of impeding information
flow or increasing redundancy and interference. Most popular
compact architectures are designed with human heuristics on
some general datasets. Compared to fixed structures, a pruning
method paying direct attention to the task utility in question can
be flexible and can fit different task demands dynamically. This
is desirable for a wide variety of real-world applications where
adopting ImageNet suitable models have become a standard for
industry best practices. As a matter of fact, in cases with lim-
ited data and strict timing requirements (e.g. car forward col-
lision warning), a large, slow, and possibly overfitted model is
hardly of any use. For visual classification, we define task util-
ity as task dependent class separation power. In this paper, we
capture it by deep LDA and use it to guide the pruning process.
Our inspiration comes from neuroscience findings (Mountcastle
et al.,|1957;|Valiant, 2006) which show that, despite the massive
number of neurons in the cerebral cortex, each neuron typically
receives inputs from a small task-dependent set of other neu-
rons. To our best knowledge, our method is the first one that
employed LDA in deep dimension reduction. Unlike Dorfer
et al.|(2016), no expensive optimization or extra transformation
besides the network itself is needed.

3. Task-dependent Deep Fisher LDA Pruning

In this paper, we propose a neuron-level deep LDA pruning
approach that pays direct attention to final task-dependent class
separation utility and its holistic cross-layer dependency. We
treat pruning as discriminative dimensionality reduction in the
deep feature space by unravelling factors of variation and dis-
carding those of little or even harmful/interfering utility.

The approach is summarized as Algorithm[I] As a pre-step,
the base net is fully trained, with cross entropy loss, L2 regu-
larization, and Dropout that helps punish co-adaptations. The
main algorithm starts pruning by unravelling useful variances
from the decision-making layer before tracing the utility back-
wards through deconvolution across all layers to weigh the use-
fulness of each neuron or filter. By abandoning less useful neu-
rons/filters, our approach is capable of gradually deriving task-
optimal structures with potential accuracy boosts.

It is worth mentioning that the number of iterations needed
in Algorithm [T}is related to task difficulty. For simple datasets,
only one or two iterations are enough to achieve a high prun-
ing rate without much accuracy loss while more iterations are
needed for challenging tasks. We will dive into the main prun-
ing step in the following subsections, with one subsection for
each sub-step in Algorithm 1]

3.1. Task Utility Unravelling from Final Latent Space

We try to capture the task utility from the final latent space
of a well-trained base net for a number of reasons: (1) This is



Algorithm 1: Deep LDA Pruning of Neural Network
Input: base net, acceptable accuracy t,.. or model
complexity Z.om
Result: task-desirable pruned models

Pre-train: SGD optimization with cross entropy loss,
L2-regularization, and Dropout.
while accuracy > t,.. (or complexity = t.p,) do
Step 1 — Pruning
1. Task Utility Unravelling from Final Latent Space
(Section|3.1))
2. Cross-Layer Task Utility Tracing via Deconv

(Section[3.2)

3. Pruning as Utility Thresholding (Section [3.3)
Step 2 — Re-training
Similar to the pre-training step. Save model if needed.

end

the only place where task-dependent distinguishing power can
be accurately and directly measured. All previous information
feed to this layer. (2) Data in this layer are more likely to be lin-
early separable (only one decision-making FC layer left, soft-
max is just a post-decision monotonic normalization). This is a
key assumption of LDA but often overlooked by many previous
approaches. (3) Pre-decision neuron activations representing
different motifs are shown empirically to fire in a more decor-
related manner than earlier layers. We will see how this helps
shortly.

For each image, an M-dimensional firing vector can be cal-
culated in the final hidden layer, which is called a firing in-
stance (M = 4096 for VGG16, M = 1024 for Inception, pool-
ing is applied when necessary). By stacking all such instances
from a set of images, the firing data matrix X for that set is ob-
tained (useless O-variance/duplicate columns are pre-removed).
Our aim here is to abandon dimensions of X that possess low
or even negative task utility. Inspired by [Fisher (1936); Bel-
humeur et al.|(1997); Yang| (2002); Hua et al.| (2007); Bekios-
Calfa et al.| (2011)), Fisher’s LDA is adopted to quantify this
utility. Our goal of pruning is achieved by maximizing class
separation through finding an optimal transformation matrix W:

W | WIS,W | 0
opt = Arg Max —————
pr = A8 T W
where
Z.= ) %% o)
S =24 — 2, 3)
>, =XTX 4)

with X; being the set of observations obtained in the last hid-
den layer for category i, W linearly projects the data X from its
original space to a new space spanned by W columns. The tilde

sign (7) denotes a centering operation; For data X:
X=(I,—n'1,1))X 5)

where 7 is the number of observations in X, 1,, denotes an n x 1
matrix of ones. Finding W, in Equationm involves solving a
generalized eigenvalue problem:

€ = v;X,€) (6)

where (¢},v;) represents a generalized eigenpair of the matrix
pencil (%5, %,,) with €; as a W column. If we only consider ac-
tive neurons with non-duplicate pattern motifs, we find that in
the final hidden layer, most off-diagonal values in X,, and Z;, are
very small. In other words, aside from noise and meaningless
neurons, the firings of neurons representing different motifs in
the pre-decision layer are highly decorrelated (disentanglement
of latent space variances, |[Bengio et al.[(2013); |Zeiler and Fer-
gus|(2014)). It corresponds to the intuition that, unlike common
primitive features in lower layers, higher layers capture high-
level abstractions of various aspects (e.g. car wheel, dog nose,
flower petals). The chances of them firing simultaneously are
relatively low. In fact, different filter ‘motifs’ tend to be pro-
gressively more global and decorrelated when navigating from
low to high layers. The decorrelation trend is caused by the fact
that coincidences or agreements in high dimensions can hardly
happen by chance. Thus, we assume that X,, and X, tend to be
diagonal in the top layer. Since inactive neurons are not consid-
ered here, Eq. [6|becomes:

Ew s = v (7)

According to Eq. W columns (€}, where j = 0,1,2..., M’ —1,
M’ < M) are the eigenvectors of Tw™'Z, (diagonal), thus they
are standard basis vectors (i.e. W columns and M’ of the orig-
inal neuron dimensions are aligned). v;s are the corresponding
eigenvalues with:

: 4 o3 ()

v; = diag(Zw™ L), 220

®)

where o2 (j) and o7 (j) are within-class and between-class vari-

ances along the jth neuron dimension. In other words, the op-
timal W columns that maximize the class separation (Eq. [I)
are aligned with (M’, a subset of) the original neuron dimen-
sions. It turns out that when pruning, we can directly discard
neuron js with small v; (little contribution to Eq. E[) without
much information loss. Thresholding strategies, such as the
Otsu method |Otsu| (1979), can be used to select M’ most dis-
criminative neuron dimensions. In this paper, we choose the
hyperparameter M’ via sensitivity analysis on validation data.
We will keep the minimum number of top neuron dimensions
that can maintain comparable accuracies based on freezed top
latent space features. Section [4.4] demonstrates this procedure
by examples.

3.2. Cross-Layer Task Utility Tracing

After unravelling twisted threads of deep variances and se-
lecting dimensions of high task utility, the next step is to trace
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Fig. 1: Demo of neuron or filter level LDA-Deconv utility tracing. Useful (cyan) neuron outputs/features that contribute to final deep LDA utility through corre-
sponding (green) next layer weights/filters, only depend on previous layers’ (cyan) counterparts via deconv. White denotes useless components. W is defined in
EquationE} The bubble cloud explains how deconv can be applied to FC layers. Each FC neuron is a stack of 1 x 1 filters with one 1 x 1 output feature map.

the class separation utility across all previous layers to guide
pruning. Unlike local approaches, our pruning unit is concerned
with a filter’s/neuron’s contribution to final class separation.

In signal processing, deconvolution (deconv) is used to re-
verse/undo an unknown filter’s effect and recover corrupted
sources (Haykin, [1994). Inspired by this, to recover each neu-
ron/filter’s utility, we trace the final discriminability, from the
easily unravelled end, backwards across all layers via deconvo-
Iution. In the final layer, only the most discriminative dimen-
sions’ response is preserved (other dimensions are set to 0) be-
fore deconv starts. In the ConvNet context, unlike convolution
that involves sliding and dot products, deconvolution performs
sliding and superimposing. There are many algorithms to com-
pute or learn deconvolution. It is worth mentioning that ‘decon-
volution’ can be a confusing term today. Many deep learning
frameworks define ‘deconvolution’ as an up-scaling layer. It is
a procedure where the weights are tuned for a particular pur-
pose (e.g. segmentation). Unlike such frameworks, here we
employee the ‘deconvolution’ method as in (Zeiler and Fergus),
2014) and use the same terminology. One difference is that
Zeiler and Fergus (Zeiler and Fergus|,2014)) use ‘deconvolution’
for visualization purposes in the image space while we focus on
reconstructing contributing sources over the layers. Also, our
method only back-propagates useful final variations. Irrelevant
and interfering features of various kinds are ‘filtered out’. As
an inverse process of convolution, the unit deconv procedure
is composed of unpooling (using max location switches), non-
linear rectification, and reversed convolution (using a transpose
of the convolution Toeplitz-like matrix under an orthogonal as-
sumption):

U =Fz 9)

Over the layers (ignoring nonlinearity and unpooling),
Zioy=U; (10)

where i indicates a layer, U; and Z; are layer i input and out-
put features with components not contributing to final utility re-
moved. The I/th columns of U; and Z; are respectively converted

from layer i reconstructed useful inputs and outputs w.r.t. input
image /. Intuitively, Equation [9] means performing convolution
with the same filters transposed. On the channel level:

N

Uic = % 2 Z Gt * fije (a

I=1j=1

where ‘x*” means convolution, ¢ indicates a channel, N is the
number of training images, J is the feature map number, f* is
a deconv filter that is determined after pre-training. Based on
Equation[T1] we define deep LDA utility of layer i’s cth channel
(or its producing filter in layer i — 1) as:

Ujc = I’Iz:?]l(X(Ui’C(h, k)) (12)

where the maximum is taken over all spatial locations (, k).
It means that as long as the corresponding filter spots some-
thing that finally contributes to classification separation, it is
deserved to be kept no matter where the high utility occurs. Our
calculated dependency here is data-driven and is pooled over
the training set, which models the established phenomenon in
neuroscience which stipulates that multiple exposures are able
to strengthen relevant connections (synapses) in the brain, i.e.
the Hebbian theory (Hebb, [2005). It is worth mentioning that
recovering or reconstructing the contributing sources to final
class separation is not the same as computing a certain order
parameter/filter dependency. Take 1st order gradient for exam-
ple. Most parameters have 0 or small gradients at convergence,
but it does not necessarily mean that these parameters are use-
less. Also, gradient dependency is usually calculated locally
in a greedy manner. Structures pruned away based on a local
dependency measure can never recover.

Fig. [T provides a high level view of cross-layer task utility
tracing. To extend the deconv idea to FC layers, we consider
FC layers as special conv structures where a layer’s input and
weights are considered as stacks of 1 x 1 conv feature maps and
filters (completely overlapped as shown in the bubble cloud in
Fig.[I). One difference is that FC structures do not have pooling



layers in-between and no unpooling max switches are needed.
Therefore, in a similar manner to normal conv layers, task util-
ity can be successfully passed backwards across fully connected
structures via deconv. For modular structures, the idea is the
same except that we need to trace dependencies, i.e. apply de-
convolution, for different scales in a group-wise manner. Our
full net pruning, (re)training, and testing are done end-to-end
and are thus supported by most deep learning frameworks.

With all neurons’/filters’ utility for final discriminability
known, pruning simply becomes discarding structures that are
less useful to final classification (e.g. structures colored white
in Fig[I). Since feature maps (neuron outputs) correspond to
next-layer filter depths (neuron weights), our pruning leads to
filter-wise and channel-wise savings simultaneously. In mathe-
matical terms, input of conv layer i can be defined as one data
block Bgua,; of size d; X m; X n; meaning that the input is com-
posed of d; feature maps of size m; x n; (from layer i — 1). Pa-
rameters of conv layer i can be considered as two blocks: the
conv parameter block By, of size f; X ¢; X w; X h; and the
bias block By, of size f; X 1, where f; is the 3D filter num-
ber of layer i, ¢; is the filter depth, w; and h; are the width and
height of a 2D filter piece in that layer. It is worth noting that
fl'fl =d; =c. Bcanv,i("’» 0, ~, ~) operates on Bdata,i<0’ ~ N)’
which is calculated using B.ony.i—1(0, ~, ~, ~) (0 is an ordinal
number, ‘~’ indicates all values along a dimension). When we
prune away B om.i—1(0, ~,~,~), we effectively abandon the
other two. In other words, By, is pruned along the first and
second dimensions simultaneously over the layers.

3.3. Threshold Selection for Pruning

When pruning, layer i — 1 neurons with a LDA-deconv util-
ity score (u; in Eq.[I2) smaller than a threshold are deleted. In
an over-parameterized model, the number of ‘random’, noisy,
and irrelevant structures/sources explodes exponentially with
depth. In contrast, well-trained cross-layer dependencies of fi-
nal class separation are sparse. Unlike noise or random pat-
terns, to construct a ‘meaningful’ motif, we need to follow
a specific path(s). It is this cross-layer sparsity of usefulness
(task-difficulty-related) that greatly contributes to pruning, not
just the top layer. To quickly get rid of massive less informa-
tive neurons while being cautious in high utility regions (at high
percentiles), we set the threshold for layer i as:

(- Y
t=n Pl-flj;(x’ X)) (13)
where X; is the average utility of layer i activations, x; is the
utility score of the jth activation, and P; is the total number of
layer i activations (space aware, those with O utility are ignored
in Eq. [T3). The assumption here is that the utility scores in a
certain layer follow a Gaussian-like distribution. The pruning
time hyper-parameter 7 is constant over all layers and is directly
related to the pruning rate. We could set it either to squeeze
the net as much as possible without obvious accuracy loss or
to find the ‘most accurate’ model, or to any possible pruning
rates according to the resources available and accuracies ex-
pected. In other words, rather than a fixed compact model
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like SqueezeNet or MobileNet, we offer the flexibility to cre-
ate models customized to different needs. In our experiments,
n is linearly increased, say 0.1, 0.2, .... Human intervention is
needed anytime Equation [T3]leads to too much or too little pa-
rameter reduction due to the imperfection of the Gaussian-like
assumption. Network capacity decreases with reduced filters
and parameters. Generic fixed compact nets follow an ad-hoc
direction by using random numbers and types of filters while
our pruning selects filter dimensions according to current task
demands and generates pruned models that are more invariant
to task-unrelated factors. After pruning at each iteration, re-
training with surviving parameters is needed.

4. Experiments and Results

In this paper, we use both conventional and module-based
deep nets, e.g. VGG16 (Simonyan and Zisserman, [2015) and
compact Inception net a.k.a GoogLeNet (Szegedy et all,[2013),
to illustrate our deep LDA pruning method. Two general ob-
ject datasets, i.e. ImageNet ILSVRCI12 (Russakovsky et al.|
and CIFAR100 (Krizhevsky and Hinton| [2009), as well
as two domain specific datasets, i.e. Adience (Eidinger et al.|
[2014) and LFWA [2013) of facial traits, are chosen.
Some most frequently explored attributes, such as age, gender,
smile/no smile are selected from the latter two. Non-ImageNet
base models are pretrained on ILSVRC12 and are then fine-
tuned on the new dataset. The suggested splits in
and Hinton| (2009); Levi and Hassner (2015); [Liu et al (2015)
are adopted. In addition, for CIFAR100, we use the last 20%
original training images in each of the 100 categories for vali-
dation purposes. For Adience, we use the first three folds for
training, the 4th and 5Sth folds for validation and testing. For the
LFWA dataset, we select identities with last name starting from
‘R’ to “Z’ for validation purposes. All images are pre-resized
to the expected dimensions of the base net. Figure 2] 3] and {4
are some examples from the CIFAR100, LFWA, and Adience
datasets. Please refer to http://www.image—-net.org/
for example ImageNet images.

Fig. 2: Images from the CIFAR100 dataset representing different classes.


http://www.image-net.org/

AR

Fig. 3: Images from the LFWA dataset (male/female, smiling/non-smiling ex-
amples).

Fig. 4: Images from the Adience Dataset representing different age groups.

4.1. Accuracy v.s. Pruning Rates

This section demonstrates the relationship of accuracy
change v.s. parameters pruned on the selected datasets. For
comparison with our method, we include in the figures some
other pruning approaches as well as modern compact structures,

i.e. SqueezeNet (Tandola et al.l 2016) and MobileNet

2017). We add the absolute base accuracy number to
each figure just for reference. Many non-architecture factors

can influence the absolute numbers (e.g. data augmentation,
pre-processing, and optimization techniques). Our goal here is
not the numbers themselves but rather their change due to prun-
ing.
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5] 5
S 5 H
o [} X
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5 5
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< Lietal. 3 < Li etal. §
g0 || 7 Han etal. 8% | | —%—Han etal |
B%T1 % MobileNet % MobileNet
* SqueezeNet -10% * SqueezeNet l
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Pruning Rate (Percentage of Parameters Pruned Away) Pruning Rate (Percentage of Parameters Pruned Away)

(a) Gender, VGG16 base acc: 91.7% (b) Smile, VGG16 base acc: 91.2%

Fig. 5: Accuracy change vs. parameters savings of our method (blue),

(2015b) (red), and (2016)) (orange) on LFWA validation data.
For comparison, the performance of SqueezeNet (Tandola et all 2016) and Mo-
bileNet (Howard et al} 2017) have been added. The ‘parameter pruning rate’

for them implies the relative size w.r.t the original unpruned VGG16. In our im-

plementation of (2016)), we adopt the same pruning rate as our method
in each layer, rather than determine them empirically like the original paper
does.

In LFWA, we choose gender and smile as example facial at-
tributes since they are widely investigated and more interest-
ing compared to others like color, shape, size of hair, nose, lip,
beard, or the presence of glasses or jewellery. One of the most
popular conventional ConvNets VGG16 is adopted to test our
approach’s efficacy on the validation data (Fig.[3). According
to Fig. |5} even with large pruning rates (98-99%), our approach
still maintains comparable accuracies to the original models
(loss <1%). The other two methods and
suffer from earlier performance degradation, pri-
marily due to their less accurate utility measures, i.e. single
weights for [Han et al | and sum of filter weights for [Li
(2016). Additionally, for [Han et al.| (2015b), inner fil-

ter relationships are vulnerable to pruning especially when the
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pruning rate is large. This also explains why (2016)
performs slightly better than|[Han et al.| (2015b) at large pruning

rates.

Moreover, higher accuracy is possible with less complexity.
In the smile case for example, a 5x times smaller model can
achieve 1.5% more accuracy than the unpruned VGG16 net.
Compared to the fixed compact nets, i.e. SqueezeNet and Mo-
bileNet, our pruning approach generally enjoys better perfor-
mance at similar complexities. Even in the only pruning time
exception in Fig. [5al where Squeezenet has a slightly better ac-
curacy than our pruned model of a similar size, much higher
accuracies can be gained by simply adding back a few more
parameters to our pruned net.

Also, we compare our approach with|Tian et al.| (2017) which
applies linear discriminant analysis on intermediate conv fea-
tures. The comparison (Fig. [6) is in terms of accuracy vs.
saved computation (FLOP) on the LFWA data. As in
(2015D), both multiplication and addition account for 1 FLOP.
According to Fig. [6] our method enjoys as high as 6% more
accuracy than|Tian et al | at large pruning rates. The rea-
sons are that our LDA pruning measure is computed where it
directly captures final task classification power, the linear as-
sumption is more easily met and the variances are more dis-
entangled (so that direct neuron abandonment is justified, Sec-

tion [31).

2%

o FLOPs  Param#  Acc Chg
0% 16B 49M +0.4%
&,z"f 11B 19M -0.2%
Eon 9.5B 13M -0.7%
g 8.2B 8.6M +0.5%
gon 7.5B 6.9M 0.1%
7% I=6=Our task utility based LDA pruning 74B 6.5M -0.7%
8% Tl ——Intermediate features LDA Pruning 72B 6 IM —0.9%
s o campeans erory et < __92B 3.IM -1.0%

o FLOPs  Param#  Acc Chg
B 13B 18M +1.3%
Lo 12B 13M  +0.8%
5w 10B 9.6M  +0.4%
2o 8.3B sM 0.1%
i., 69B  2IM  +02%
-4% {—6—Our task utility based LDA pruning 6.0B 2.5M -0.5%
——Intermediate features LDA Pruning ‘ SSB 1 SM -0.5%
i mw wn mw ww mw wn 54B 1.7M 1.5%

Percentage of Computations (FLOPs) Saved

Fig. 6: Accuracy change vs. FLOP savings of the method proposed in this
paper (blue) and (2017) (red). Note: FLOPs are shared by both

methods, Param# and Acc Change are of the method in this paper. The top and
bottom results are reported on LFWA gender and smile traits, respectively. Low
pruning rates are skipped where the performance gap is small. The tables only
show a few critical points in the corresponding curves on the left. Base model
accuracies are the same as in Fig.El

To assess the generalization ability on unseen data, we report
in Table[T]the testing set performance of two of our pruned mod-
els for each task: one achieves the highest validation accuracy
(‘accuracy first’ or AF model) and the other is the lightest model
that maintains <1% validation accuracy loss (‘parameter first’
or PF model). The competing structures are also included. We
try to make competing pruned models of similar complexities
(last row). From Table[]] it is evident that our approach gener-
alizes well to unseen data (highest accuracies over most cases).



Table 1: Testing accuracies on LFWA. ‘AF’: accuracy first model, ‘PF’: param# first model. In the last row, Param# and FLOPs
are of our pruned models’. Our pruned models’ Param#s are shared by (Li et al.| 2016} |Han et al., 2015b) and our pruned models’
FLOPs are shared by (Li et al.||2016).Han et al.[{(2015b) has the same FLOPs as the base. The base’s name and its testing accuracy
are in Row 1 parentheses. Original param# and FLOPs for VGG16, MobileNet, and SqueezeNet are about 138M, 4.3M, 1.3M and
31B, 1.1B, 1.7B, respectively. M=10°, B=10°. Test set data are used here.

LFWA Gender (VGG, 91%) | LFWA Smile (VGG, 91%)
Methods & Acc AT ‘ PE AT ‘ PE
MobileNet (Howard et al.[[2017) 89% 87%
SqueezeNet (Iandola et al. 2016) 90% 88%
Han et al. (Han et al.| 2015b) 89% 83% 91% 81%
Li et al. (Li et al.|[2016) 88% 85% 91% 83%
Our approach 93% 92% 93% 90%
(Param#,FLOP) (6.5M,7.4B) | (3.1M,5.2B) | (18M,13B) | (1.8M,5.5B)

Apart from the overfitting-alleviating effect, one reason is that
the proposed deep LDA pruning helps the over-parameterized
model forget about task-irrelevant details and thus boosts its in-
variance to task-unrelated factors and changes in the unseen test
data. The superiority is more obvious in the ‘parameter first’
case. This agrees with previous validation results.

4.1.2. Adience

4%

2%
[
2 0%
©
5
2%
o)
g
5
g 4% [ | —6—Our Approach *|
< Li etal. J

-6 % r |—*—Han etal.

Y% MobileNet
-8 % % SqueezeNet
0 20 % 40 % 60 % 80 %

Pruning Rate (Percentage of Parameters Pruned Away)

Adience Age, Inception base accuracy: 48.9%

Fig. 7: Accuracy change vs. parameters savings of our method (blue), [Han
et al.|(2015b) (red), and|Li et al.|(2016) (orange) on the Adience Age validation
data. For comparison, the performance of SqueezeNet (Iandola et al.| |2016)
and MobileNet (Howard et al.,|2017) have been added. The ‘parameter pruning
rate’ for them implies the relative size w.r.t the original unpruned Inception net.
In our implementation of L1 et al.[{(2016), we adopt the same pruning rate as our
method in each layer, rather than determine them empirically like the original
paper does.

In addition to the above-mentioned binary facial attributes,
in this section, we show the accuracy vs pruning rate result on
the multi-category age attribute from Adience. Inception net
is employed as the base model. We choose the Inception net
over ResNets because the latter has human-injected dimension
alignment. The skip/residual dimension has to agree with the
main trunk dimension for summation. However, after pruning
according to any importance measure (including ours), they do
not necessarily agree without human intervention. Another rea-
son is that, compared to residual models, inception nets offer
us a wide range of filter types. By strategically selecting both
the numbers and types of filters on different abstraction levels,
we can derive task-desirable structures. Figure[/|shows the ac-
curacy change vs pruning rate results of all competing methods

on the validation split. As we can see, comparable accuracy can
be maintained even after throwing away over 80% of the orig-
inal Inception net parameters. During the pruning process, the
proposed method obtains more accurate but lighter structures
than the original net. For instance, a model of 1/3 the origi-
nal size is 3.8% more accurate than the original Inception net.
The gaps between our pruned models and fixed compact nets,
i.e. MobileNet and SqueezeNet, are large because deep feature
space dimension reduction with the goal to maximize final class
separation is superior to reducing dimension using an arbitrary
number of 1 x 1 filters. This supports the claim that pruning,
or feature selection, should be task dependent. Also, the gaps
between our pruned and fixed nets are wider compared to the
VGG16 cases (Fig. [5) for the reason that the method presented
in this paper can take advantage of the filter variety in an incep-
tion module by strategically selecting both filter types and filter
numbers according to task demands (more details in Sec. [4.2)).
The testing set performance is reported in Table 2] The trends
are similar as on the validation data.

Table 2: Testing accuracies on Adience Age. ‘AF’: accuracy first model, ‘PF’:
param# first model. In the last row, Param# and FLOPs are of our pruned models’.
Our pruned models’ Param#s are shared by (L1 et al.l 2016} Han et al.| |2015b)
and our pruned models’ FLOPs are shared by (L1 et al.}|2016).|{Han et al.|(2015b)
has the same FLOPs as the base. The base’s name and its testing accuracy are
in Row 1 parentheses. Original param# and FLOPs for InceptionNet, MobileNet,
and SqueezeNet are about 6.0M, 4.3M, 1.3M and 3.2B, 1.1B, 1.7B, respectively.
M=10°, B=10. Test set data are used here.

Adience Age (Inception, 55%)
Methods & Acc AF ‘ PE
MobileNet (Howard et al.|[2017) 49%
SqueezeNet (landola et al.|[2016) 50%
Han et al.|(2015b) 56% 43%
Liet al.|(2016) 56% 46%
Our approach 58% 54%
(Param#,FLOP) (23M,1.8B) | (1.IM,1.1B)

4.1.3. CIFARIO0

The accuracy change against pruning rate on CIFARI100 is
shown in Fig. [§] Top-1 accuracy is reported. Inception net is
used as base. As we can see, less than half of the total pa-
rameters (pruning rate 57%) are able to maintain comparable
accuracy and using about 80% of the parameters leads to an
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Fig. 8: Accuracy change vs. parameters savings of our method (blue), [Han
et al. (2015b) (red), and |Li et al.|(2016) (orange) on CIFAR100 validation data.
For comparison, the performance of SqueezeNet (landola et al.,|2016) and Mo-
bileNet (Howard et al., 2017) have been added. The ‘parameter pruning rate’
for them implies the relative size w.r.t the original unpruned Inception net. In
our implementation of |Li et al.|(2016), we adopt the same pruning rate as our
method in each layer, rather than determine them empirically like the original
paper does. Top-1 accuracy used.

accuracy that is nearly 2% higher than the original. Addition-
ally, although MobileNet and SqueezeNet perform similarly on
Adience and LFWA, MobileNet performs clearly better on CI-
FAR100 mainly due to its suitable capacity in this particular
case. This also indicates the superiority of providing a range
of task-dependent models over fixed general ones. The for-
mer can help find the boundary between over-fitting and over-
compression flexibly given a certain task. Table |3 shows the
results on the test set.

Table 3: Testing accuracies on CIFAR100. ‘AF’: accuracy first model, ‘PF’:
param# first model. In the last row, Param# and FLOPs are of our pruned mod-
els’. Our pruned models’ Param#s are shared by (Li et al.| |2016; |Han et al.|
2015b) and our pruned models’ FLOPs are shared by (Li et al.| [2016). [Han
et al.[(2015b) has the same FLOPs as the base. The base’s name and its testing
accuracy are in Row 1 parentheses. Original param# and FLOPs for Inception-
Net, MobileNet, and SqueezeNet are about 6.1M, 4.3M, 1.3M and 3.2B, 1.1B,
1.7B, respectively. M=10°, B=10°. Test set data are used here.

CIFAR100 (Inception, 78%)
Methods & Acc AT ‘ PE
MobileNet (Howard et al.[2017) 76%
SqueezeNet (Iandola et al.[[2016) 71%
Han et al.|[(2015b) 78% 73%
Lietal.|(2016) 78% 74%
Our approach 80% 77%
(Param#,FLOP) (4.8M,2.9B) | (2.6M,2.1B)

4.1.4. ImageNet

For ImageNet, all images are resized to 256x256. During
training, the images are randomly cropped to 224x224 and ran-
domly mirrored about the vertical axis. Following the prac-
tice of most previous pruning works on ImageNet, we report
accuracy change directly on the validation set (center crop is
used). Here, we use a variant of Inception net that replaces
5x5 conv layers with two 3x3 conv layers. The first 3x3
layer has the same filter number as its preceding 1x1 conv
layer and the second 3 x3 layer has the same number of filters
as the original 5x5 conv layer. This is the only architectural
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change we made. Later inception modules have more layers as
well as some ad-hoc changes, such as larger input resolution
(e.g. 299 x299), different filter distribution within modules and
across layers, different configuration of stem layers. We chose
not to incorporate those changes, in order to include as little
human expert knowledge and handcrafting as possible. The ob-
jective would be to replace this type of architecture tweaking,
many of which are not transferable to other tasks, with pruning.
Strictly speaking, the input to Inception V3 and V4 is not the
same as the input of the competing fixed nets (e.g. MobileNet
and SqueezeNet) since the 299 x 299 input contains more fine-
grained information than the 224 x 224 input.

In this experiment on ImageNet, we compare our pruning
with (Molchanov et al., 2019) whose neuron importance mea-
sure is experimentally shown to be better than (Han et al.,
2015b; L1 et al., [2016). We implement the FO Taylor measure
of (Molchanov et al.,[2019) in Tensorflow as we do for the other
methods and models (the original PyTorch implementation does
not work beyond a certain pruning rate). We train the net to be
pruned for one extra epoch, accumulate the importance scores
over all training images, and prune after the end of the epoch.
Results of random neuron/filter selection, SqueezeNet (Iandola
et al.| 2016)) and MobileNet (Howard et al., [2017) are also re-
ported. For the pruning methods, the same number of filters are
selected by their corresponding neuron importance measure in
a layer. Figure 0] demonstrates the results.
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ImageNet, base model accuracy: 68.9%

Fig. 9: Accuracy change vs. parameters savings of our method (blue), FO
Taylor Molchanov et al|(2019) (red), and random filter pruning (orange) on
ImageNet. For comparison, the performance of SqueezeNet (landola et al.|
2016) and MobileNet (Howard et al.l 2017) have been added. The ‘parameter
pruning rate’ for them implies the relative size w.r.t the unpruned variant of
Inception net (about 6.7M params). In our implementation of [Molchanov et al.
(2019) and random filter pruning, we adopt the same pruning rate as our method
in each layer.

As we can see from Fig.[9] our pruning enjoys a high pruning
rate even on the large ImageNet dataset and beats other compet-
ing approaches. A model with only 2.96M parameters (pruning
rate 55.8%) and 2.0 FLOPs is capable of maintaining accuracy
comparable to the original. When the pruning rate is small,
even the random filter selection can lead to satisfactory results.
Generally speaking, the gap between our pruning method and
the fixed nets (SqueezeNet and MobileNet) are small on Ima-
geNet compared to the other datasets perhaps because the com-
pact fixed nets are originally designed on ImageNet. It is worth
mentioning that we have also tested some tiny ResNets. All the



resnets with fewer modules than ResNet10 (4 residual stages,
each is a depth-2 conv block) have below-SqueezeNet accuracy,
thus they are not reported in Fig. 9]

4.2. Layerwise Complexity Analysis

Now we know that the proposed deep LDA pruning can find
high performance deep models while being mindful of the re-
sources available. In this section, we provide a more detailed
layer-by-layer complexity analysis of our pruned nets in terms
of parameters and computation. We consider fully-connected
(dense) and conv layers. Fig. demonstrate
layer-wise complexity reductions for the LFWA, Adience, CI-
FAR100, ImageNet cases respectively. The net we select for
each case is the smallest one that preserves comparable accu-
racy to the original net.

Fig. [10]and [TT] show the LFWA cases with VGG16 as bases.
Since the last conv layer output still has so many ‘pixels’ that,
when fully connected with the first FC layer’s neurons, it gen-
erates a large number of parameters. With weight sharing, the
number of conv layer parameters is limited. As a result, we add
a separate parameter analysis for the conv layers. According
to the results, our approach leads to significant parameter and
FLOP reductions over the layers for the VGG16 cases. Specif-
ically, the method effectively prunes away almost all the domi-
nating FC parameters.

The base structure is the original InceptionNet for the Adi-
ence and CIFAR100 datasets and a slightly modified Inception
net for ImageNet. As Fig.[12] [I3] [T4] show, a large proportion
of parameters are pruned away. In each Inception module, dif-
ferent kinds of filters are pruned differently. This is determined
by the scale where more task utility lies. By following a task-
desirable direction, the method presented here attempts to max-
imize or maintain as much class separation power as possible
when pruning. By choosing both the kinds of filters and the fil-
ter number for each kind, the approach also provides a feasible
way to compact deep architecture design.

In the pruned models, most parameters in the middle layers
have been discarded. In fact, the proposed method can collapse
such layers to reduce network depth. In our experiments, when
pruning reaches a threshold, all filters left in some middle mod-
ules are of size 1 x 1. They can be viewed as simple feature
map selectors (by weight assignment) and thus can be com-
bined and merged into the previous module’s concatenation to
form weighted summation. Such ‘skipping’ modules pass fea-
ture representations to higher layers without incrementing the
features’ abstraction level. InceptionNet is chosen as an exam-
ple because it offers more filter type choices without human-
injected constraints on dimension alignment. However, the pro-
posed approach can be used to prune other modular structures
as well, such as ResNets where the final summation in a unit
module can be modeled as a concatenation followed by convo-
lution.

In all layerwise-complexity figures above, the first few lay-
ers are not pruned very much. This is because earlier layers
correspond to primitive patterns (e.g. edges, corners, and color
blobs) that are commonly useful. In addition, early layers help
sift out and provide some robustness to massive noisy statis-
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tics in the pixel space. Despite its data dependency, the pro-
posed approach does not depend much on training ‘pixels’, but
pays more attention to deep abstract manifolds learned and gen-
eralized from training instances. Overall, the pruned models
are very light. On a machine with 32-bit parameters the mod-
els are respectively 11.9MiB, 6.7MiB, 4.1MiB, 10MiB, and
11.3MiB. During inference, they can fit into computer and cell-
phone memories or possibly even caches (with super-linear ef-
ficiency boosts). In our experiments on a single Intel Xeon-E5
CPU core, one forward pass of the original model for each case
takes 2.72s, 2.72s, 0.37s, 0.39s, and 0.29s, respectively. After
the pruning, these numbers become 0.42s, 0.40s, 0.14s, 0.24s,
0.16s. Please note that the numbers are highly dependent on
hardware specifics and are just for reference here.

4.3. Model Robustness against Noises and Adversarial Attacks

From the above sections, we can see that our pruning leads
to great complexity reductions with a possibility of increasing
prediction accuracy. In addition to efficiency boost and possible
accuracy gain, in this section, we will investigate our pruning’s
effects on the model’s robustness to input perturbations.

One fair way to compare between the original and pruned
models is to attack/modify the input data in the same way for
both models and see how they react to the perturbation. To
this end, we first apply Gaussian, Poisson, speckle noises and
two adversarial attacks, i.e. FGSM (Goodfellow et al., |2014)
and Newton Fool Attack (Jang et al.,[2017), to the LFWA, Adi-
ence, CIFAR100 testing data and compare how the original and
pruned models perform in terms of accuracy drops. Here, ac-
curacy drop means accuracy difference between predicting on
clean testing data and on noisy or attacked testing data using a
model. In our experiment, the pruned model selected in each
case has similar accuracy to the unpruned one on the clean test
set. In the adversarial attack cases, the examples are gener-
ated from a third ResNet50 model (source model) and are trans-
ferred here as blackbox attacks to fool our models in compari-
son (target models). It is worth mentioning that we did not use
any residual base structures for our pruning experiments. In
practice, not all attackers have the chance to make a large num-
ber of queries to the model being attacked or have access to the
model details (e.g. gradients). So robustness analysis against
transfer-based attacks is meaningful. As mentioned in [Bhagoji
et al.| (2018); [Huang and Zhang (2020), such transfer-based
blackbox attacks are very common in the literature. Examples
include (Szegedy et al., 2014} (Goodfellow et al., 2015; [Paper-
not et al., 2016alb; |Liu et al., 2016; |Carlini and Wagner, 2017;
Moosavi-Dezfooli et al.L[2017;Tramer et al., 2017; Madry et al.,
2018 |Dong et al.| 2018, [2019). The accuracy drop results of
the original and pruned models due to the input perturbations
are reported in Table 4] and [5] for Inception and VGG16 cases
respectively.

As can be seen from the results, the pruned models are more,
or at least equally, robust to the noises than corresponding orig-
inal unpruned models. One possible reason is that with fewer
task-unrelated random filters, the pruned models are less likely
to pick up irrelevant noises and are thus less vulnerable. Also,
as mentioned earlier, reducing parameters per se alleviates over-
fitting and thus brings down variance to data fluctuations. The
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Fig. 14: Layerwise complexity reductions of the variant of Inception net on ImageNet. From left to right, the conv layers in a Inception module are (1 x 1), (1 x 1,
3 x3),(1 x 1,3 x 3a,3 x 3b), (1 x 1 after pooling). Green: pruned, blue: remaining.

deep nets are more prone to Gaussian and speckle noises than
to Poisson noises. Furthermore, we can see that our pruning
method can help with model robustness to transfer-based ad-
versarial attacks in many cases that we have investigated. This
is because fewer irrelevant deep feature dimensions can pos-
sibly mean fewer breaches where the adversarial attacks can
easily put near-boundary samples to the other side of the de-
cision boundary. That said, the pruning’s effect on robustness
is less obvious in the simple FGSM cases as compared to the
Newton Fool Attack cases. Overall, both the task and the net
architecture have an influence on robustness. VGG16 and its
pruned models are less susceptible to the attacks than Inception
nets at least in the above cases, perhaps because the adversarial
examples are generated from ResNet50 and are therefore more
destructive to modular structures.

Table 4: Robustness tests against noises and adversarial attacks on original and

pruned Inception nets

. . CIFAR100 Adience
Noise & Acc Dif Original Pruned Original Pruned
Gaussian -2.5% -2.0% -0.5% -0.1%
Poisson -0.1% 0.0% -0.3% 0.0%
Speckle -3.7% -3.1% -1.5% -1.0%
FGSM Attack -8.1% -7.4% -0.4% -0.4%
Newton Attack -6.1% -3.9% -4.5% -1.7%

Note: for Gaussian noise, stddev = 5. Speckle noise strength is 0.05. FGSM
Attack: Fast Gradient Signed Method (Goodfellow et al.|[2014). Newton
Attack: Newton Fool Attack (Jang et al.||2017). For fair comparison,
adversarial examples are generated against a third ResNet50 model trained
with the same data.

Apart from the quantitative results, Fig. [[3] illustrates some
examples where the adversarial attack fooled the original un-
pruned net but not our pruned one, while Fig. [I6] shows some
opposite scenarios where our pruned model failed but not the
unpruned original model. The first kind of scenarios are more
common across all four tasks. The examples here are randomly
selected. From the results, we can see that a small perturbation
in the pixel space could make a model believe in something
different. Compared to the failed cases of the pruned models

Table 5: Robustness tests against noises and adversarial attacks on original and
pruned VGG16 nets

. . LFWA-G LFWA-S
Noise & Acc Dif Original Pruned Original Pruned
Gaussian -5.2% -4.2% -1.4% -1.2%
Poisson 0.0% 0.0% 0.0% 0.0%
Speckle -0.5% -0.2% -0.2% 0.0%
FGSM Attack 0.0% 0.0% -0.1% 0.0%
Newton Attack -0.2% -0.1% -3.1% -2.5%

Note: for Gaussian noise, stddev = 5. Speckle noise strength is 0.05. FGSM
Attack: Fast Gradient Signed Method (Goodfellow et al.| [2014). Newton
Attack: Newton Fool Attack (Jang et al.||2017). For fair comparison,
adversarial examples are generated against a third ResNet50 model trained
with the same data.

in Fig. [T6] the fooled unpruned models in Fig. [T3] were usu-
ally very confident about their wrong predictions. The scenar-
ios where our pruned models failed are usually ones where the
pruned model was not very certain compared to the unpruned
model even on the clean test data (some representative exam-
ples in our experiments are girl vs woman, house vs castle, oak
tree vs forest). Also, the nudges causing the pruned models to
fail are usually more intuitive than those failed the unpruned
models in Fig.[I3] For example, while it is not directly under-
standable how the attacks reverted the original model’s predic-
tions about smile/no smile (the two bottom left cases in Fig.[T5),
we can see that the attack in the middle of the bottom row in
Fig. [I6] attempted to literally lift up the mouth corner into a
smile (best viewed when zoomed in). Such robustness is criti-
cal. It would be disastrous if a self-driving car is easily fooled
by ‘random noises’ to believe a red light to be green. Both of
the above observations are related to the fact that large network
models remember more details than the pruned ones, thus can
be more confident in prediction (either correct or wrong), but
sensitive to intricate data fluctuation. On the other hand, to fool
a compact model pruned according to task utility, the attack
has to focus on remaining task-desirable dimensions since not
many irrelevant, usually easily-fooled, loophole dimensions are
available.
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Fig. 15: Example adversarial attacks that have successfully fooled the original unpruned net, but not our pruned one.
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Fig. 16: Example adversarial attacks that have successfully fooled our pruned net, but not the original unpruned one.

In addition to transfer-based blackbox attacking, we have
also investigated two decision-based blackbox attacks to test
the unpruned and pruned models’ robustness for the ImageNet
case. Since no labelled ImageNet test set is publicly avail-
able, the experiments are carried out on the validation set.
The two decision-based attacks are SpatialAttack (Engstrom
and ContrastReductionAttack (Rauber et al.|[2017).
Compared to transfer-based attacks, decision-based attacks are
usually more successful given that the number of queries to the
model being attacked is large enough. Table [f] demonstrates
the success rates of the two attacks on our original and pruned
models. Here, attack success rate is defined as the percentage
of samples that are misclassified due to the attack. Samples that
were misclassified before the attack do not count.

As we can see from Table [f] the SpatialAttack achieves a
higher success rate on the original model than on the pruned
one. The ContrastReductionAttack succeeds in fooling the two
models for almost all images. The original model withstands
the attack for only 1 image while our pruned model successfully
defends the attack on 23 images. The results again show that
our pruning does not hurt the model robustness.

Table 6: Success rates of two decision-based blackbox attacks on the origi-
nal and pruned models of the ImageNet case. Lower percentage means more
robustness.

Attack & Success rate Original Model Pruned Model
Spatial Attack 42.1% 41.4%
ContrastReductionAttack 100.0% 99.9%

Note: for ContrastReductionAttack, epsilons = 3. The attack is very
successful. It fails only in 1 case when attacking the original model and fails in
23 cases when attacking the pruned model. Details of the two attacks can be

found in (Engstrom et al.; 2017; [Rauber et al.||2017).

Although the results obtained in this subsection are promis-
ing for the scenarios we have investigated, more attacking
strategies/algorithms and use cases need to be analyzed before
drawing a more general conclusion. We defer these to future
work.

4.4. Accuracy v.s. Final Latent Space Neurons Selected

To demonstrate LDA’s effectiveness in selecting final latent
space neuron dimensions, we show in Fig. [I7] the relationship
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between accuracy change and the number of neuron dimensions
preserved in the decision-making space of the base model. The
top k neuron dimensions with highest scores are used for the
final prediction. PCA-based selection is included as compari-
son. As we can see, out of thousands of latent space neuron di-
mensions (4096 for VGG-16, 1024 for Inception), only a small
subset is capable of achieving accuracy comparable to using all
dimensions. For this reason, only a subset of & is plotted. Com-
pared to PCA, LDA performs better in all the cases. The reason
is that as we increase the number of neuron dimensions, LDA
is able to approximate the final class separation better and bet-
ter. In contrast, PCA only explains label-blind data variation,
which is not necessarily aligned with the true discriminating
power. In the example of facial age recognition, people faces
may vary in ethnicity, eye shape, hair style, skin color, and so
on. Unlike PCA that pays attention to all such high variations,
LDA picks age-related changes such as wrinkles and folds that
help maximize age group separation. When the number of neu-
rons preserved increases, the gap between LDA and PCA be-
comes smaller. The gap narrows relatively fast for challenging
datasets (e.g. ImageNet and CIFAR100). The reason is that,
for challenging datasets, more latent space neuron dimensions
are needed to maintain satisfactory accuracy. The more useful
latent neuron dimensions there are, the higher the chance a use-
ful dimension is selected even using a less accurate strategy like
PCA or random sampling. It is especially true when the number
of preserved neuron dimensions is large (with all neurons being
selected as the extreme case). This explains the fast accuracy
gain for PCA in such cases.

Apart from the above two, ICA is another linear dimension
reduction technique. It could minimize dependence in the latent
space before utility tracing. This has an effect of condensing in-
formation flow and reducing redundancy. Thus, ‘Deep ICA’ can
be used in unsupervised applications like auto-encoder struc-
ture design, efficient image retrieval, and image reconstruction.
However, as a label-blind approach, it cannot learn class separa-
tion from groundtruth labels. The same is true to other unsuper-
vised methods, including non-linear MDS, ISOMAP, and LLE.
We do not investigate such non-linear techniques here also be-
cause over-parameterized neural networks can potentially learn
the non-linearity so that we do not need extra assumptions and
handcrafting. [Liu et al.| (2018) demonstrate the superiority of
deep nets to MDS, ISOMAP, and LLE for dimensionality re-
duction on several benchmark datasets. Furthermore, there are
many noisy and interfering dimensions irrelevant to class sep-
aration in the original latent space. Dimension reduction pre-

serving distance/topology in such an over-dimensioned space
can possibly preserve much irrelevant information. For exam-
ple, MDS tries to preserve pairwise between-sample distances
(e.g. straight-line Euclidean distance). Such distances can be
easily distorted by useless dimensions (Peterfreund and Gav-
ish, [2018)). Isomap preserves geodesic distance, the computa-
tion of which is also sensitive to noisy data (Lee and Verleysen,
2005). Similarly, noise is also detrimental to LLE (Chen and
Liul 2011).

4.5. Ablation Study of data amount for cross-layer pruning

As mentioned previously, our pruning is data dependent.
When reconstructing final class separation dependencies for
pruning, we need to apply deconvolution with respect to all
training images over the layers. This can be done easily for
small datasets. However, for large datasets like ImageNet, this
is time-consuming with limited computation resources. In this
section, we explore the possibility of approximating cross-layer
deep LDA utilities using only a subset of training data, and an-
alyze its influence on final accuracy for the ImageNet case. To
this end, we choose one reference model during our pruning
on ImageNet. The reference model chosen is the smallest one
pruned using all training data that maintains comparable accu-
racy to the original (loss < 1%).

We use the full training set to re-train and compute class sep-
aration utility at the top. When calculating utility dependency
over the layers for pruning, we randomly select a same num-
ber of images from each category. For certain image number
selected for utility tracing, we report accuracy of the derived
model after pruning and retraining. By controlling the thresh-
old on utility scores, all resulted models in comparison here
have the same parameter complexity. Figure [I8] demonstrates
the results.

As we can see from Figure (18] accuracy is robust to im-
age number change for pruning-time dependency tracing. With
the increase of image number, accuracy only increases slightly.
1,000 images or 1 image per category can already lead to a good
accuracy. The reason is that we trace utility only from most dis-
criminative decision-making dimensions, so various cross-layer
noisy and interfering activations are ‘filtered out’ in the back-
ward pass. Although images of the same category can have
innumerable appearances, the essences that contribute to final
class separation are limited (e.g. wrinkles and folds v.s. head
pose, hair color, ethnicity for age recognition). In practice, we
find that images from the same category usually lead to similar
cross-layer utility dependencies (location-agnostic) except for
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the first few layers. This intuitively explains why performance
gain saturates quickly as more training images are added.

5. Discussion and Future Work

In the literature, many works attempt to solve as many tasks
as possible with a single generalist network. In such scenar-
ios, large cumbersome networks are usually needed, which are
impractical for situations with no or limited GPU support. A
natural idea to solve this problem is to derive specialist net-
works (Hinton et al.| 2015)), and each specialized network is
optimized for a particular task. For a dashcam on a self-driving
car, most likely, it does not need to distinguish between all the
insect types and dog breeds. This paper has mainly explored
the specialist path. Our pruned specialist networks have been
shown to be capable of maintaining or even increasing cor-
responding original models’ accuracy. When needed, we can
flexibly form a team of expert networks specialized in different
areas. This will be one of our future directions.

This paper prunes deep nets on the neuron or filter level be-
cause this directly leads to space, computation, and energy sav-
ings on general machines. That said, the proposed idea of deep
discriminative dimension reduction can be applied to any, in-
cluding irregular grouping of deep features, which helps select
useful discriminative information at flexible granularities. Sin-
gle weights and filter-based groupings are just special cases en-
forced by human experts. It would thus be interesting to uti-
lize learned task-discriminative information in feature group-
ing/decomposition. Compared to weight sharing using conv fil-
ters, deep dimension reduction at task-desirable granularities
would provide an alternative way to reducing parameter com-
plexity which could also preserve large-scale spatial informa-
tion contributing to final utility.

Another interesting direction would be to derive task-optimal
architectures in a more proactive way by pushing useful deep
discriminants into alignment with a condensed subset of neu-
rons (or other easily-pruned substructures) before deconv based
deep feature decomposition and reduction. In a concurrent
work, we achieve this by including deep LDA utility and co-
variance penalty simultaneously in the objective function (Tian
et al.,|2020). That said, compared to the simple pruning method

15

presented here, proactive eigen-decomposition and training can
be computationally expensive and numerically unstable.

6. Conclusion

This paper proposes a task-dependent end-to-end pruning ap-
proach with a deep LDA utility that captures both final class
separation and its holistic cross-layer dependency. This is dif-
ferent from approaches that are blind or pay no direct attention
to task discriminative power and those with local (individual
weights or within 1-2 layers) utility measures. The proposed
approach is able to prune convolutional, fully connected, mod-
ular, and hybrid deep structures and it is useful for designing
deep models by finding both the desired types of filters and the
number for each kind. Compared to fixed nets, the method of-
fers a range of models that are adapted for the inference task
in question. On datasets of general objects and domain spe-
cific tasks (ImageNet, CIFAR100, LFWA and Adience), the
approach achieves better performance and greater complexity
reductions than competing methods and models. Moreover, the
method is shown to be capable of generating compact models
that are more robust to adversarial attacks and noises than the
original unpruned model. The approach’s global awareness of
task discriminating power, high pruning rates, and its result-
ing models’ robustness offer a great potential for installation of
deep nets on mobile devices in many real-world applications.
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