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ABSTRACT

We tackle the novel problem of incremental unsupervised domain adaptation (IDA) in this paper.
We assume that a labeled source domain and different unlabeled target domains are incrementally
observed with the constraint that data corresponding to the current domain is only available at a time.
The goal is to preserve the accuracies for all the past domains while generalizing well for the current
domain. The IDA setup suffers due to the abrupt differences among the domains and the unavailability
of past data including the source domain. Inspired by the notion of generative feature replay, we
propose a novel framework called Feature Replay based Incremental Domain Adaptation (FRIDA)
which leverages a new incremental generative adversarial network (GAN) called domain-generic
auxiliary classification GAN (DGAC-GAN) for producing domain-specific feature representations
seamlessly. For domain alignment, we propose a simple extension of the popular domain adversarial
neural network (DANN) called DANN-IB which encourages discriminative domain-invariant and
task-relevant feature learning. Experimental results on Office-Home, Office-CalTech, and DomainNet
datasets confirm that FRIDA maintains superior stability-plasticity trade-off than the literature.

1 Introduction

The deep learning techniques have manifested impressive performances for a wide range of visual inference tasks
([1, 2]). Yet, there persist two vital issues with deep convolutional neural networks (CNN). First, these models often
find it onerous to generalize confidently when exposed to a new environment if there exists distributions-gap ([3]).
The domain adaptation (DA) ([4, 5]) techniques come to the rescue in such a situation. Another problem surfaces
when task-specific data are obtained in an online fashion. Although it is plausible for human beings to acquire new
knowledge without impeding the existing skills, machine learning techniques are prone to overwrite the parameters
learned based on the previous data once they experience new information. Generally, access to data related to old tasks
may be restricted due to several reasons. This hinders the possibility to maintain the performance on the old tasks
persistently which is known as the catastrophic forgetting ([6]) of incremental learning. Nevertheless, several measures
have been introduced to judiciously combat the forgetting issue in neural networks ([7, 8, 9, 10]).
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Figure 1: The figure depicts the problem of IDA and how FRIDA works in this setup. The labeled source domain S
arrives as τ0 and the unlabeled target domains Tτ follow in subsequent time steps. The FRIDA model at a given τ is
initialized from the most recent previous model of τ − 1 and in this way the past information propagates temporally and
avoids forgetting. At any τ , testing can be done on the domains seen so far and the domain identity is unavailable for
the test samples.

In this paper, we bring in a new incremental learning paradigm for the unsupervised DA problem (IDA) to carry out
the task of image classification. In unsupervised DA, there exists a labeled source domain S and an unlabeled target
domain T in pair with P (S) 6= P (T ). In contrast, the proposed non-stationary IDA setup considers that the domains
are available progressively. While the labeled S arrives at τ = 0, different unlabeled target domains {Tτ}Tτ=1 appear at
different time-stamps. Data corresponding to the current domain are only available at a given time which means S
cannot be directly accessed at τ ≥ 1. Further, we do not anticipate any constraint on the domain-shifts. The proposed
setup applies to the real-world classification problems on memory-constrained systems where data from the same set
of categories can come temporally from varied sources and there is a lack of available annotations. Some possible
application areas include robot vision, medical imaging, remote sensing. For example, a robot with limited memory
capacity may be trained with synthetic data and is subsequently deployed into real environments where the robot has to
navigate through different rooms. Here, the labeled synthetic domain acts as S where the different room in the real
space signify the Tτ s. The goal is that the robot should be able to memorize all the real environments throughout.
Although there exists barely a few IDA techniques in the literature ([11, 12, 13]), they cannot handle our IDA setup
since either they require S to be always available or assume some homogeneity across all the source and target domains
(like insignificant domain shift).

Despite the unavailability of data from past domains, we argue for trickily solving IDA by adapting every new target
domain using an unsupervised DA technique. For that, we have to consider some representative labeled samples from
the previous domains to serve as the replay memory in the form of an auxiliary source domain. Although data can be
stored for the past domains, obtaining the labels is non-trivial given that the target domains are devoid of annotations.
While we can store the original training data for S, pseudo-labeling can be carried out to approximate the labels for
the target domains. However, this starkly contrasts with the natural learning mechanisms of the human brain, which
does not consider the retrieval of raw information similar to the originally exposed impressions ([14]). Hence, storing
domain-specific real samples is not encouraged.

To this end, the notion of non-rehearsal based generative replay to avoid the forgetting problem has lately gained
popularity for class incremental learning (CIL) ([15]). In this case, a deep generative model is trained to produce
synthetic data for the old classes continuously. Joint training is henceforth carried out given these generated data
along with the labeled training data of the novel classes. Some initial works ([16]) focus on generating images for
replay but training GAN for image generation in an incremental way is extremely hard. In contrast, some recent
endeavors ([17, 18]) switch to the notion of feature replay where a pre-trained feature extractor is used to generate
visual representations from the images. This has gained popularity since handling GAN for feature vectors in a
low-dimensional manifold is tractable than high-dimensional images. This persuades us to opt for the notion of feature
replay to solve IDA but we would like to point out that such CIL approaches cannot be directly applied here given that
IDA is different and more challenging than CIL. IDA is a label-deficit setup working with multiple diverse domains
while CIL is a single domain supervised model. Hence, we advocate the need to design a new generative feature
replay scheme for IDA that should be able to output class-specific embeddings together with the pseudo class labels for
different domains.
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Motivated by the above arguments, we propose a novel generative modeling based IDA framework abbreviated as
FRIDA (Feature Replay for Incremental Domain Adaptation) (Fig. 1) which is the first of its kind. We use a common
feature extractor for all the domains. As per the design, FRIDA consists of two novel modules for feature generation
from the past domains and adapting the new domains and both the stages repeat alternately. A domain generic AC-GAN
(DGAC-GAN) is proposed as the replay memory which is incrementally trained to synthesize features for the past
domains at every τ ≥ 1. DGAC-GAN has a novel architecture and it can be considered to be an extension of the
standard AC-GAN model ([19]) for multi-domain and multi-class data. For learning the joint distribution for multiple
domains and classes, we propose to dually condition DGAC-GAN on the novel notion of domain information together
with class information whereas AC-GAN is only class-conditioned. Additional regularization is also imposed in
DGAC-GAN to ensure a high correlation between the real and generated samples.

The motivation behind using DGAC-GAN generated samples instead of storing the original samples of the previous
domains can be described in two points, (i) Storing of previous samples increase the data storing capacity (ii) At any
given time-stamp τ the data may be unavailable due to data privacy issues or distortion of original data of previous
domains or any other reason. For example, client1 has an annotated dataset of domain D0 at a time-stamp τ = 0,
client2 has an unannotated dataset from a domain D1 at time-stamp τ = 1. But due to the reasons at (ii) D0 is not
available to the client2, then DGAC-GAN can generate the synthetic data of domain D0 for performing adaptation with
D1. Again if at time-stamp τ = 2 client3 arrives with a domain D2 then DGAC-GAN will produce the synthetic data
of domains D0 and D1 to perform adaptation among D0, D1 and D2. The storing of previous domain data violates the
motivation of our IDA. The success of FRIDA mainly depends on the correct data generation ability of DGAC-GAN in
the absence of the original data.

An unsupervised DA module called Information Bottleneck (IB) DANN (DANN-IB) is proposed to perform feature
adaptation and classification given the synthetic features of the previous domains and the available data for the current
domain. For DA, we choose to deal with the DANN framework ([20]) given its simplicity and robustness and inculcate
two improvements that can be helpful for IDA. First, the IB principle ([21]) is introduced in the DANN loss to encourage
the latent space to be truly domain agnostic. Besides, we propose to utilize a multi-class discriminator in place of
the standard binary discriminator of DANN to cope up with the multi-modal nature of the domains. A thresholding
based pseudo-labeling is carried out based on the outputs of the DA stage to obtain confident domain samples to update
DGAC-GAN. Our novelties are three-fold:

i) We tackle a novel IDA problem setup where a single labeled source and multiple unlabeled target domains are dealt
with considering the unavailability of information from all the past domains at every time and propose a framework
called FRIDA. ii) We rely on the notion of generative feature replay for this purpose and introduce a novel replay
memory module called DGAC-GAN to output multi-domain features and a DA solver module called DANN-IB for
adaptation and classification. Both are lightweight models which makes FRIDA easy to deploy in general. iii) We
demonstrate the efficacy of FRIDA for three benchmark and large-scale datasets and rigorously ablate the model.

2 Related works

Incremental learning: Incremental learning ([7]) is the process to continually train a classifier for sequentially available
data for novel tasks by taking care of the catastrophic forgetting problem. The problem of class incremental learning is by
far the most studied setup in this aspect. There exist three different types of IL approaches in the literature, regularization
based, dynamic model architecture based, and exemplar replay based, respectively. While the regularization based
methods ([8, 22, 23]) penalize any change to the parameters important for the previous tasks, the dynamic modeling
based approaches ([24, 25]) increase the model capacity to accommodate new tasks. The replay based methods either
utilize real samples ([26, 27]) (rehearsal) or synthetic samples (non-rehearsal) fabricated by some generative models
([17]) corresponding to the previous tasks in order to prevent forgetting. Different versions of the conditional GAN
architecture have been appraised to be the automatic choice for this purpose ([17, 16, 28]).

Incremental domain adaptation: The computer vision literature is rich in sophisticated DA techniques for problems
like object recognition, semantic segmentation, activity recognition, person re-identification ([29]). Handling the
discrepancy between the training and test data distributions is a long lasting problem in machine learning. In this regard,
DA models are able to align the data distributions either implicitly through adversarial approaches or explicitly using
standard divergence measures ([30, 31, 32, 20, 33]).

The notion of IDA is comparatively less studied in the literature and is mainly designed for the scenario when an
unsupervised DA model trained for the domain pair (S, T1) is to be updated for the pair (S, T2) without forgetting
the previously learned mapping. The few existing works ([34, 12]) in this line require prior information regarding the
domains or their inter-relationships in terms of graph based structures. Besides, some of the techniques ([13, 11]) are
designed for continuously changing environments where the domain-shift is assumed to be marginal. Methods like
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([13, 11, 35]) utilize the notion of memory replay to control the forgetting by incorporating additional distillation loss
functions or regularizers. However, these methods are not tailored to deal with the data-free IDA formulation introduced
here given their over-reliance on the original source-domain samples.

Both the DANN-IB and DGAC-GAN models are different than the existing literature. For example, there exists a
number of GAN models in the literature for multi-domain image to image translation ([36, 37]) or class incremental
training ([18]) but none can be utilized to handle the IDA setup. Basically, what makes DGAC-GAN different from
them are: i) it can deal with multiple domains containing several classes continually as opposed to [18] which can
only perform class-specific feature generation for a given domain, ii) Although our non-stationary DGAC-GAN uses
multiple conditioning to synthesize domain and class specific features, it is different from the translation models of
[36, 37] which require paired cross-domain data to carry out the image translation task and are stationary in nature. On
the other hand, the adversarial training strategy of DANN has been historically extended for generating a discriminative
shared feature space like in [38, 39]. However, [38] is a heavy model with separate binary discriminators designed
for each of the classes plus the training of [38] is directed by the notion of pseudo-labeling. DANN-IB is a simple
model with a C + 1-class discriminator and a single adversarial loss. What is more, DANN-IB integrates the notion
of information bottleneck principle to eliminate the effects of domain-dependent artifacts which may jeopardise the
alignment process, as opposed to other DA approaches.

3 Proposed methodology

Preliminaries: We assume the presence of T + 1 visual domains (T0, T1, · · · , TT ) where T0, also denoted as S,
represents the source domain while {Tτ≥1} defines the sequence of the target domains. In our setting, S is equipped
with labeled training samples D0 = {xi0, yi0}

|D0|
i=1 whereas we have access to unlabeled samples for the target domains:

Dτ = {xjτ}
|Dτ |
j=1 for τ ≥ 1. A given xτ ∈ Rd denotes the output of a pre-trained CNN which projects the images

onto a d-dimensional feature space. Ours is a closed-set setup where all the domains have samples from a fixed set
of C semantic categories. Furthermore, the different domains follow non-identical data distributions: P (Ti) 6= P (Tj),
0 ≤ i 6= j ≤ T and we assume no prior knowledge regarding the domains. Only Dτ is considered to be available at τ .
Given that, we aim to design an adaptation cum classification framework that should be able to continuously adapt the
new target domains while ensuring that the performance on the previous domains remains unhindered. Some of the
important variables are depicted in Table 1.

3.1 Overview of the FRIDA framework

Figure 2: The working of FRIDA for two time steps where the DGAC-GAN and the DANN-IB are interchangeably
utilized. Details can be found in Section 3.1.

While adapting a new target domain, FRIDA ensures the generation of synthetic features corresponding to the past
source and target domains using DGAC-GAN and these samples act as the auxiliary source domain for the unsupervised
DANN-IB. Both the models can be trained incrementally using the notion of joint training for accommodating new
domains while preserving the past knowledge. With an abuse of notation, we denote the instances of DGAC-GAN and
DANN-IB at time τ by GANτ and DAτ , respectively. In the following, we discuss the FRIDA workflow at τ = 0, 1
and for τ ≥ 2 (also mentioned in Algorithm 1).

A DGAC-GAN is first trained on D0 (GAN0). At τ = 1, we have access to the unlabeled D1 from T1 but samples from
D0 can no longer be obtained. At this point, GAN0 is utilized to generate class-wise synthetic samples of S denoted by
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S(D0), T (Dτ≥1) Source Domain, Target Domains
D̃0

0 Gan generated Source domain at τ = 0

D̃τT Gan generated samples of different
domains(τ ≥ 0) at different timestamp T ≥ 0

D̂τ≥1 Pseudo Labeled from dann w.r.t each target
domains (τ ≥ 1) at that particular timestamp

[z, y, τ ] [z ∈ N (0, I) (noise), class labels, domain labels]
Table 1: List of important notation

D̃0
0 . The DANN-IB module at τ = 1 (DA1) is adversrially trained to align D̃0

0 and D1 and a C-class classifier on D̃0
0 is

modeled simultaneously. DA1 can now handle test samples from S ∪ T1. Our focus now is to obtain GAN1 that can
subsequently produce synthetic samples both for S and T1 at τ = 2. However, D1 is unlabeled while DGAC-GAN
requires label information during training. As a remedy, we propose a pseudo-labeling stage to obtain a subset of highly
confident samples denoted by D̂1 from D1 by thresholding the classifier’s outputs of DA1. GAN1 is henceforth trained
by considering D̃0

0 ∪ D̂1 as real (Fig. 2).

For τ ≥ 2, GANτ−1 is used to generate synthetic samples along with the pseudo labels denoted by D̃τ−1
0 ∪ D̃τ−1

1 ∪
· · · ∪ D̃τ−1

τ−1 for S and the τ − 1 target domains. Now for adapting the generated data with Dτ , DAτ considers
D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 to constitute an auxiliary source domain Sτ while Dτ acts as the target Tτ . After training,
we obtain D̂τ using pseudo-labeling and subsequently train GANτ with D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 ∪ D̂τ . For
modelling GANτ or DAτ , we initialize the parameters of the models from the snapshots of GANτ−1 and DAτ−1.
Details of DGAC-GAN and DANN-IB are mentioned below.

The FRIDA is composed of the knowledge of DGAC-GAN and DANN-IB, where DGAC-GAN is dedicated to
generating the samples of previous domains from noise, and DANN-IB is responsible for performing the adaptation
between newly arrived domains with the generated samples of the previous domains. Our DGAC-GAN is capable of
generating the samples according to the class labels as well as domain labels which differs from the AC-GAN, where it
only be able to generate samples according to their class labels. Since in IDA setup, we work with multiple domains, so
we need to generate samples according to their domain labels along with the class labels as well.

The DANN-IB is an extension of DANN. Instead of considering a binary domain classifier similar to DANN which
fails to preserve the discriminative nature of classes in the source domain, our DANN-IB aligns the domains while
preserving the discriminative nature of source categories by adversarially discriminating among the source classes
(1, 2, ..., C) and the target domain (C + 1).

3.2 DGAC-GAN

Figure 3: The DGAC-GAN model with generator, dis-
criminator sub-networks, and the two classifier heads.

Figure 4: DANN-IB model with the feature encoder and
the two classifier heads.

As mentioned, formalizing a GAN as the replay memory for IDA setup is challenging mainly because of the discrep-
ancies among the domains. A naive possibility would be to use the dynamically expandable GAN models where
new domain-specific generators and discriminators are to be added continuously. However, such a model may have
scalability issue for a large number of domains. Instead, we propose DGAC-GAN (Fig. 3) which maintains a static
architecture over the episodes and can be easily trained incrementally.
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By design, DGAC-GAN consists of a feature generator Ggan(; , θganG ), a binary real/fake discriminator fganD (; , θganD )
and a auxiliary multi-class classifier fganC (; , θganC ). Both fganD and fganC share a common discriminator sub-network
fgansh (; , θgansh ) from which two different classification heads are enacted. We note that the θgans represent the model
parameters. In order to handle multiple domains, we introduce the notion of domain identifier where a given Tτ can
be recognized by an encoding (e.g. one-hot or binary) of the respective time-stamp τ . For ease of understanding, we
represent the encoded domain identifier vector by τ itself.

Given noise samples z ∈ N (0, I), the input to the generator network is the concatenated vector [z, y, τ ]. It is worth
mentioning that the latent vector z is completely agnostic to the domain and the category, and the same z can be
used to generate classwise features of different domains just by using different y and τ . On the other hand, the
inputs to fgansh are the real [x, τ ](d-dimensional feature vector) and the generated [Ggan([z, y, τ ]), τ ] examples both
conditioned on τ . Although the traditional AC-GAN model does not mention any conditioning while feeding data to
the discriminator, however, we choose to condition fgansh on τ in DGAC-GAN so that the discriminator is informed
regarding the domain information barring the need to dynamically expand the network for new domains. The objective
function of DGAC-GAN comprises of two parts: the log-likelihood of the i) correct data source which signifies whether
a given sample is obtained from the original distribution or generated by Ggan: real(r)/fake(f) (Lgans ) and, the ii)
correct class label (Lganc ) given the C categories, respectively, with x′ = Ggan(z, y, τ).

Lgans = E[logP (fganD (x) = r|x) + logP (fganD (x′) = f |z)]

Lganc = E[logP (fganC (x) = y|x) + logP (fganC (x′) = y|z)]
(1)

In order to guarantee an improved overlapping between the original and generated samples classwise, an `2-norm based
regularizer is also considered as follows,

Rgan = Ex∼(τ,y)||Ggan([z, y, τ ])− x||22 (2)

We follow the usual min-max training strategy for optimizing DGAC-GAN where {θganD , θgansh , θganC } are trained by
maximizing Lgans + Lganc and θganG is trained by maximizing Lganc − Lgans − Rgan. As previously mentioned, we
initialize GANτ from a snapshot of GANτ−1. Since GANτ−1 is already trained for S ∪ T1 ∪ · · · ∪ Tτ−1, it becomes
comparatively less demanding for GANτ to incorporate the additional knowledge of Tτ through D̂τ over the existing
knowledge of GANτ−1.

3.3 DANN-IB and pseudo-labeling

At time τ , the goal of the domain adaptation stage is to project the labeled synthetic samples of the previous domains as
generated by GANτ−1: D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 and the unlabeled samples of the current domain Dτ in a common
feature space such that the classifier trained on D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 can be utilized to classify samples from
all the τ domains. The DA module considered in FRIDA is designed for the single-source single-target setup and to
comply with the same, D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 is presumed to constitute an auxiliary source domain Sτ with
labeled samples (X τS ,YτS) while Dτ denotes the target domain Tτ with unlabeled samples X τT . We first discuss the
traditional DANN model and subsequently DANN-IB is elaborated. Given Sτ and Tτ , DANN comprises of a feature
extractor Gdann(; , θdannG ), a domain classifier fdannD (; , θdannD ), and a source domain specific multi-class classifier
fdannC (; , θdannC ) with the learnable parameters {θdann}. To address the domain-shift problem, DANN minimizes the
following objective function3, with respect to {θdannD , θdannC , θdannG }

min{Ldannc (fdannC (Gdann(X τS )),YτS)− λ(Ldannd (fdannD (Gdann(X τS )), 0) + Ldannd (fdannD (GdannD (X τT )), 1))} (3)

where Ldannc and Ldannd denote the multi-class classification loss for samples in Sτ and the binary domain classification
loss for (X τS ,X τT ), respectively. λ is the trade-off parameter and is updated in an adaptive fashion as per [20]. The
ground-truth domain labels for Sτ and Tτ are set to 0 and 1 for Ldannd . Intuitively, fdannD is trained to distinguish the
latent representations of Sτ from those of Tτ , while Gdann is jointly trained to confuse fdannD by maximizing Ldannd

while minimizing Ldannc to avoid any trivial solution. However, merely matching the marginal domain distributions
in the latent space is not appreciative enough for ensuring the discriminative knowledge to be transferred from Sτ to
Tτ . It is highly likely that Gdann is misled by the domain invariant yet task irrelevant factors and fails to capture the
semantic shared information. The problem is very relevant in our IDA setup where Sτ at every τ ≥ 2 is considered

6



to contain samples from multiple diverse domain distributions having significantly different domain-centric artifacts.
From another point of view, fdannD in DANN performs global distributions matching between Sτ and Tτ since it is
designed as a binary classifier. As a result, this overlooks the multi-modal nature of the domain samples and may
promote misclassification for fine-grained categories.

In order to mitigate the aforesaid drawbacks of DANN, we introduce an improved DANN model where i) fdannD
is designed to be a C + 1-class classifier instead of a binary classifier where the samples from Tτ are assigned the
class label C + 1 and the samples from Sτ use the original C labels. The adversarial training now assigns one of
the C labels to each of the target samples, thus assisting in a fine-grained domain alignment between Sτ and Tτ by
minimizing the entropy of the predictions. ii) the information bottleneck (IB) ([21]) regularizer is incorporated in
the latent representations which enforces Gdann to ignore the task irrelevant features and focuses only on preserving
the minimal sufficient statistics of the input data with respect to Sτ and Tτ (Figure 4). We consider the variational
information bottleneck (VIB) ([40]) principle in this respect and re-design Gdann as a stochastic feature extractor which
maps a certain input sample into a Gaussian distributed latent space. We seek to minimize the mutual information
between the original features and the latent representations. However given the intractable nature of the problem, we
instead optimize the variational upper bound. The following regularizerRIB constrains the latent representations to
follow the standard normal distribution Q = N (0, I) as per [40],

RIB = DKL(Q(Gdann(X τS ))||Q) +DKL(Q(Gdann(X τT ))||Q) (4)

In Eq. (4), DKL is the Kullback-Leibler divergence between the respective distributions. The overall loss function for
DANN-IB is in Eq. (5) minimize with respect to {θdannG , θdannC , θdannD }.

min{ Ldannc (fdannC (Gdann(X τS )),YτS)−λ(Ldannd (fdannD (Gdann(X τS )), Y τS )+Ldannd (fdannD (Gdann(X τT )), C+1))+RIB}
(5)

The next step is to obtain pseudo-labeled samples corresponding to Tτ which can further be used to obtain GANτ from
GANτ−1. Obtaining confident pseudo-labels is not straight-forward in the context of domain adaptation. One simple
way is to identify the confident samples where the confidence is measured in terms of class membership values. Using
this idea, we pass Dτ through the trained DANN-IB network to record the class probabilities as provided by fdannC . We
construct the subset of highly confident target samples with pseudo labels D̂τ by selecting samples for each of the class
labels where the class posterior probability exceeds a pre-defined threshold value Th. The analysis of theH∆H for
DANN-IB is provided in the Appendix 5.

Algorithm 1 Working principle of FRIDA

Input: D0, D1,D2,· · · ,DT and threshold Th
Output: The trained GANτ and DAτ at each τ ∈ [1, T ]

1: if τ = 0 then
2: Train GAN0 on D0

3: else if τ = 1 then
4: Generate D̃0

0 using GAN0

5: Train DA1 with S1 as D̃0
0 and T1 as D1 (Eq. 5)

6: Apply pseudo-labeling with threshold Th to obtain D̂1 from D1

7: Obtain GAN1 using D̃0
0 ∪ D̂1 as the real data

8: else if τ ≥ 2 then
9: Obtain D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 using GANτ−1

10: Train DAτ with Sτ = D̃τ−1
0 ∪ D̃τ−1

1 ∪ · · · ∪ D̃τ−1
τ−1 and Dτ as Tτ (Eq. 5)

11: Obtain D̂τ using pseudo-labeling with Th
12: Obtain GANτ by considering D̃τ−1

0 ∪ D̃τ−1
1 ∪ · · · ∪ D̃τ−1

τ−1 ∪ D̂τ as the real data
13: end if

4 Experiments

Datasets: We evaluate FRIDA on three benchmark DA datasets: Office-Home ([42]), Office-CalTech ([43]), and
DomainNet ([44]), respectively. Here we mention the details of the datasets: i) Office-Home: The office-home data

7



Method T1 T2 T3 T4 T5 Target(AVG) Source (AVG)
A F A F A F A F A A F A F

DANN 1(baseline) 20.88 -7.89 14.00 -4.96 7.45 -3.85 1.12 -0.12 1.27 8.94(±0.30) -4.21 39.14(±0.20) -17.36
DANN 2 (baseline) 33.01 +0.05 31.63 0.00 18.51 +0.10 2.09 +0.40 10.86 19.22∗(±0.25) +0.14 74.28∗ -

DADA [41] - - - - 20.7±0.4* - -
IADA [12] 28.58 -0.74 24.41 -0.49 14.46 -0.77 1.47 -0.40 8.35 15.45 (±0.30) -0.60 74.71∗ -
CUA [11] 20.92 -7.39 13.24 -3.88 7.32 -2.53 1.05 -0.24 1.81 8.87(±0.40) -3.51 39.38(±0.35) -16.55
EWC[8] 20.33 -7.93 13.03 -4.78 7.25 -3.37 1.01 -0.17 0.88 8.50(±0.25) -4.06 36.80(±0.40) -17.43
LWF[23] 20.62 -7.94 13.26 -4.52 7.49 -3.41 1.25 -0.17 1.15 8.75(±0.35) -4.01 37.60(±0.50) -17.34

Ours(FRIDA-DANN) 27.80 -2.44 24.73 -3.06 15.05 -1.10 1.67 -0.08 8.80 15.61(±0.40) -1.67 63.17(±0.50) -3.34
Ours(FRIDA-DANN-IB) 29.92 -1.13 28.19 -1.05 16.79 -0.91 2.84 +0.10 8.98 17.34(±0.25) -0.75 64.71(±0.30) -2.38

Table 2: The performance comparison on the DomainNet dataset. We report the average performance (A) and forgetting
(F) for each domain as well as the entire dataset. A negative average forgetting denotes that on an average, there is a
performance drop for the domain. ’-’ signifies that the accuracy values are constant and * means it is not an incremental
setup. (In %)

Method T1 T2 T3 T(AVG) S(AVG)
A F A F A A F A F

DANN 1(baseline) 73.42 -5.70 45.30 +0.23 45.40 54.71 -2.73 79.18 -10.39
DANN 2(baseline) 76.98 +0.83 48.13 +1.14 63.51 62.87∗+0.99 89.48∗ -

DADA[41] - - - 59.5±0.2* -
IADA [12] 75.60 +1.31 46.18 0.00 59.26 60.35 +0.65 89.37∗ -
CUA [11] 76.10 -1.35 47.45 +1.50 55.42 59.66 +0.07 82.43 -3.89
EWC [8] 73.22 -6.25 46.10 +1.37 47.33 55.55 -2.69 80.63 -8.83
LWF[23] 72.20 -5.33 44.47 +1.45 50.48 55.72 -1.94 79.84 -10.29

Ours(FRIDA(DANN)) 76.06 -1.46 63.40 +0.70 66.20 68.55 -1.08 84.56 -1.57
Ours(FRIDA(DANN-IB)) 77.40 -0.41 64.31 +2.06 67.76 69.82 +0.83 83.16 -0.80

Table 3: The performance comparison using average accuracy (A) and forgetting (F) for Office-Home datasets. ’-’
signifies that the accuracy values are constant for all the episodes. * means it is not an incremental setup. (In %)

consists of four visual domains, Art (A), Clipart (C), Real World (R), and Product (P) each consisting of images from 65
visual categories and a total of 15, 500 images are present over all the domains. ii) Office-CalTech: The Office-Caltech
is an extension of the Office-31 data where the 10 shared classes with the CalTech-256 dataset are considered to obtain
four domains: Webcam (W), DSLR (D), Amazon (A), and CalTech (C). iii) DomainNet: DomainNet is a large-scale
dataset with six visual domains consisting of 0.6 million images from 345 categories. The domains are: Clipart (C), Real
(R), Infograph (I), Painting (P), Sketch (S), and Quickdraw (Q). We randomly choose the source and the sequence of the
target domains for all the datasets. The orders are as follows: R→ P → C → A (Office-Home), A→ D →W → C
(Office-CalTech), and R→ P → C → S → Q→ I (DomainNet). The first domain works as S while the rests denote
the {Tτ}Tτ=1. For all the domains, we randomly select 30% samples to define the test sets while the remaining data are
used during training. We consider the 2048 dimensional feature representations extracted from the Imagenet pre-trained
Resnet-50 ([45]).

Model architecture and training protocol: In DGAC-GAN, the generator Ggan and the shared part of the discrimina-
tor fgansh are implemented as multi-layer perceptrons (MLP) with three layers each. The latent variable z (Section 3.2)
has a dimensionality of 2000 in all the experiments whereas the domain identifier τ is described by three-bit binary
encoding. The discriminator classifiers (fganD , fganC ) are defined in terms of single dense layers. For DANN-IB, the
feature extractor Gdann is represented by a three-layer MLP with latent space dimensionality of 256 while the classifiers

Method T1 T2 T3 T(AVG) S(AVG)
A F A F A A F A F

DANN 1 (baseline) 94.44 0.00 82.03 -4.49 70.92 82.46 -2.25 84.84 -7.63
DANN 2 (baseline) 95.14 -1.05 83.14 +11.23 91.40 89.89∗+5.09 96.53∗ -

DADA[41] - - - 92.0±0.4* - -
IADA [12] 95.14 -1.04 85.39 -2.25 87.83 89.45 -1.65 96.87∗ -
CUA [11] 95.13 -1.04 84.83 +1.12 80.71 86.89 +0.04 88.89 -4.34
EWC [8] 92.36 -3.13 84.83 -1.12 76.56 84.58 -2.13 82.41 -6.08
LWF[23] 95.84 -1.05 85.95 -1.13 82.49 88.09 -0.55 84.84 -6.77

Ours(FRIDA(DANN)) 95.20 -1.75 95.71 -2.10 87.50 92.80 -1.93 94.78 -0.32
Ours(FRIDA(DANN-IB)) 97.67 -1.03 99.07 -1.87 88.42 95.05 -1.45 95.03 +0.23

Table 4: The performance comparison using average accuracy (A) and forgetting (F) for Office-Caltech. ’-’ signifies
that the accuracy values are constant for all the episodes. * means it is not an incremental setup. (In %)
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Figure 5: The plots depicting the evolution of the test accuracy for T1 for (a) DomainNet (b) Office-CalTech, (c)
Office-Home for all the episodes. Drop in accuracies between two consecutive time frames denotes forgetting. The
performance at a time may increase as multiple pseudo labeled domains provide complementary information for better
classifying a domain.

Figure 6: Qualitative analysis of the DGAC-GAN outputs at τ = 3 (which is trained on R̃2 ∪ P̃ 2 ∪ C̃2 ∪ Â3) for
Office-Home. We show the t-SNE plots of the real (red) and generated (green) samples for the domain C for (a) the
model without bothRgan and domain label in fgansh (baseline AC-GAN model), (b) the model with the domain label in
fgansh but withoutRgan, (c) The full DGAC-GAN model. (d) t-SNE plot for the real and all the synthetic samples for
domain R (aka S) for Office-Home where the four colors show the samples available / generated at different τ .

fdannC and fdannD have single dense layer each. For pseudo-labeling in DANN-IB, we fix the confidence threshold Th
to be 0.95 in order to ensure that the selected samples closely approximate the true labels. Besides, we generate 100
samples per-class for all the previous domains while carrying out the adaptation. Both the networks are trained using
adam ([46]) with a learning rate of 0.001, β1 = 0.5, β2 = 0.9, and a batch size of 64, respectively.

Evaluation protocols: We report the average performances for all the source and the target domains over all the
time stamps defined by A(Tτ ) for the domain Tτ . Subsequently, the mean over all the domain-specific accuracies are
mentioned for the entire dataset.We report a measure of forgetting to highlight the evolution of the test performances
for a given domain over the time. Precisely, for a domain Tτ , let Aτ and Aτ+1 denote the performances at time τ and
τ + 1.Given that, the average forgetting for Tτ till time T is defined by F (Tτ ) whereas the mean forgetting over all the
domains is measured by averaging the F (Tτ ) scores over all the domains for a given dataset. The mean forgetting over

all domains is given by F (Tτ ) = 1
T−τ+1

T−1∑
k=τ−1

Ak+1 −Ak. A positive |Aτ+1 −Aτ | indicates that the test accuracy

increases at time τ + 1 than at time τ for Tτ .

4.1 Comparison to the literature

Owing to limited existing works for IDA and the fact that no prior work conforms to the proposed problem setup, we
customize the existing DA/IL algorithms for the IDA setup and consider them for comparative analysis. We consider
two baseline cases using DANN1 : i) we assume S is present all over and perform adaptation between S and Tτ at
every τ . This is referred to as DANN2 and denotes the case of IDA without replay. ii) Both S and the unlabeled data
from the past domains are stored and the adaptation goes in this way - S − T1, S − T1 ∪ T2 etc. The setup is resembles
the notion of multi-target DA and is termed DANN 2. We consider another such technique called DADA ([41]) as
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Figure 7: (a) The convergence comparison of feature and image replay with DGAC-GAN. (b) Disk space comparison
of DGAC-GAN and the dynamically expanded incremental GAN.

Figure 8: (a) The performance analysis of A - FRIDA (DANN-IB) (without feature replay), B - Proposed non-rehearsal
based FRIDA (DANN-IB), C - FRIDA (DANN-IB) with rehearsal based replay where the original pseudo-labeled
samples are stored. (b) The sensitivity analysis on the number of generated samples per class- ’A’: 200, ’B’:100, and
’C’:50. (c)Ablation study of the models: baseline DANN. DANN with multi-class discriminator, and DANN-IB for the
three datasets. (d) Importance of the threshold Th parameter for pseudo-labeling on the final average accuracy scores.

well. Next, we integrate DANN with the elastic weight consolidation (EWC) ([8]) and learning without forgetting
(LwF) ([23]) techniques for preventing forgetting of the previous domains for incrementally training DANN. While
we introduce the EWC regularizer between DAτ and DAτ−1 to control the deviation of the important parameters, a
selected set of replay samples are considered from the previous domains to define the distillation loss for LwF. Besides,
we consider two existing IDA approaches called CUA ([11]) and IADA ([12]) both of which use the source domain
information and feature replay together at every step, hence, they are different from our setup. Both of them consider
DANN as the DA model. Also, IADA projects the target domains into the distribution of the source domain while CUA
learns a shared feature space for both the domains. We report the values of FRIDA using both DANN-IB and DANN.
As can be observed in Table 2-4, FRIDA (both with DANN and DANN-IB) is able to consistently outperform all the
other methods by a substantial margin. In particular, FRIDA (DANN) provides a value of 15.61% for DomainNet,
92.80% for Office-CalTech, and 68.55% for Office-Home for the target domains which are better than all the competing
techniques. We note that DANN 2 considers the setup where the target domains are merged and this setup is expected
to provide high performance. Nonetheless, such a setup is unrealistic in IDA as the domain information becomes
non-existent after the respective time stamp. Also, the performances of DANN 2 and IADA for the source domain are
always fixed and high as no forgetting is incurred. For techniques like EwC, LwF or CUA, we believe that the respective
regularization techniques prevent the models to diverge much with respect to the previous domains. However, such a
restriction hinders the adaptation process for the new domains as the domain distributions can vary significantly in IDA.
To resolve this issue, FRIDA proposes to re-train the DA module with a combination of the synthetic past data and
present raw data. We find FRIDA (DANN-IB) beats FRIDA (DANN) consistently by producing average accuracies of
17.34% for DomainNet, 95.05% for Office-CalTech, and 69.82% for Office-Home, respectively. The performance for
the source domains are also enhanced with FRIDA(DANN-IB) by≥ 20% for DomainNet and ≥ 5% for Office-CalTech
with respect to DANN1 / CUA / EWC / LwF. Figure 5 depicts the changes in the performance for the domain T1 for all
the datasets(Table: 5 -7at Appendix.1, shows the performance of all the doamins for each datasets ). The evolution
for the other domains are mentioned in the supplementary. It is seen that FRIDA maintains the best stability-plasticity
amongst all the approaches where the EWC, CUA, LwF show sharp sudden degradation.
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Figure 9: Qualitative performance comparison between DANN and DANN-IB trained to adapt the target domain A
given the auxiliary source domain R ∪ P ∪ C (in different colors). (a)the original resnet-50 features. (b)Features
generated by DGAC-GAN. (c)After adaptation by DANN. (d) t-SNE of C + 1-class discriminator DANN. (e)After
adaptation by DANN-IB.

Figure 10: The results of image generation using DGAC-GAN for the (a-b) Real-World domain and where (a) shows the
original images and (b) shows the ones generated by DGAC-GAN, (c-d) ClipArt domain where (c) shows the original
images and (d) shows the images generated by DGAC-GAN, both for the Office-Home dataset.

4.2 Critical analysis

Analysis of DGAC-GAN: We showcase a qualitative study on the efficacy of the DGAC-GAN model in generating
discriminative samples when DGAC-GAN is trained at τ = 3 for Office-Home. We consider three model variants for
DGAC-GAN and train three experimental scenarios here as follows: i) without conditioning the discriminator with
τ and without Rgan, ii) without Rgan only, and iii) the full DGAC-GAN model, respectively. Figure 6(a-c) depict
the t-SNE plots for the Clipart domain for all the three models. It can be understood that both the domain identifier
and Rgan together direct the generation of discriminative synthesized samples. Besides, Figure 6(d) illustrates the
t-SNE combining the real and the synthesized samples generated at τ = 1 − 3 for the domain R (used to define
S) of Office-Home. Here we would like to emphasize that the samples generated at different stages are classwise
overlapped with the real samples. This confirms that the joint training strategy followed in DGAC-GAN controls
forgetting. As we mentioned, the feature replay in DGAC-GAN offers a stable training than image replay (Figure 7(a)).
Further, we compare DGAC-GAN with a dynamically expanded GAN model where new domain-specific generators
and discriminators are added. As can be observed from Figure 7(b), DGAC-GAN is extremely lightweight but produces
equivalent performance with the dynamically expanded GAN. (More qualitative results are in appendix.4)

It is observed that the image generation of multi domain is not full-field the requirement. We have generated the images
of Office-Home, Figure 10 and it can be seen that the generated images are quite bad and failed to mimic the original
images. So we have done feature replay instead of image replay.

Role of replay memory: Moreover, we assess the need of memory replay in IDA and perform an experiment without
introducing the notion of replay in FRIDA which mimics the setup of DANN 1 but we use DANN-IB instead. We also
consider the case where the original pseudo-labeled samples are saved at every time instead of training the DGAC-GAN.
We find from Figure 8(a) that while FRIDA beats the model without replay considerably by at least 5% for all the
data, the performance is at par or decreases marginally by 2 − 3% when real samples are stored. We remind that
in FRIDA, we generate 100 samples per class using DGAC-GAN while a large number of samples are generated
through pseudo-labeling (> 10K for the data). Figure 8(b) shows the sensitivity to the number of generated samples by
DGAC-GAN.

Analysis of DANN-IB: We further analyze DANN-IB model where we train all the four domains of Office-Home
together at τ = 3. In Figure 9(a-b), the t-SNE plots show the distributions of the original resnet-50 features and the
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synthetic features obtained from DGAC-GAN. Figure 9(c-e) depict the visualizations after applying DANN, DANN
with multi-class discriminator, and the full DANN-IB on the synthetic samples. We see that DANN-IB is able to
produce a more compact classwise alignment among the domains than DANN. We quantitatively evaluate DANN-IB in
Figure 8(c) where we report the overall average accuracy of FRIDA for three models: baseline DANN, DANN with
multi-class discriminator only, and the DANN-IB model, respectively. The inclusions of the multi-class discriminator
and RIB consistently improves the performance of DANN by 1% each for Office-CalTech and DomainNet. Figure
8(d) shows the sensitivity analysis of the method on different threshold values used for the pseudo-labeling stage. It is
apparent that a high threshold yields confident predictions (More analysis of DANN-IB is in appendix.5)

5 Conclusions

We tackle the data-free IDA problem and propose a novel generative feature replay based framework called FRIDA. The
working of FRIDA alternates between synthetic data generation for old domains using DGAC-GAN and alignment of
the old and new domains using DANN-IB. Both the DGAC-GAN and DANN-IB models can be updated incrementally
as new domains arrive. Experimental results on three benchmark datasets confirm the efficacy of FRIDA. Currently,
FRIDA assumes a closed-set scenario where all the domains are assumed to contain the same set of classes. We are
interested in extending it to support open-set scenario where the new domains may contain novel classes.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[2] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. Deep learning
for computer vision: A brief review. Computational intelligence and neuroscience, 2018, 2018.

[3] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5):988–
999, 1999.

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain
adaptation. In Advances in neural information processing systems, pages 137–144, 2007.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.
A theory of learning from different domains. Machine learning, 79(1-2):151–175, 2010.

[6] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4):128–135,
1999.

[7] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 113:54–71, 2019.

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[9] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D Bagdanov. Rotate
your networks: Better weight consolidation and less catastrophic forgetting. In 2018 24th International Conference
on Pattern Recognition (ICPR), pages 2262–2268. IEEE, 2018.

[10] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7765–7773, 2018.

[11] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously shifting domains. 2018.

[12] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adaptation for continually
changing environments. In 2018 IEEE International conference on robotics and automation (ICRA), pages 1–9.
IEEE, 2018.

[13] Adeleh Bitarafan, Mahdieh Soleymani Baghshah, and Marzieh Gheisari. Incremental evolving domain adaptation.
IEEE Transactions on Knowledge and Data Engineering, 28(8):2128–2141, 2016.

[14] Mark Mayford, Steven A Siegelbaum, and Eric R Kandel. Synapses and memory storage. Cold Spring Harbor
perspectives in biology, 4(6):a005751, 2012.

[15] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

12



[16] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory replay gans:
Learning to generate new categories without forgetting. In Advances in Neural Information Processing Systems,
pages 5962–5972, 2018.

[17] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov, Shangling Jui,
and Joost van de Weijer. Generative feature replay for class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 226–227, 2020.

[18] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental learning using conditional adversarial networks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6619–6628, 2019.

[19] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier
gans. In International conference on machine learning, pages 2642–2651. PMLR, 2017.

[20] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand. Domain-adversarial
neural networks. arXiv preprint arXiv:1412.4446, 2014.

[21] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

[22] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 139–154, 2018.

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

[24] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7765–7773, 2018.

[25] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple tasks by
learning to mask weights. In Proceedings of the European Conference on Computer Vision (ECCV), pages 67–82,
2018.

[26] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 2001–2010, 2017.

[27] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances in
neural information processing systems, pages 6467–6476, 2017.

[28] Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. arXiv preprint
arXiv:1711.10563, 2017.

[29] Gabriela Csurka. Domain adaptation in computer vision applications, volume 8. Springer, 2017.
[30] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In European

conference on computer vision, pages 443–450. Springer, 2016.
[31] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7167–7176, 2017.
[32] Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo. Mind the class weight

bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2272–2281, 2017.

[33] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor
Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International conference on machine learning,
pages 1989–1998. PMLR, 2018.

[34] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Adagraph: Unifying predictive and
continuous domain adaptation through graphs. pages 6568–6577, 2019.

[35] Peng Su, Shixiang Tang, Peng Gao, Di Qiu, Ni Zhao, and Xiaogang Wang. Gradient regularized contrastive
learning for continual domain adaptation. arXiv preprint arXiv:2007.12942, 2020.

[36] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8789–8797, 2018.

[37] Yunchen Pu, Shuyang Dai, Zhe Gan, Weiyao Wang, Guoyin Wang, Yizhe Zhang, Ricardo Henao, and
Lawrence Carin Duke. Jointgan: Multi-domain joint distribution learning with generative adversarial nets.
In International Conference on Machine Learning, pages 4151–4160. PMLR, 2018.

13



[38] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[39] Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5940–5947, 2020.

[40] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottleneck.
arXiv preprint arXiv:1612.00410, 2016.

[41] Xingchao Peng, Zijun Huang, Ximeng Sun, and Kate Saenko. Domain agnostic learning with disentangled
representations. In ICML, 2019.

[42] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5018–5027, 2017.

[43] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation.
In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 2066–2073. IEEE, 2012.

[44] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-
source domain adaptation. In Proceedings of the IEEE International Conference on Computer Vision, pages
1406–1415, 2019.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[46] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Appendix

.1 Per domain accuracy for all the datasets at different timestamps

Here we show the evolution of the test performances for different source and target domains for all the datasets
considered. Table 5 - 7 depict the same for Office-Home, Office-CalTech and DomainNet respectively. The order of the
domains for Office-Home, Office-CalTech, and DomainNet are mentioned in the main paper.

Step 1 Step2 Step 3
S 84.02 83.03 82.42
T1 77.4 78.23 76.58
T2 - 63.28 65.34
T3 - - 67.76

Table 5: Detailed test accuracies at different time instants for the Office-Home dataset.

Step 1 Step2 Step 3
S 94.75 95.13 95.21
T1 98.42 98.23 96.36
T2 - 100 98.13
T3 - - 88.42

Table 6: Detailed test accuracies at different time instants for the Office-CalTech dataset.

Step 1 Step2 Step 3 Step4 Step5
S 68.31 67.41 64.71 64.35 58.79
T1 31.01 30.76 29.92 29.08 26.35
T2 - 29.45 28.30 28.71 26.30
T3 - - 17.50 17.19 15.68
T4 - - - 2.74 2.94
T5 - - - - 8.98

Table 7: Detailed test accuracies at different time instants for the DomainNet dataset.
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Figure 11: Convergence of MADA and DANN-IB on IDA (Office-Home).

.2 Convergence of MADA, DANN and DANN-IB on IDA (Office-Home)

Unlike DANN’s single discriminator with a binary output, DANN-IB uses a single discriminator having C + 1 class
indices where the C + 1th index denotes the initial label for the target domain and MADA uses C separate binary
discriminators one for each of the classes. Training of MADA is driven by the quality of pseudo-labeling which may
trigger misclassification and poor convergence in IDA. DANN-IB training does not use pseudo-labels. To the best of
our knowledge, DANN-IB is one of the first UDA methods to use the idea of information bottleneck (certainly the first
for IDA) which is absent in MADA. Figure 11 shows the convergence of DANN-IB is more smooth and quick with the
comparison of MADA and traditional-DANN ([20]).

.3 Convergence of losses w/o previous model initialization of FRIDA

In Figure 12 and 13 shows the generator and discriminator loss convergence respectively, with and without previous
model initialization for GAN generation at different time stamps. The GANτ model loss behaves more stable and
converges early when GANτ model weights are initialized by the GANτ−1 model weights, τ is the current timestamp.
Figure 14 shows the loss convergence for DANN-IB at different timestamp. We can spot through the Figure 14, a very
significant impact of previous model initialization for loss stability and early convergence of DANN-IB loss, over the
DANN-IB model training with random weight initialization.

Figure 12: Generator loss of DGAC-GAN for the Office-CalTech dataset at the different timestamp. ’Red’ indicates the
loss values where DGAC-GAN model is initialized by the previous timestamp model and ’bule’ depict the loss when
DGAN-GAN is trained by random weight initialization. (a) Generator loss of DGAC −GAN0, with random weight
initialization (b) Generator loss of DGAC −GAN1, with DGAC −GAN0 weight initialization(Red) and random
weight initialization(Blue) (c) Generator loss of DGAC −GAN2, with DGAC −GAN1 weight initialization(Red)
and random weight initialization(Blue)

.4 More qualitative results on DGAC-GAN

In Figure 15(a-c), we show the t-SNE plots for the original samples and the synthetic samples generated at different time
stamps for S, T1, and T2 for Office-CalTech. It can be observed that the samples are class-wise overlapped. In Figure
15(a-c), the colors (green, yellow and blue) represents the generated samples between 1 ≤ τ ≤ 3 and red denotes the
original samples in all the cases but the index (0-3) represents the number of times sample generated throughout the
incremental steps. For example, in figure 15(a-c), blue represents τ = 3 and the samples of S has been generated three
times till that step but for T1, and T2 it has been generated twice and once, respectively.
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Figure 13: Discriminator loss of DGAC-GAN for the Office-CalTech dataset at the different timestamp. ’Red’ indicates
the loss values where DGAC-GAN model is initialized by the previous timestamp model and ’bule’ depict the loss
when DGAN-GAN is trained by random weight initialization. (a)Discriminator loss of DGAC − GAN0, random
weight initialization(Blue) (b) Discriminator loss ofDGAC−GAN1, withDGAC−GAN0 weight initialization(Red)
and random weight initialization(Blue) (c) Discriminator loss of DGAC − GAN2, with DGAC − GAN1 weight
initialization(Red) and random weight initialization(Blue)

Figure 14: Total loss of DANN − IB for the Office-CalTech dataset at the different timestamp. ’Red’ indicates the
loss values where the model is initialized by the previous timestamp DANN-IB model and ’bule’ depicts the loss when
DANN − IB is trained by random weight initialization. (a) Loss of DANN − IB (DA1)(main paper), with random
weight initialization (b) Loss ofDANN−IB (DA2)(main paper), with (DA1)(main paper) weight initialization (Red)
and random weight initialization(Blue) (c) Generator loss of DGAC −GAN (DA3)(main paper), with (DA2)(main
paper) weight initialization(Red) and random weight initialization(Blue)

.5 Theoretical analysis for the DANN-IB model

Here we show that the inclusion of the multi-class discriminator and the information bottleneck regularizer helps in
obtaining a tighter bound for the target risk in the standard adversarial unsupervised domain adaptation framework like
DANN. Given the hypothesis instances h, h′ ∈ H whereH defines the hypothesis space for the source domain features
S(Xs) and the target domain data T (Xt), the test error (εt) for T is upper-bounded as follows [5],

εt ≤ dH∆H(Xs, Xt) + εs(h) + min
h′∈H

εt(h
′) + εs(h

′) (6)

where εs is the test error function for the source domain. dH∆H denotes a measure of discrepancy between the domains
and is expressed as,

dH∆H = 2 sup
h,h′∈H

||Ex∈Xs [h(x) 6= h′(x)]− Ex∈Xt [h(x) 6= h′(x)]|| (7)

As per the information bottleneck principle ([21]), we aim to minimize the mutual information I between the raw input
X with label Y and the latent representation Z: I(X,Z) so that I(Z, Y ) is simultaneously maximized. As a result, only
the task-specific features are retained in Z ignoring the domain specific artifacts from X . [21] further shows that the
difference between the training and test error is bounded by a monotonic function of I(X,Z). Naturally, the bottleneck
principle aids in minimizing εs(h) by ensuring that only the feature embeddings consistent with the label information are
to be retained. This, in turn, imposes a tighter upper-bound to εt since εs is properly minimized. Furthermore, the use of
RIB (Eq. 4) constraints that the latent distributions for the source and the target domains should be consistent with the
standard normal distribution as per the variational upper bound principle: dH(S, T ) ≤ dH(T ,N(0, I))+dH(S,N(0, I)).
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Figure 15: Available and generated synthetic samples for the Office-CalTech dataset (a) samples for S where red color
denotes the original samples and the other colors correspond to the synthetic samples generated at different times, (b)
Original and generated samples for domain T1, (c) Original and generated samples for domain T2.

We note that this also satisfies the notion of triangular inequality for the d-divergence. Hence, minimizing RIB in
Eq.(5) alternately minimizes dH∆H. As a result, we obtain a stricter upper bound for εt.

On the other hand, the C + 1-class discriminator fdannD helps in better aligning both the domains since it tries to assign
the target samples in one of the modes of the source data distribution. This is as opposed to the DANN theory which
performs global distributions matching between both the domains using a binary classifier. Ideally, it is possible to
have a latent space in DANN where both the domains lie on the same side of the hyperplane but the samples are not
overlapped due to a trivial mapping. The proposed multi-class discriminator solves such a scenario. Further, any
misclassification for the source domain samples is avoided in this case given the classification loss Lc Eq.(5). In gist,
DANN-IB proposes a better bound for the target domain samples, which is also empirically reflected in Table 2-4.
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