
1

Computer Vision and Image Understanding

Curriculum self-paced learning for cross-domain object detection

Petru Sovianya,c, Radu Tudor Ionescua,b,d,∗∗, Paolo Rotac, Nicu Sebec

aDepartment of Computer Science, University of Bucharest, 14 Academiei Street, Bucharest 010014, Romania
bRomanian Young Academy, University of Bucharest, 90 Panduri Street, Bucharest 050663, Romania
cDepartment of Information Engineering and Computer Science, University of Trento, 9 Sommarive Street, Povo-Trento 38123, Italy
dSecurifAI, 21 Mircea Voda, Bucharest 030662, Romania

ABSTRACT

Training (source) domain bias affects state-of-the-art object detectors, such as Faster R-CNN, when
applied to new (target) domains. To alleviate this problem, researchers proposed various domain
adaptation methods to improve object detection results in the cross-domain setting, e.g. by translating
images with ground-truth labels from the source domain to the target domain using Cycle-GAN. On
top of combining Cycle-GAN transformations and self-paced learning in a smart and efficient way,
in this paper, we propose a novel self-paced algorithm that learns from easy to hard. Our method is
simple and effective, without any overhead during inference. It uses only pseudo-labels for samples
taken from the target domain, i.e. the domain adaptation is unsupervised. We conduct experiments on
four cross-domain benchmarks, showing better results than the state of the art. We also perform an
ablation study demonstrating the utility of each component in our framework. Additionally, we study
the applicability of our framework to other object detectors. Furthermore, we compare our difficulty
measure with other measures from the related literature, proving that it yields superior results and that
it correlates well with the performance metric.

© 2021 Pre-print.

1. Introduction

Machine learning models exhibit poor performance when the
test (target) data is sampled from a different domain than the
training (source) data, mainly due to the distribution gap (do-
main shift) between different domains. Domain shift is a well-
studied problem in the broad area of machine learning (Chang
et al., 2017; Chen et al., 2018; Fernando et al., 2013; Ganin
et al., 2016; Khodabandeh et al., 2019; Saito et al., 2019; Sener
et al., 2016; Sun et al., 2016; Zheng et al., 2020; Zhuang et al.,
2013), attracting a lot of attention in computer vision (Chang
et al., 2017; Fernando et al., 2013; Rozantsev et al., 2018; Saito
et al., 2019; Sener et al., 2016; Shu and Latecki, 2015; Sun
et al., 2016; Tzeng et al., 2017) and related fields (Daumé III,
2007; Fernández et al., 2016; Ionescu and Butnaru, 2018; Pan
et al., 2010; Zhuang et al., 2013). To understand and address
the domain gap, which occurs when labeled data in a target do-
main is scarce or not even available, researchers have studied
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the behavior of machine learning models in the cross-domain
setting (Franco-Salvador et al., 2015; Lui and Baldwin, 2011)
and proposed several domain adaptation methods (Chang et al.,
2017; Fernández et al., 2016; Ganin et al., 2016; Rozantsev
et al., 2018; Sener et al., 2016; Shu and Latecki, 2015; Tzeng
et al., 2017).

Domain adaptation methods can be divided into supervised
and unsupervised approaches. While supervised approaches
use small subsets of labeled samples from the target do-
main (Cozma et al., 2018; Inoue et al., 2018), the unsuper-
vised ones use only unlabeled target samples (Chen et al., 2018;
Ganin et al., 2016; Guo and Xiao, 2012; Raj et al., 2015; Saito
et al., 2019; Shan et al., 2019; Sener et al., 2016; Tzeng et al.,
2017). In this paper, we propose an unsupervised domain adap-
tation method for object detection. In cross-domain object de-
tection (Chen et al., 2018; Khodabandeh et al., 2019; Raj et al.,
2015; Saito et al., 2019; Shan et al., 2019; Zheng et al., 2020;
Zhu et al., 2019), an object detector is trained on data from a
source domain and tested on data from a target domain, shar-
ing the same object categories. Adapting the object detector
for the cross-domain setting can provide the means to train ro-
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Fig. 1. Our curriculum self-paced learning approach for object detection. In the initial training stage (step 1.a), the object detector is trained on source
images with ground-truth labels. In step 1.b, the object detector is further trained on source images translated by Cycle-GAN (Zhu et al., 2017) to resemble
images from the target domain. In steps 2, 3 and 4, the object detector is fine-tuned on real target images (different from those included in the test set),
using the bounding boxes and the labels predicted by the current detector. In step 5, the model makes its predictions on the target test set for the final
evaluation. Best viewed in color.

bust models on large-scale data sets, that can be cheaply col-
lected, but are outside the target domain. One such example
is training object detectors for real-world street scenes, e.g.
Cityscapes (Cordts et al., 2016), by using artificially gener-
ated scenes from realistic video games, e.g. Sim10k (Johnson-
Roberson et al., 2017). We actually test our domain-adapted
detector in this setting, which has immediate application in au-
tonomous driving.

We propose a novel curriculum self-paced learning approach
in order to adapt an object detector to the target domain. In
self-paced learning, the model learns from its own predictions
(pseudo-labels) in order to gain additional accuracy. Since we
use image samples from the target domain during inference, the
model has the opportunity to learn domain-specific features,
thus adapting itself to the target domain. However, the main
problem in self-paced learning is that the model can be neg-
atively influenced by the noisy pseudo-labels, i.e. prediction
errors. In order to alleviate this problem, we propose an ef-
fective combination of two approaches. In order to reduce the
labeling noise level, we apply a domain-adaptation approach
that relies only on ground-truth labels, before starting the self-
paced learning stage. The approach consists in training a Cycle-
consistent Generative Adversarial Network (Cycle-GAN) (Zhu
et al., 2017) in order to learn how to transform images from
the source domain to the target domain. The adaptation con-

sists in fine-tuning the object detector on source images that
are translated by Cycle-GAN to look like target images (see
Figure 1 for some translated samples). In the experiments, we
show that reducing the labeling noise before self-paced learn-
ing is indeed helpful, but still not satisfactory. We hypothesize
that the labeling noise inherently induced by the prediction er-
rors is proportional to the difficulty of the images. Following
this intuition, we perform self-paced learning starting with the
easier images, gradually adding more and more difficult image
samples, inspired by the curriculum learning paradigm (Bengio
et al., 2009), as shown in Figure 1. Our hypothesis turns out
to be supported by the empirical results, confirming the utility
of our curriculum self-paced learning method. In order to es-
timate the difficulty of each image sample, we employ a score
given by the number of detected objects divided by the average
area of their bounding boxes. This is inspired by the previous
work of Ionescu et al. (2016), which found that image difficulty
is directly proportional to the number of objects and inversely
proportional to the average bounding box area. However, we
empirically show that our metric provides superior results com-
pared with the difficulty metric of Ionescu et al. (2016).

We evaluate our curriculum self-paced learning approach
on four cross-domain benchmarks, Sim10k→Cityscapes,
KITTI→Cityscapes, PASCAL VOC 2007→Clipart1k and PAS-
CAL VOC 2007+2012→Clipart1k, comparing it with re-
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cent state-of-the-art methods (Chen et al., 2018; Inoue et al.,
2018; Khodabandeh et al., 2019; Saito et al., 2019; Shan
et al., 2019; Zheng et al., 2020; Zhu et al., 2019), when-
ever possible. The empirical results indicate that our ap-
proach provides the highest absolute gains (with respect to
the baseline Faster R-CNN detector), surpassing all con-
sidered competitors (Chen et al., 2018; Inoue et al., 2018;
Khodabandeh et al., 2019; Saito et al., 2019; Shan et al.,
2019; Zheng et al., 2020; Zhu et al., 2019). Further-
more, we consider that our performance gains of +17.01%
on Sim10k→Cityscapes, +12.34% on KITTI→Cityscapes,
+8.91% on PASCAL VOC 2007→Clipart1k and +11.69% on
PASCAL VOC 2007+2012→Clipart1k are significant. Our ex-
periments also include ablation results, showing how various
components and parameters influence our performance level.

The rest of this paper is organized as follows. In Section 2,
we present the related works on domain adaptation, self-paced
learning, curriculum learning and cross-domain object detec-
tion. Our curriculum self-paced learning method is detailed in
Section 3. The comparative and ablation experiments are pre-
sented in Section 4. Finally, we draw our conclusion and dis-
cuss future work in Section 5.

2. Related Work

Domain Adaptation. Domain adaptation is the task of fitting
a model trained on a source distribution to a different target
distribution. One immediate use case is the elimination of the
costly human labeling process by automatically generating ar-
tificial training data, e.g. object detectors for autonomous driv-
ing could be trained on video game scenes. Domain adapta-
tion has been extensively studied in cross-domain classification
problems. The corresponding methods can be roughly catego-
rized into cross-domain kernels (Duan et al., 2011; Ionescu and
Butnaru, 2018), sub-space alignment (Fernando et al., 2013),
second-order statistics alignment (Sun et al., 2016), adversar-
ial adaptation (Ganin et al., 2016; Tzeng et al., 2017), graph-
based methods (Chang et al., 2017; Nelakurthi et al., 2017;
Pan et al., 2010; Ponomareva and Thelwall, 2013), probabilis-
tic models (Luo et al., 2015; Zhuang et al., 2013), knowledge-
based models (Bollegala et al., 2013; Franco-Salvador et al.,
2015) and joint optimization frameworks (Long et al., 2014).
To our knowledge, curriculum domain adaptation has not been
extensively studied in literature (Zhang et al., 2017). Zhang
et al. (2017) proposed a curriculum domain adaptation method
for semantic segmentation. They applied curriculum over tasks,
starting with the easier ones, which are less sensitive to the do-
main gap than semantic segmentation. Different from Zhang
et al. (2017), we assign a difficulty score to each image sample,
thus applying curriculum over samples. Furthermore, we em-
ploy Cycle-GAN as a way to reduce the labeling noise before
our curriculum self-paced learning stage.
Curriculum Learning. Bengio et al. (2009) introduced easy-
to-hard strategies to train machine learning models, showing
that the standard learning paradigm used in human educational
systems also applies to artificial intelligence. Curriculum learn-
ing represents the general class of algorithms in which the train-
ing data are fed gradually, from easy-to-difficult, taking into

consideration some difficulty measure. Curriculum learning has
been successfully applied to different tasks, including semi-
supervised image classification (Gong et al., 2016), language
modeling (Graves et al., 2017), weakly-supervised object de-
tection (Wang et al., 2018b; Zhang et al., 2019), weakly super-
vised object localization (Ionescu et al., 2016; Li et al., 2017),
person re-identification (Wang et al., 2018a) and image genera-
tion (Doan et al., 2019; Soviany et al., 2020). To the best of our
knowledge, curriculum learning has not been applied to cross-
domain object detection. In our work, we apply curriculum over
target instances that are annotated with pseudo-labels given by
the object detector at hand, resulting in a method that combines
curriculum and self-paced learning.

Self-Paced Learning. In self-paced learning, machine learning
models learn from their own labels while taking into considera-
tion the predictions with high confidence first. Self-paced learn-
ing is similar to curriculum learning because the training sam-
ples are presented in a meaningful order. Kumar et al. (2010)
argued that their self-paced learning approach differs from cur-
riculum learning, as it does not rely on an external difficulty
measure, but on simultaneously selecting easy samples and on
updating the parameters in an iterative manner, based on the
actual performance. Jiang et al. (2015) introduced self-paced
curriculum learning as an optimization problem taking into ac-
count both prior knowledge and knowledge gained during the
learning process. We propose a similar approach for a com-
pletely different task than Jiang et al. (2015), namely cross-
domain object detection. To our knowledge, we are the first
to study curriculum self-paced learning in the cross-domain ob-
ject detection setting.

Cross-Domain Object Detection. While domain adaptation
has been extensively studied to address cross-domain classifica-
tion, cross-domain object detection is a more challenging and
less studied task, perhaps because it requires localizing each
object in an image, in addition to identifying the corresponding
object categories. Inoue et al. (2018) tackled the cross-domain
weakly-supervised object detection task using a two-step pro-
gressive domain adaptation technique to fine-tune the detector
trained on a source domain, while others (Chen et al., 2018;
Khodabandeh et al., 2019; Raj et al., 2015; Saito et al., 2019;
Shan et al., 2019; Zheng et al., 2020; Zhu et al., 2019) stud-
ied unsupervised cross-domain object detection methods. Al-
though we include all these methods in our experiments, we
consider fair only the comparison with the latter methods, as
our approach falls in the same category of unsupervised meth-
ods. Raj et al. (2015) used subspace alignment, a domain adap-
tation method consisting of learning a mapping from the source
distribution to the target one. Chen et al. (2018) argued that
the gap between domains can be found both at the image level
(illumination and style) and at the instance level (object size
and overall appearance). Thus, they provided separate compo-
nents to treat each case on top of a Faster Region-based Con-
volutional Neural Network (R-CNN) (Ren et al., 2015) detec-
tor. These components use a domain classifier and adversarial
training to learn domain-invariant features. Different from Raj
et al. (2015) and Chen et al. (2018), we propose a curriculum
self-paced learning approach to adapt the detector to the target
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domain.
Zhu et al. (2019) proposed a framework that focuses on align-

ing the local regions containing objects of interest. It consists
of a region mining component, which finds relevant patches,
and a region-level alignment component, which uses adversar-
ial learning to align the image patches reconstructed from the
features of the selected regions. Khodabandeh et al. (2019) pro-
posed a robust framework which takes into consideration the
generated labels of the target domain to retrain the detector on
both domains. The robustness is defined against mistakes in
both object classification and localization. Thus, during retrain-
ing, the model can change labels and detection boxes, refining
the noisy labels on the target domain. To improve the detec-
tions even further, the authors used a supplementary classifi-
cation module that provides information about the target do-
main. Unlike Zhu et al. (2019) and Khodabandeh et al. (2019),
we propose a more simple and effective framework that gradu-
ally learns from noisy pseudo-labels, using an easy-to-hard ap-
proach.

Saito et al. (2019) introduced an object detection frame-
work that performs both strong local alignment and weak global
alignment. Strong local alignment is obtained using a fully con-
volutional network with one-dimensional kernels as a local do-
main classifier trained to focus on local features. For the weak
global feature alignment, the authors trained a domain classi-
fier to ignore easy-to-classify examples while focusing on the
more difficult ones, with respect to the domain classification.
The reason behind this approach is that easy-to-classify target
examples are far from the source in the feature space, while the
harder examples are closer to the source. Different from Saito
et al. (2019), we do not use a domain classifier to determine
which samples are easy and which are difficult. Instead, we es-
timate the difficulty at the image level by computing the num-
ber of detected objects divided by their average bounding box
area. This gives us a measure of difficulty from a different per-
spective, that of the object detector (not the one of the domain
classifier). In our case, the object detector has higher accuracy
for the easy image samples versus the difficult image samples.

Shan et al. (2019) proposed a multi-module framework con-
sisting of a pixel-level domain adaptation module based on
Cycle-GAN and a feature-level domain adaptation module
based on Faster R-CNN. The pixel-level alignment is achieved
by using a traditional generator-discriminator approach, with a
loss function to ensure cycle consistency. In comparison, our
method is a simple and straightforward combination of mod-
ules, adversarial domain adaptation and curriculum self-paced
learning, stacked on top of a traditional Faster R-CNN baseline.
We use Cycle-GAN to transfer from the source training set to
the target set, thus generating additional training (labeled) in-
formation with similar style to the target domain. We then ex-
tract pseudo-labels from an already more trustworthy detector,
and fine-tune it through curriculum self-paced learning. Our
novel idea is that fine-tuning can be done in a meaningful, not
random, order, which is defined by our measure of image diffi-
culty.

Zheng et al. (2020) introduced a Graph-induced Prototype
Alignment method to perform domain alignment for each ob-

ject category through class prototypes. They designed the ap-
proach specifically for a two-stage detector, Faster R-CNN, per-
forming the alignment in two stages. In the first stage, a rela-
tion graph is constructed to aggregate features at the instance
level by considering both the location and the size of the ob-
ject proposals. In the second stage, the information contained
in various instances is gathered into class-level prototypes, thus
enabling category-level domain alignment. Unlike Zheng et al.
(2020), our method is not tightly coupled with the Faster R-
CNN detector, being a generic domain adaption technique ap-
plicable to any object detector. We confirm this statement by
showing that our domain adaptation method is also useful for a
RetinaNet (Lin et al., 2017) detector. Moreover, our approach
only consists in a training algorithm, not adding any additional
branches to the object detector, as Zheng et al. (2020). Hence,
different from Zheng et al. (2020), our method does not bring
any computational overhead during inference.

3. Method

Domain adaptation is a fervent topic, many papers on object
detection already taking advantage of adaptation methods to
align models trained across domains (Chen et al., 2018; Khoda-
bandeh et al., 2019; Saito et al., 2019; Shan et al., 2019; Zheng
et al., 2020; Zhu et al., 2019). The same consideration has
been granted to self-supervised learning techniques, in which
exploiting reliable pseudo-labels to improve classification has
been already investigated (Doersch et al., 2015; Misra et al.,
2016; Wei et al., 2018). In this work, however, we aim at evalu-
ating a model which incorporates a domain adaptation method
based on style transfer using GAN-like preprocessing in con-
junction with a self-paced learning method based on difficulty-
wise curriculum learning provided by the difficulty metric pro-
posed in Section 3.1.

The general principle of the easy-to-hard training strategies,
known as curriculum learning (Bengio et al., 2009), stems from
the fact that human beings learn better when they receive easy
examples first, with gradually more complex concepts being in-
troduced later. Bengio et al. (2009) proved the effectiveness
of this learning strategy for neural networks as well. Inspired
by Bengio et al. (2009), we propose a novel method to apply
curriculum learning on object detection, replacing the random
sampling during self-paced training. At this point, an important
question arises: “How do we define the difficulty of detecting
objects in an image?” Few different solutions have been pro-
posed to address this problem (Ionescu et al., 2016; Soviany
and Ionescu, 2018; Wang et al., 2018b; Zhang et al., 2019).
Different from these works, we propose a difficulty metric that
can easily be computed based on the output bounding boxes
provided by our object detector, eliminating the need for ad-
ditional model components, e.g. building an image difficulty
regressor (Ionescu et al., 2016). We provide a comparison of
various difficulty metrics in Section 4, showing that our metric
produces superior results.

We show that fine-tuning the model with pseudo-labels in-
creases performance. Nonetheless, in our experiments, we
found that it is more impactful when pseudo-labels are used on
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Fig. 2. Examples divided into easy, medium and hard batches according to the proposed difficulty metric. Easy images contain few cars that are closer to
the camera, while hard images contain many cars that are father away from the camera. Best viewed in color.

top of a “warmed-up” model, because, in this way, our confi-
dence in the generated labels will be higher. Our aim is building
a simple and efficient method which can be used together with
almost any other domain adaptation strategy, so we did not al-
ter the architecture of the standard Faster R-CNN (Ren et al.,
2015) detector, nor used any other complex adaptation strategy.
In order to reduce pseudo-labeling noise (increasing the perfor-
mance by as much as possible) before applying fine-tuning on
real target images, we translate the source images to the target
domain using Cycle-GAN, then train on the resulting images
together with the original source training set, thus warming-up
the model before curriculum self-paced learning.

In the rest of this section, we briefly present the components
employed in our framework and detail our algorithm.

3.1. Components

Object Detector. As most related articles, we apply our do-
main adaptation framework on top of a Faster R-CNN object
detector (Ren et al., 2015), thus facilitating a fair comparison
with state-of-the-art methods. Faster R-CNN is one of the state-
of-the-art region-based deep detection models. It is a two-stage
object detector which improves Fast R-CNN (Girshick, 2015)
by introducing a Region Proposal Network. In order to select
the right regions of interest, it uses a fully convolutional net-
work that can predict object bounds at every location. The se-
lected regions are then provided as an input to the Fast R-CNN
model, which gives the final detection results. Our approach is
not tied to Faster R-CNN, in theory, being applicable to any
object detector. To demonstrate this property, we show that

our domain adaptation approach can successfully adapt a Reti-
naNet (Lin et al., 2017) object detector to the target domain.
Cycle-GAN. Cycle-GAN (Zhu et al., 2017) is a generative
model performing image translation between two domains
without requiring paired images for training. It learns the rel-
evant features and the translation mapping by using cycle con-
sistency, constraining the model so that translating from one
domain to another and back again must reach the starting point.
In a preliminary evaluation, we observed that Cycle-GAN pro-
duces better translations compared with a standard GAN, indi-
cating that cycle consistency is indeed useful.
Difficulty Metric. Ionescu et al. (2016) observed that images
containing many small objects are more difficult than images
with few large objects. Thus, we could compute an image dif-
ficulty score as the number of detected objects divided by their
average bounding box area. Given a set of n bounding box de-
tections B = {b1, b2, ..., bn} in an image I, where a detection
bi is composed of a tuple (xi, yi,wi, hi) representing the coordi-
nates of the top left corner (xi, yi), the width and the height of
the bounding box, we define our difficulty scoring function S
as follows:

S (I, B) =
n

1
n
∑n

i=1 wi · hi
=

n2∑n
i=1 wi · hi

. (1)

This method is effective in our case, because it computes dif-
ficulty as a function of the detected instances. To avoid the de-
generate case of an image without detections, we assign a very
high score to it. In other words, we consider images without
any detected objects as hard. More general difficulty measures,
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Algorithm 1: Our cross-domain object detection algo-
rithm

Input:
11 Xs – the source data set of samples;
22 Ys – the ground-truth labels for source data Xs;
3 Xt – the target training set of unlabeled samples;
4 X(test)

t – the target test set, where Xt ∩ X(test)
t = ∅;

5 S – a difficulty scoring function, e.g. Equation (1);
6 k – the number of batches to split by difficulty;

Notations:
7 D – an object detector, e.g. Faster R-CNN;
8 T – an image translation model, e.g. Cycle-GAN;
9 X̃s – the generated images with target domain style;

10 Ỹt – the pseudo-labels for target data Xt;

Computation:
11 T ← train(T/Xs, Xt);
12 X̃s ← T (Xs);
13 D← train(D/(Xs,Ys) ∪ (X̃s,Ys));
14 for i← 1, k do
15 Ỹt ← D(Xt);
16 X(1),...,(k)

t , Ỹ (1),...,(k)
t ← split(Xt, Ỹt, k, S );

17 D← train(D/
⋃i

j=1(X( j)
t , Ỹ

( j)
t );

18 B ← D(X(test)
t );

Output:
19 B – the set of predicted bounding boxes.

such as the one proposed by Ionescu et al. (2016), take into
consideration the entire image, which includes the background
and unlabeled objects belonging to classes not included in the
evaluation, e.g. trees or buildings. Our metric is more focused
and does not require any additional neural models.

We should notice that our difficulty metric is automatically
computed via the object detector. Hence, the mistakes of the
object detector can also propagate to our difficulty metric. Al-
though we acknowledge this problem regarding the proposed
metric, we observe that, in most cases, the difficulty scores are
relevant (see Figure 2). Additionally, we show (i) the effec-
tiveness of the proposed metric in the context of curriculum
self-paced learning (see Table 3) and (ii) the correlation of the
induced easy, medium and difficult batches with respect to the
performance level of the object detector (see Table 2).

3.2. Algorithm

We next explain our algorithm, as illustrated in Figure 1 and
formally presented in Algorithm 1. Our algorithm is divided
into two phases: the first one for the warm-up of the detector
D (steps 11-13) and the second for the self-paced refinement
(steps 14-17).

In our warm-up phase, we randomly sample a subset from
both source and target sets, training a Cycle-GAN (step 11) to
generate a set of samples X̃s (step 12) with an appearance simi-
lar to the target, but with the labels Ys inherited from the source.
We keep the labels Ys for the generated images X̃s based on the
assumption that Cycle-GAN transfers the style (object appear-
ance, background), e.g. from video game frames to real pho-
tos, while preserving locations and classes of objects. Using

the samples generated by Cycle-GAN, we perform a traditional
supervised training on the source domain using an out-of-the-
box Faster R-CNN model (step 13). By mixing samples from
the source domain with samples generated by Cycle-GAN, we
produce a model that favors the alignment between the two do-
mains, helping the self-paced learning on the unlabeled pristine
target data set Xt.

The second phase is an iterative process described in steps
14 to 17 in Algorithm 1. At each iteration i, we first apply
the current object detector D on the target samples Xt to pro-
duce the pseudo-labels Ỹt (step 15). The target samples are then
ranked according to the proposed difficulty metric and divided
into k batches difficulty-wise (step 16, inside the split func-
tion), i.e. according to Equation (1). Finally, the first i batches,
starting from those ranked as easier, are used for training the
object detector D (step 17). The curriculum self-paced learn-
ing process is repeated until eventually the whole target set has
been included in the training process. It is important to note
that only the high confidence detections have been taken into
consideration, performing a threshold-based selection.

The intuition behind the usage of this curriculum fine-tuning
approach over the standard random one relies on the simple fact
that pseudo-labels for easier samples are typically more accu-
rate. By using less difficult samples first, we can reduce the do-
main gap without learning too many wrongly detected objects.
In this way, most pseudo-labels, even those of the harder sam-
ples, will be trustworthy, leading to higher performance after
the final retraining step.

4. Experiments

4.1. Data Sets

Following the methodology of previous studies (Chen et al.,
2018; Khodabandeh et al., 2019), we apply our method on
two street scenes data set pairs, Sim10k→Cityscapes and
KITTI→Cityscapes, considering only their common class,
i.e. car. Sim10k (Johnson-Roberson et al., 2017) is a computer-
generated data set of 10,000 images with traffic scenes, which
we use as the source for our simulated-to-real domain transfer.
KITTI (Geiger et al., 2013) is another driving data set consist-
ing of 7,481 real training images that we use as source in our ex-
periments which involve adaptation between two real data sets.
Cityscapes (Cordts et al., 2016) contains 2,945 training images
and 500 validation images of urban scenes. In our experiments,
we use the training set (without ground-truth labels) for self-
paced learning and the validation set for testing and evaluation.

In addition, we evaluate our method on two other pairs of
data sets, PASCAL VOC 2007→Clipart1k and PASCAL VOC
2007+2012→Clipart1k, both having 20 object categories in
common. PASCAL VOC 2007 (Everingham et al., 2007) and
PASCAL VOC 2012 (Everingham et al., 2012) are well-known
data sets, the former consisting of 9,963 images and the lat-
ter consisting of 11,540 images. Clipart1k (Inoue et al., 2018)
contains 1,000 images that contain the same 20 categories as
PASCAL VOC 2007 and 2012. We used 500 images (without
ground-truth labels) for training and the other 500 images for
testing.
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4.2. Experimental Setup

Evaluation Measures. The performance of object detectors
on a class of objects is typically evaluated using the Aver-
age Precision (AP), which is based on the ranking of detec-
tion scores (Everingham et al., 2010). We thus report the AP
on each class and the mean Average Precision (mAP) over all
classes. The AP score is given by the area under the precision-
recall (PR) curve for the detected objects. The PR curve is con-
structed by first mapping each detected bounding box to the
most-overlapping ground-truth bounding box, according to the
Intersection over Union (IoU) measure, but only if the IoU is
higher than 0.5 (Everingham et al., 2015). Then, the detections
are sorted in decreasing order of their scores. Precision and
recall values are computed each time a new positive sample is
recalled. The PR curve is given by plotting the precision and re-
call pairs as lower-scored detections are progressively included.

To automatically quantify the quality and realism of artifi-
cially generated images (by Cycle-GAN), we employ the Incep-
tion Score (Salimans et al., 2016), which is typically computed
on five runs, with 10,000 generated images in each run. We note
that a higher Inception Score (IS) indicates better performance.
Baselines. In order to show the relevance of our approach, we
compare our results with several state-of-the-art methods (Chen
et al., 2018; Inoue et al., 2018; Khodabandeh et al., 2019; Saito
et al., 2019; Shan et al., 2019; Zheng et al., 2020; Zhu et al.,
2019). Further results of previous studies can be consulted in
these very recent works (Chen et al., 2018; Inoue et al., 2018;
Khodabandeh et al., 2019; Saito et al., 2019; Shan et al., 2019;
Zheng et al., 2020; Zhu et al., 2019). We also include a do-
main adaptation model based solely on Cycle-GAN in our com-
parative experiments. Along with the best scores reported by
each of these state-of-the-art methods, we also include the base-
line detection models (without adaptation), observing the abso-
lute gain in performance provided by each domain adaptation
method with respect to the corresponding baseline.
Implementation Details. We employ Faster R-CNN (Ren
et al., 2015) based on the ResNet-50 (He et al., 2016) backbone
as our first object detector, just as (Chen et al., 2018; Khoda-
bandeh et al., 2019; Saito et al., 2019; Shan et al., 2019; Zhu
et al., 2019). We use the same backbone for our second detec-
tor, RetinaNet (Lin et al., 2017). We use the PyTorch (Paszke
et al., 2017) implementations of Faster R-CNN and RetinaNet
from (Massa and Girshick, 2018) with weights pre-trained on
ImageNet (Russakovsky et al., 2015). We train each object de-
tector for a number of 50,000 iterations, using adaptive learning
rates. At the end of the training, we generate the pseudo-labels
and apply self-paced learning for 500 iterations, with new train-
ing labels being generated at every 100 iterations. In the cur-
riculum self-paced learning setup, we use easy images for the
first 50 iterations, easy and medium images for the next 50 itera-
tions, then the whole data set (including easy, medium and hard
images) for the remaining iterations. The number of batches
used in Algorithm 1 is k = 3. We perform image translation
using Cycle-GAN (Zhu et al., 2017)1. We train a Cycle-GAN

1https://github.com/arnab39/cycleGAN-PyTorch

Table 1. Inception Scores (IS) of images generated by Cycle-GAN for
Sim10k→Cityscapes and KITTI→Cityscapes in comparison with the In-
ception Scores of real images from Sim10k, KITTI and Cityscapes. Higher
IS values represent better quality images.

Data Set Images Type IS
Sim10k real 4.68
KITTI real 3.77
Cityscapes real 3.70
Sim10k→Cityscapes translated by Cycle-GAN 4.32
KITTI→Cityscapes translated by Cycle-GAN 3.36

Table 2. AP and mAP scores for easy, medium and hard im-
age batches, provided by Faster R-CNN trained on original source
images and on images translated by Cycle-GAN. Results are re-
ported for Sim10k→Cityscapes, KITTI→Cityscapes and PASCAL VOC
2007→Clipart1k benchmarks.

Data Set Easy Medium Hard
Sim10k→Cityscapes 44.43 43.51 36.90
KITTI→Cityscapes 40.70 40.05 38.08
PASCAL VOC 2007→Clipart1k 29.21 18.87 13.00

for 200 epochs on each data set pair. We use the same parame-
ters in all our experiments, avoiding overfitting in hyperparam-
eter space on individual data sets. All results are averaged over
three runs.

4.3. Unpaired Image Translation Results

It is important to note that the quality of the images trans-
lated by Cycle-GAN can indirectly influence the effectiveness
of our domain adaptation approach. Therefore, we analyze
the quality of the generated samples for two data set pairs,
Sim10k→Cityscapes and KITTI→Cityscapes. In Table 1, we
compare the Inception Scores of the generated samples with the
Inception Scores of the real data samples in Sim10k, KITTI and
Cityscapes. First, we observe that the Inception Scores of the
generated images are in the same range as the Inception Scores
of the real images. Nonetheless, we should emphasize that the
Inception Scores of the translated images cannot be higher than
the Inception Scores of the real images from the source data set.
As Sim10k exhibits a higher IS than KITTI, it seems reasonable
to have a higher IS for the images generated from Sim10k as
source than for the images generated from KITTI. Perhaps, this
phenomenon could also explain why the Sim10k→Cityscapes
domain adaption gives a higher absolute performance gain than
the KITTI→Cityscapes adaptation (see Table 3). In summary,
the results reported in Table 1 indicate that the quality and real-
ism of the samples generated by Cycle-GAN are adequate.

4.4. Preliminary Results

We conduct a preliminary set of experiments to validate our
hypothesis stating that the number of objects divided by their
average bounding box area is a good measure of image diffi-
culty in the context of object detection. We first train the Faster
R-CNN on original source images and on images translated by
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Table 3. AP and mAP scores (in %) of several Faster R-CNN models trained using different state-of-the-art domain adaptation methods (Chen et al., 2018;
Inoue et al., 2018; Khodabandeh et al., 2019; Saito et al., 2019; Shan et al., 2019; Zheng et al., 2020; Zhu et al., 2019) versus a Faster R-CNN model trained
using our domain adaptation approach based on curriculum self-paced learning. All domain-adapted (DA) methods include images without ground-truth
labels from the target domain. Faster R-CNN baselines (B) without adaptation, i.e. trained only on source, are also included to point out the absolute
gain of each domain adaptation technique, with respect to the corresponding baseline. Faster R-CNN models trained on target domain (TD) images with
ground-truth label are included as indicators of possible upper bounds of the AP scores. Results are reported for Sim10k→Cityscapes, KITTI→Cityscapes,
PASCAL VOC 2007→Clipart1k and PASCAL VOC 2007+2012→Clipart1k benchmarks. The best scores and the highest absolute gains are highlighted
in bold.

Faster R-CNN Train Data Sim10k→City KITTI→City VOC07→Clipart VOC07+12→Clipart
B (Chen et al., 2018) Source 30.12 30.20 - -
B (Inoue et al., 2018) Source - - - 26.20
B (Khodabandeh et al., 2019) Source 31.08 31.10 - -
B (Saito et al., 2019) Source 34.60 - - -
B (Shan et al., 2019) Source 30.10 30.20 - -
B (Zheng et al., 2020) Source 34.60 37.60 - -
B (Zhu et al., 2019) Source 33.96 37.40 - -
B (ours) Source 30.67 31.52 18.73 26.14
DA (Chen et al., 2018) Source+Target (no labels) 38.97 (+8.85) 38.50 (+8.30) - -
DA (Inoue et al., 2018) Source+Target - - - 34.90 (8.70)
DA (Khodabandeh et al., 2019) Source+Target (no labels) 42.56 (+11.48) 42.98 (+11.88) - -
DA (Saito et al., 2019) Source+Target (no labels) 40.70 (+5.80) - - -
DA (Shan et al., 2019) Source+Target (no labels) 39.60 (+9.50) 41.80 (+11.60) - -
DA (Zheng et al., 2020) Source+Target (no labels) 47.60 (+13.00) 47.90 (+10.30) - -
DA (Zhu et al., 2019) Source+Target (no labels) 43.02 (+9.06) 42.50 (+5.10) - -
DA (Cycle-GAN) Source+Target (no labels) 41.53 (+10.86) 38.72 (+7.20) 21.31 (+2.58) 35.60 (+9.46)
DA (ours) Source+Target (no labels) 47.68 (+17.01) 43.86 (+12.34) 27.64 (+8.91) 37.83 (+11.69)
TD (Inoue et al., 2018) Target - - - 50.00
TD (Khodabandeh et al., 2019) Target 68.10 68.10 - -
TD (Saito et al., 2019) Target 53.10 53.10 - -
TD (ours) Target 62.73 62.73 33.89 33.89

Cycle-GAN. The model is thus already adapted to the target do-
main and should provide more reliable labels on real target im-
ages. We next apply the model on target domain images and we
divide the images into k = 3 batches, in increasing order of dif-
ficulty. We provide the corresponding results on all benchmarks
in Table 2. We note that the AP scores on the easy batch of im-
ages are higher than the AP scores on the medium batch. We
observe the same behavior on the medium batch with respect to
the hard batch. In conclusion, the empirical results presented
in Table 2 confirm our hypothesis. We can thus apply the pro-
posed difficulty measure in our curriculum self-paced learning
approach.

4.5. Cross-Domain Detection Results

We compare our domain adaptation method with several
state-of-the-art approaches (Chen et al., 2018; Inoue et al.,
2018; Khodabandeh et al., 2019; Saito et al., 2019; Shan
et al., 2019; Zheng et al., 2020; Zhu et al., 2019) and a do-
main adaptation model based on Cycle-GAN. We provide the
comparative object detection results on Sim10k→Cityscapes,
KITTI→Cityscapes, PASCAL VOC 2007→Clipart1k and PAS-
CAL VOC 2007+2012→Clipart1k benchmarks in Table 3.

First, we note that each state-of-the-art method is applied on
top of a slightly different Faster R-CNN baseline (trained on
source only). While three methods (Saito et al., 2019; Zheng

et al., 2020; Zhu et al., 2019) start from somewhat better Faster
R-CNN versions, our Faster R-CNN baseline gives similar AP
scores to the Faster R-CNN baselines used in (Chen et al.,
2018; Khodabandeh et al., 2019; Shan et al., 2019). Since the
baselines are not equally good, we report the absolute gains
with respect to the corresponding baseline along with the AP
scores, for a more fair comparison between the domain adapta-
tion methods.

On Sim10k→Cityscapes, we obtain the best AP score
(47.68%) among all methods, as well as the largest improve-
ment over the corresponding baseline (17.01%). In terms of
AP, the second best result, reported by Zheng et al. (2020), is
0.08% lower. The improvement of Zheng et al. (2020) over
their baseline is however much lower (13.00%). Indeed, in
terms of absolute gain over the corresponding baseline, our
gain is 4.01% higher than that of Zheng et al. (2020). We
conclude that our domain-adaptation method attains signifi-
cant improvements over the state-of-the-art methods on the
Sim10k→Cityscapes benchmark.

On KITTI→Cityscapes, we obtain the second best AP
score (43.86%), which is 4.04% lower than the top scoring
method (Zheng et al., 2020) in literature. However, we should
point out that Zheng et al. (2020) started from a much better
Faster R-CNN baseline. Hence, our absolute gain (12.34%)
is still higher than the absolute gain (10.30%) of Zheng et al.
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Table 4. AP and mAP scores (in %) of various ablated versions of our framework versus our full framework based on Faster R-CNN. Results for the
baseline Faster R-CNN, trained only on source (S) data, and the in-domain Faster R-CNN, trained on target (T) data with ground-truth labels, are also
included for comparison.

Train Data Sim10k→City KITTI→City VOC07→Clipart VOC07+12→Clipart
Source 30.67 31.52 18.73 26.14
Source+Target (self-paced) 34.39 35.64 20.33 30.76
Source+Target (curriculum) 35.80 37.02 21.11 31.69
Source+Source→Target (Cycle-GAN) 41.53 38.72 21.31 30.43
Source+Source→Target (Cycle-GAN)+Target (self-paced) 46.84 41.52 25.53 35.60
Source+Source→Target (Cycle-GAN)+Target (curriculum) 47.68 43.86 27.64 37.83
Target 62.73 62.73 33.89 33.89

(2020). In fact, two other methods (Khodabandeh et al., 2019;
Shan et al., 2019) from the recent literature also surpass Zheng
et al. (2020) in terms of absolute gain with respect to the cor-
responding baseline. The other methods from the recent liter-
ature (Chen et al., 2018; Saito et al., 2019; Zhu et al., 2019)
attain lower AP scores as well as lower absolute gains. We
conclude that our method is better than all other methods on
KITTI→Cityscapes, specifically in terms of the absolute gain
with respect to the corresponding baseline.

To our knowledge, there are no previous results reported
on PASCAL VOC 2007→Clipart1k. However, we compare
our approach with a strong domain adaptation model based on
Cycle-GAN. Indeed, this model surpasses three state-of-the-art
methods (Chen et al., 2018; Saito et al., 2019; Shan et al., 2019)
on Sim10k→Cityscapes and one state-of-the-art method (Chen
et al., 2018) on KITTI→Cityscapes. With an mAP of 27.64%
on PASCAL VOC 2007→Clipart1k, our method surpasses the
Faster R-CNN trained on source only by 8.91% and the domain
adaptation model based on Cycle-GAN by 6.33%.

On PASCAL VOC 2007+2012→Clipart1k, we compare our
results with those reported by Inoue et al. (2018) and those of
the domain adaptation model based on Cycle-GAN. Although
our baseline Faster R-CNN and that of Inoue et al. (2018) ob-
tain about the same results (just above 26%), there is a high
difference between the mAP of 33.89% attained by our Faster
R-CNN trained directly on the target domain (with supervision)
and the mAP of 50.00% reported by Inoue et al. (2018) for their
in-domain Faster R-CNN. Regarding the domain adapted mod-
els, we obtain a better mAP as well as a higher absolute gain
than competing methods. In terms of AP, our improvement is
of 2.93%. Interestingly, all the domain adapted models surpass
our in-domain Faster R-CNN. This can be explained by the fact
that the number of training images in Clipart1k is rather small
(500) in comparison to the number of images in PASCAL VOC
2007+2012. We believe that the high number and the variety of
samples in the source domain compensate for the fact that the
samples come from a different domain.

4.6. Ablation Study

We conduct an ablation study to determine the benefits of
each individual component in our framework. Table 4 illus-
trates our results on all four cross-domain benchmarks, indicat-

ing the contribution of each component to the complete model
in terms of AP and mAP scores, respectively.
Source→Target Translation with Cycle-GAN. With
respect to the Faster R-CNN baselines trained on
source only, we gain 10.86% on Sim10k→Cityscapes,
7.22% on KITTI→Cityscapes, 2.58% on PASCAL
VOC 2007→Clipart1k and 4.29% on PASCAL VOC
2007+2012→Clipart1k. We observe that training on im-
ages translated from KITTI to Cityscapes is less effective than
from Sim10k to Cityscapes. We suspect that the gap between
synthetic (Sim10k) and real data (Cityscapes) can be easier to
bridge than the gap induced by different cameras and object
sizes/view angles between data sets containing real scenes
(KITTI and Cityscapes). As also mentioned earlier, another
explanation for the less effective KITTI→Cityscapes transfer
is the lower Inception Score of the real KITTI images with
respect to the real Sim10k images (see Table 1).
Self-Paced Learning. We employ self-paced learning from
pseudo-labels either on top of the model trained only on source
data or on top of the model trained with additional data pro-
duced via Cycle-GAN translation. On all four data set pairs, we
observe a consistent increase in performance of around 4%. Re-
garding the first three benchmarks, we observe that self-paced
learning alone does not reach the performance gains of the
Cycle-GAN adaptation approach, with a difference of 7.14% on
Sim10k→Cityscapes, 3.1% on KITTI→Cityscapes and 0.98%
on PASCAL VOC 2007→Clipart1k. Nonetheless, self-paced
learning is superior to Cycle-GAN domain adaptation in the last
benchmark. Furthermore, the accuracy improvements brought
by self-paced learning are still visible on the models that are
already trained using Cycle-GAN translation, supporting our
decision to perform self-paced learning on top of Cycle-GAN
adaptation.
Curriculum Self-Paced Learning. Our best results are not
obtained, though, using basic self-paced learning, but using a
curriculum learning approach in which the fine-tuning is con-
ducted by gradually adding more difficult image batches. Our
results show a typical gain of around 2% over standard self-
paced learning. Although curriculum self-paced learning alone
surpasses the Cycle-GAN translation in only one cross-domain
benchmark (PASCAL VOC 2007+2012→Clipart1k) when ap-
plied on the baseline model (trained only on source), the com-
plete framework, with all the components in place, provides
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Fig. 3. Examples of detected cars provided by the baseline Faster R-CNN (first row) versus detections provided by two ablated versions of our framework
(second and third rows) and our full domain adaptation framework based on Cycle-GAN and curriculum self-paced learning (fourth row). Samples are
selected from Sim10k→Cityscapes (first three columns) and KITTI→Cityscapes (last three columns) experiments. Green bounding boxes represent correct
detections; red bounding boxes represent false positives; blue bounding boxes represent false negatives. Best viewed in color.

state-of-the-art improvements in each and every case. Another
benefit of our curriculum learning approach over the standard
one is that it provides more stable results, and the results can be
easily replicated under random initialization or different self-
paced learning settings.

4.7. Qualitative Analysis

Figure 3 illustrates some typical detection results of the base-
line Faster R-CNN versus our framework. Object detections
provided by ablated versions of our framework are also in-
cluded. In general, we observe that the domain-adapted mod-
els are able to detect more cars (depicted inside green bound-
ing boxes in Figure 3), i.e. the number of false negatives (blue
bounding boxes in Figure 3) is reduced. In the same time, the
domain-adapted models give more false positives (red bound-
ing boxes in Figure 3). It seems that the self-paced learning
framework applied after Cycle-GAN adaptation (third row in
Figure 3) has more false positives than the other domain adap-
tation methods (second and fourth rows in Figure 3).

4.8. Varying the Number of Curriculum Batches

In the experiments presented so far, we fixed the number of
curriculum batches to k = 3 without particularly tuning this pa-
rameter. However, it is interesting to analyze the influence of k
on the performance level of the object detector. We thus present
results on Sim10k→Cityscapes and KITTI→Cityscapes with
various values for k ∈ {1, 2, ..., 10} in Figure 4. When k = 1, cur-
riculum self-paced learning becomes simple self-paced learn-
ing (without curriculum). The results reported in Figure 4 in-
dicate that all AP scores for k ∈ {2, 3, ..., 10} are superior to

Fig. 4. AP scores (in %) with different values for k (the number of
batches) between 2 and 10, during curriculum self-paced learning on
Sim10k→Cityscapes (blue) and KITTI→Cityscapes (red). Best viewed in
color.

the AP scores for k = 1, indicating that curriculum is useful
regardless of the number of batches. On Sim10k→Cityscapes,
the best AP score (47.91%) is obtained for k = 7, while on
KITTI→Cityscapes, the top AP score (44.13%) is reported for
k = 6. Therefore, we conclude that our choice of fixing k = 3
for all the other cross-domain object detection experiments is
not optimal. Since the AP scores for k ∈ {2, 3, ..., 8} are fairly
stable, setting k = 3 does not seem such a bad choice in the end.
On both data set pairs, we observe slight performance drops for
k ≥ 9, yet still higher than k = 1.
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Table 5. AP scores (in %) of a state-of-the-art domain adaptation method (Chen et al., 2018) versus our domain adaptation approach based on curriculum
self-paced learning, considering the exact same Faster R-CNN baseline (B). Both domain-adapted (DA) methods include images without ground-truth
labels from the target domain. The Faster R-CNN baseline (B) without adaptation, i.e. trained only on source, is also included to point out the absolute
gain of each domain adaptation technique. Results are reported for Sim10k→Cityscapes and KITTI→Cityscapes.

Faster R-CNN Train Data Sim10k→City KITTI→City
B (Chen et al., 2018) Source 30.12 30.20
DA (Chen et al., 2018) Source+Target (no labels) 38.97 (+8.85) 38.50 (+8.30)
DA (ours) on top of B (Chen et al., 2018) Source+Target (no labels) 45.98 (+15.31) 42.89 (+12.69)

Table 6. AP scores (in %) of various ablated versions of our framework versus our full framework, considering two object detectors as baselines: RetinaNet
and Faster R-CNN. Results are reported for Sim10k→Cityscapes and KITTI→Cityscapes.

Detector Train Data Sim10k→City KITTI→City
RetinaNet Source 41.56 39.35
RetinaNet Source + Target (self-paced) 47.37 42.71
RetinaNet Source + Target (curriculum) 48.41 43.87
RetinaNet Source + Source→Target (Cycle-GAN) 46.43 42.00
RetinaNet Source + Source→Target (Cycle-GAN) + Target (self-paced) 49.81 43.95
RetinaNet Source + Source→Target (Cycle-GAN) + Target (curriculum) 51.04 46.68
RetinaNet Target 66.03 66.03
Faster R-CNN Source 30.67 31.52
Faster R-CNN Source + Target (self-paced) 34.39 35.64
Faster R-CNN Source + Target (curriculum) 35.80 37.02
Faster R-CNN Source + Source→Target (Cycle-GAN) 41.53 38.72
Faster R-CNN Source + Source→Target (Cycle-GAN) + Target (self-paced) 46.84 41.52
Faster R-CNN Source + Source→Target (Cycle-GAN) + Target (curriculum) 47.68 43.86
Faster R-CNN Target 62.73 62.73

4.9. Changing the Baseline Faster R-CNN

As it is hard to replicate the Faster R-CNN baseline results
reported in competing works due to the unavailability of pre-
trained models and the stochasticity of the optimization algo-
rithm, the commonly agreed evaluation methodology in cross-
domain object detection implies starting from a slightly dif-
ferent baseline. This statement is confirmed by works such
as (Chen et al., 2018; Khodabandeh et al., 2019; Saito et al.,
2019; Shan et al., 2019; Zheng et al., 2020; Zhu et al., 2019).
However, a completely fair evaluation in terms of AP can only
be made by starting from the exact same baseline model. Since
we were able to obtain the pre-trained Faster R-CNN base-
line of Chen et al. (2018), we applied our cross-domain adap-
tation approach on top of their baseline, reporting the corre-
sponding results in Table 5. We hereby note that our domain
adaptation method outperforms the approach of Chen et al.
(2018) by a significant margin on both Sim10k→Cityscapes
and KITTI→Cityscapes. Our absolute performance gains are
within the same range as those reported in Table 3 for our
method (which was applied on top of our own Faster R-CNN
baseline), confirming the significant improvements regardless
of the Faster R-CNN baseline used as starting point.

4.10. Applicability to Other Detectors (RetinaNet)

In order to demonstrate that our cross-domain adaptation ap-
proach is not tied to the Faster R-CNN model, we perform do-

main adaption experiments considering a RetinaNet object de-
tector as baseline. In Table 6, we report the cross-domain re-
sults of RetinaNet, comparing the performance gains induced
by each component in our framework on top of RetinaNet with
the analogous gains on top of Faster R-CNN (the results for
Faster R-CNN are copied from Table 4 to improve readability).
We observe that the RetinaNet baseline is significantly better
than the Faster R-CNN baseline. Even so, our domain adapta-
tion approach based on Cycle-GAN and curriculum self-paced
learning brings significant improvements to the RetinaNet base-
line, our absolute gains being +9.48% on Sim10k→Cityscapes
and +7.33% on KITTI→Cityscapes. In summary, we conclude
that our domain adaptation approach is applicable to at least
two object detectors, namely Faster R-CNN and RetinaNet.

4.11. Comparison with Other Difficulty Metrics

In this work, we proposed to measure difficulty based on the
number of detected objects divided by their average bounding
box area, as defined in Equation (1). We have chosen this mea-
sure in favor of a more generic image difficulty estimation ap-
proach proposed by Ionescu et al. (2016) and a domain dis-
criminator (a CNN that discriminates between source and tar-
get samples) used by Saito et al. (2019). In order to demonstrate
that our difficulty measure provides better results, we conduct a
set of additional experiments. For the experiments, we first train
the Faster R-CNN on original source images and on images
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Table 7. AP and mAP scores for easy, medium and hard image batches, provided by Faster R-CNN trained on original source images and on images
translated by Cycle-GAN. Results are reported for Sim10k→Cityscapes, KITTI→Cityscapes and PASCAL VOC 2007→Clipart1k benchmarks. The
batches are obtained using three different difficulty estimation methods.

Data Set Difficulty Measure Easy Medium Hard
Sim10k→Cityscapes #objects / average size (ours) 44.43 43.51 36.90
Sim10k→Cityscapes image difficulty predictor (Ionescu et al., 2016) 42.01 43.43 43.36
Sim10k→Cityscapes domain discriminator (Saito et al., 2019) 42.96 40.76 44.95
KITTI→Cityscapes #objects / average size (ours) 40.70 40.05 38.08
KITTI→Cityscapes image difficulty predictor (Ionescu et al., 2016) 38.00 39.88 40.36
KITTI→Cityscapes domain discriminator (Saito et al., 2019) 39.85 37.81 41.35
PASCAL VOC 2007→Clipart1k #objects / average size (ours) 29.21 18.87 13.00
PASCAL VOC 2007→Clipart1k image difficulty predictor (Ionescu et al., 2016) 26.72 21.02 20.89
PASCAL VOC 2007→Clipart1k domain discriminator (Saito et al., 2019) 23.84 20.92 25.43

Table 8. AP and mAP scores (in %) of the self-paced learning method versus three curriculum self-paced learning methods. Each curriculum method is
based on a different difficulty estimation approach. All self-paced learning methods are applied after domain adaptation with Cycle-GAN. Results are
reported for Sim10k→Cityscapes, KITTI→Cityscapes and PASCAL VOC 2007→Clipart1k benchmarks. Best results are highlighted in bold.

Sample selection for self-paced learning Sim10k→City KITTI→City VOC→Clipart
random 46.84 41.52 25.53
image difficulty predictor (Ionescu et al., 2016) 47.02 42.13 26.61
domain discriminator (Saito et al., 2019) 45.76 40.22 25.28
#objects / average size (ours) 47.68 43.86 27.64

translated by Cycle-GAN. The model is thus already adapted
to the target domain and should provide more reliable labels on
real target images. We next apply the model on target domain
images and we divide the images into k = 3 batches, in increas-
ing order of difficulty. We employ here three different difficulty
measures: the one that we proposed (number of objects divided
by their average area), an image difficulty predictor (Ionescu
et al., 2016) and a domain discriminator (Saito et al., 2019).

We provide the corresponding AP and mAP scores on
easy, medium and hard batches for the first three benchmarks,
namely Sim10k→Cityscapes, KITTI→Cityscapes and PAS-
CAL VOC 2007→Clipart1k, in Table 7. Since the experi-
ments refer to the easy-to-hard split performed on the target
set, the results reported for PASCAL VOC 2007→Clipart1k
are completely equivalent to the results for PASCAL VOC
2007+2012→Clipart1k. We note that, for our difficulty mea-
sure, the AP scores on the easy batch of images are higher than
the AP scores on the medium batch. We observe the same be-
havior on the medium batch with respect to the hard batch. Un-
like our approach, the image difficulty predictor does not seem
to be well correlated to the AP scores on the car class, i.e. it
does not produce the desired results for Sim10k→Cityscapes
and KITTI→Cityscapes. Its highest AP score (43.43%) on
Sim10k→Cityscapes is obtained for the medium batch, while
its highest AP score (40.36%) on KITTI→Cityscapes is ob-
tained for the hard batch. The domain discriminator is also
not well correlated to the AP scores. It gives higher AP scores
for the hard and the easy batches, respectively. The domain
discriminator gives its lowest AP scores on the medium batch.
On PASCAL VOC 2007→Clipart1k, our image difficulty mea-

sure as well as the image difficulty predictor generate difficulty
batches that are well correlated to the mAP scores of the Faster
R-CNN. Nonetheless, our image difficulty measure gives higher
differences in terms of mAP between the easy, medium and hard
batches. We conclude that our difficulty measure is the only one
that correlates to the AP and mAP scores on the easy, medium
and hard batches, for all three benchmarks. In other words, the
AP and mAP scores on the easy, medium and hard batches (as
determined by our difficulty measure) decrease gradually from
the easy batch to the medium batch and from the medium batch
to the hard batch, respectively.

The correlations between the AP/mAP scores and the diffi-
culty levels of the easy, medium and hard batches determined
by the three different difficulty measures are good indicators
for knowing if these measures would be useful in a curriculum
learning setting. Nevertheless, we take one step further and
put these difficulty measures to the test in the context of cross-
domain object detection. Each difficulty measure results in a
specific curriculum learning approach. In Table 8, we compare
the standard self-paced learning approach with the curriculum
self-paced learning approaches resulting from the three diffi-
culty measures. We note that the curriculum learning strategy
based on the image difficulty predictor (Ionescu et al., 2016)
attains better results than the standard self-paced learning ap-
proach based on random sample selection. However, its im-
provements are lower than those of our curriculum strategy
based on the number of detected objects divided by their aver-
age bounding box size. We believe that this difference appears
because our method is focused precisely on the detected ob-
jects, while the image difficulty predictor is a generic approach
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Table 9. AP and mAP scores (in %) of the Cycle-GAN domain adaptation framework (ii) versus our full framework (iii), both based on Faster R-CNN.
Results are reported for all 20 object classes in PASCAL VOC 2007→Clipart1k. Results for the baseline Faster R-CNN (i), trained only on source data,
and the target domain Faster R-CNN (iv), trained on target data with ground-truth labels, are also included for comparison. The best results (except for
the in-domain Faster R-CNN) are highlighted in bold.
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(i) 18.73 10.34 47.44 9.09 12.43 15.15 29.14 24.36 9.09 27.71 0.00 24.62 5.58 27.27 41.92 30.87 23.15 0.00 1.11 18.45 16.78
(ii) 21.31 15.54 52.76 13.31 12.64 19.20 25.12 29.66 9.09 30.13 8.59 22.51 9.09 21.82 46.56 36.29 20.28 0.00 12.17 23.20 18.33
(iii) 27.64 22.25 61.51 17.85 16.02 34.76 34.92 31.97 9.83 31.54 26.67 23.96 10.83 23.48 49.79 55.27 27.27 5.73 22.10 25.34 21.62
(iv) 33.89 19.08 47.27 37.75 25.97 29.00 23.36 43.70 19.70 42.70 38.93 26.12 21.50 29.95 41.16 66.07 33.00 44.91 8.50 35.56 43.64

Table 10. AP and mAP scores (in %) of the Cycle-GAN domain adaptation framework (ii) versus our full framework (iii), both based on Faster R-CNN.
Results are reported for all 20 object classes in PASCAL VOC 2007+2012→Clipart1k. Results for the baseline Faster R-CNN (i), trained only on source
data, and the target domain Faster R-CNN (iv), trained on target data with ground-truth labels, are also included for comparison. The best results (except
for the in-domain Faster R-CNN) are highlighted in bold.
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(i) 26.14 27.27 41.70 22.52 20.62 37.16 27.73 24.06 15.58 34.04 19.51 21.71 14.88 22.55 39.61 30.13 37.77 4.55 17.82 24.66 38.88
(ii) 30.43 24.86 55.65 22.88 21.07 40.25 42.39 29.09 14.58 41.91 14.60 20.40 10.50 22.50 55.96 41.53 39.56 9.09 20.46 34.43 46.80
(iii) 37.83 41.79 71.97 30.81 30.88 51.00 40.41 39.53 18.47 48.04 29.63 16.41 8.15 26.94 75.39 55.66 41.58 7.68 30.58 38.09 53.60
(iv) 33.89 19.08 47.27 37.75 25.97 29.00 23.36 43.70 19.70 42.70 38.93 26.12 21.50 29.95 41.16 66.07 33.00 44.91 8.50 35.56 43.64

that looks at the entire scene. Using the domain discriminator
seems to be a poor decision. Indeed, the AP and mAP scores
of the curriculum learning strategy based on the domain dis-
criminator on all three benchmarks are worse than the standard
self-paced learning approach. It seems that the target samples
which are closer to the source samples are not necessarily those
for which the object detector (trained on source data) provides
the best predictions. This seems to hurt the self-paced learning
process. We thus conclude that our curriculum learning strat-
egy is the best among the three curriculum learning strategies
evaluated in the experiments summarized in Table 8.

4.12. Results on Various Object Categories

In order to compare with most of the related works (Chen
et al., 2018; Khodabandeh et al., 2019; Saito et al., 2019; Shan
et al., 2019; Zheng et al., 2020; Zhu et al., 2019), we pre-
sented results on Sim10k→Cityscapes and KITTI→Cityscapes.
Although these cross-domain benchmarks are commonly-used
in literature, we and others before us reported the AP scores
on the car class only, this being the only common class be-
tween the source and the target data sets. In this context, one
may naturally assume that the cross-domain object detection
approach works only for a single class. In order to demon-
strate that our approach works for multiple classes, we con-
sidered two additional settings, in which the source data set is
either PASCAL VOC 2007 or PASCAL VOC 2007+2012 and

the target data set is Clipart1k. These data sets have 20 classes
in common. The mAP scores are already reported in Table 3,
but some aspects still remained unanswered, e.g. how does our
model perform on each object class? In order to clarify such
aspects, we report the complete results on the PASCAL VOC
2007→Clipart1k benchmark in Table 9 and on the PASCAL
VOC 2007+2012→Clipart1k benchmark in Table 10. The ta-
bles include the AP scores on all 20 classes, as well as the over-
all mean AP (mAP) score of each model.

The baseline Faster R-CNN (trained only on PASCAL VOC
2007) attains a mAP score of 18.73%. While adding source im-
ages translated by Cycle-GAN into the training is useful (the
mAP improvement is around 2.58%), our complete approach
based on Cycle-GAN and curriculum self-paced learning at-
tains a larger improvement (8.91%) in terms of mAP. Look-
ing at the individual object classes, we note that our domain
adaption approach brings performance improvements for 18
categories. The exceptions are the dining table and the horse
classes. Compared with the Cycle-GAN domain adaptation
model, we obtain better AP scores for each and every class.
Remarkably, we obtain improvements higher than 24% with re-
spect to the baseline Faster R-CNN for two object classes, cow
and person. For another four categories, airplane, bike, bottle
and sofa, our improvements are higher than 12%. We thus con-
clude that the reported results demonstrate that our approach
performs well on domain adaptation cases with multiple object
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classes, being able to improve performance over the baseline
Faster R-CNN for almost all object classes (18 out of 20).

We note that Table 9 also includes the results of an in-domain
Faster R-CNN trained on images from the target domain, i.e.
from Clipart1k, on the last row. Perhaps surprisingly, our un-
supervised domain adaptation model surpasses the in-domain
Faster R-CNN on 6 object classes. This can be explained by the
fact that the number of training images from the target domain
is much lower (only 500). Our unsupervised domain adaptation
model benefits from a much larger source data set, PASCAL
VOC 2007, which contains thousands of images. These results
set a good example that shows the benefit of domain adaptation
methods when labeled training data from the target domain is
scarce.

In Table 10, we present the AP scores on each category for
the models trained on PASCAL VOC 2007+2012 as source do-
main. Our domain adaption method provides the highest gains
for 16 out of 20 object categories. For the bus and the sheep
classes, the Cycle-GAN domain adaptation model is better. No-
tably, for 8 object classes, the improvements provided by our
method are 10% higher than the improvements brought by the
domain adaptation based on Cycle-GAN. However, there are
two classes, dining table and dog, for which domain adaption
does not seem to work at all. On the positive side, our domain
adaptation approach surpasses the in-domain Faster R-CNN on
12 object classes. We therefore conclude that the results pre-
sented in Table 10 are consistent with those presented in Ta-
ble 9.

5. Conclusion

In this paper, we presented a domain adaptation method for
cross-domain object detection. Our method is based on two
adaptation stages. First of all, images translated from the source
domain to the target domain using Cycle-GAN are added into
the training set. Then, a curriculum self-paced learning ap-
proach is employed to further adapt the object detector using
real target images annotated with pseudo-labels. We compared
our method with several state-of-the-art-methods (Chen et al.,
2018; Inoue et al., 2018; Khodabandeh et al., 2019; Saito et al.,
2019; Shan et al., 2019; Zheng et al., 2020; Zhu et al., 2019) and
we obtained higher absolute performance gains with respect to
the corresponding Faster R-CNN baselines. Although we at-
tained superior improvements than those reported in the recent
literature (Chen et al., 2018; Inoue et al., 2018; Khodabandeh
et al., 2019; Saito et al., 2019; Shan et al., 2019; Zheng et al.,
2020; Zhu et al., 2019), we notice that, in three out of four
benchmarks, there are still significant performance gaps with
respect to the Faster R-CNN models that are trained on the tar-
get domain with ground-truth labels (see Table 3). We believe
that the performance gap can be further reduced by unifying
multiple source domains during training. Data augmentation
after pseudo-labeling could also play an important role in gain-
ing additional performance. We aim to explore these directions
in future work.
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