
1

Computer Vision and Image Understanding
journal homepage: www.elsevier.com

BacklitNet: A dataset and network for backlit image enhancement

Xiaoqian Lva, Shengping Zhanga,∗∗, Qinglin Liua, Haozhe Xieb, Bineng Zhongc, Huiyu Zhoud

aHarbin Institute of Technology, Weihai 264209, China.
bHarbin Institute of Technology, Harbin 150001, China.
cGuangxi Normal University, Guilin 541004, China.
dUniversity of Leicester, Leicester LE1 7RH, United Kingdom.

ABSTRACT

Backlit images are usually taken when the light source is opposite to the camera. The uneven exposure
(e.g., underexposure on the foreground and overexposure on the background) makes the backlit images
more challenging than general image enhancement tasks that only need to increase or decrease the ex-
posure on the whole images. Compared to traditional approaches, Convolutional Neural Networks
perform well in enhancing images due to the abilities of exploiting contextual features. However, the
lack of large benchmark datasets and specially designed models impedes the development of back-
lit image enhancement. In this paper, we build the first large-scale BAcklit Image Dataset (BAID),
which contains 3000 backlit images and the corresponding ground truth manually adjusted by trained
photographers. It covers a broad range of categories under different backlit conditions in both indoor
and outdoor scenes. Furthermore, we propose a saliency guided backlit image enhancement network,
namely BacklitNet, for robust and natural restoration of backlit images. In particular, our model inno-
vatively combines a nested U-structure with bilateral grids, which enables fully extracting multi-scale
saliency information and rapidly enhancing arbitrary resolution images. Moreover, a carefully de-
signed loss function based on prior knowledge of brightness distribution of backlit images is proposed
to enforce the network to focus more on backlit regions during the training phase. We evaluate the
proposed method on the BAID dataset and two public small-scale backlit image datasets. Experimen-
tal results demonstrate that our method performs favorably against the state-of-the-art approaches.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Backlit images are usually taken when the light source is

opposite to the camera. These images are visually unpleas-

ant because of extremely varied exposure between bright back-

grounds and dark foregrounds, poor contrast and barely-visible

details as shown in Figure 1(a). Furthermore, they also degen-

erate the performance of the high-level computer vision task,

including image classification (Ciocca et al., 2018; He et al.,

2016; Simonyan and Zisserman, 2015), object detection (Car-

∗∗Corresponding author.
e-mail: s.zhang@hit.edu.cn (Shengping Zhang)

(a) Input (b) Buades et al. (Buades et al., 2020)

(c) MIRNet (Zamir et al., 2020) (d) BacklitNet(Ours)

Fig. 1. (a) A challenging backlit image. (b) enhanced by a backlit image en-

hancement method (Buades et al., 2020). (c) enhanced by a general image

enhancement method (Zamir et al., 2020). (d) enhanced by our method.
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Fig. 2. The architecture of our BacklitNet network. First, we downsample the full-resolution input to low-resolution input and extract its low-level features.

Next, the feature maps pass through a two-level nested U-structure to obtain global brightness and local backlit information, which is stored in a bilateral

grid. Finally, we apply the bilateral grid to the original image and use a guidance map to guide the process of image upsampling to obtain the final result.

ion et al., 2020; Vaca-Castano et al., 2017; Zhang et al., 2017),

and object segmentation (He et al., 2017; Le et al., 2019; Xie

et al., 2020). Therefore, there is a great demand for an effective

backlit image enhancement method.

Because of the extremely uneven exposure, enhancing back-

lit images is a more challenging task than other general image

enhancement tasks. Although most modern imaging sensors

allow to automatically adjust hardware parameters according to

lighting conditions, they still cannot eliminate the adverse in-

fluence of backlit conditions. As a post-processing technology,

High Dynamic Range (HDR) (Debevec and Malik, 2008) can

correct wrong exposure. However, it requires multiple images

of the same scene and is prone to produce artifacts (Yan et al.,

2019). Besides, several image editing softwares (e.g. Photo-

shop, Lightroom and GIMP) help photographers obtain visually

appealing images. Nevertheless, they usually require complex

operations and professional skills, which are difficult to use for

common users.

In computer vision, image enhancement has been attracting

increasing interest (Chai et al., 2020; Gharbi et al., 2017; Sun

et al., 2021; Wang et al., 2019a; Zhang et al., 2019b; Zeng

et al., 2020; Zamir et al., 2020). However, most existing meth-

ods (Afifi et al., 2020; Chen et al., 2018; Wang et al., 2019a;

Zhang et al., 2019b) focus on enhancing either under-exposed

or over-exposed images, which yields unpromising results on

backlit images as shown in Figure 1. Existing methods for

backlit images enhancement can be roughly divided into three

categories: segmentation-based methods (Li et al., 2015; Li

and Wu, 2018; Trongtirakul et al., 2020; Vazquez-Corral et al.,

2018), fusion-based methods (Buades et al., 2020; Ueda et al.,

2020; Wang et al., 2016) and learning-based methods (Zhang

et al., 2019a). Segmentation-based methods attempt to seg-

ment an image into backlit and frontlit regions and use differ-

ent tone mapping functions to enhance different regions sepa-

rately. Nevertheless, the enhanced results are unstable in com-

plex scenes because they heavily rely on the performance of

segmentation. Fusion-based methods usually process a backlit

image in different function spaces and then fuse them. How-

ever, the manually designed constraints and parameters limits

these methods to be widely used in variable scenes. Due to

the absence of large-scale backlit image dataset, there are few

learning-based studies. The only learning-based method, Ex-

CNet, cannot get satisfactory results and speed in extremely

backlit cases. Existing methods do not make full use of the fea-

ture representation abilities of CNNs. Therefore, there is still a

lot of room for improvement in backlit image enhancement.



3

(a) Indoor (b) Outdoor

Fig. 3. Several examples of the proposed BAID dataset. Top: backlit images. Bottom: normal light images (ground truth).

In this paper, we propose a novel end-to-end learning-based

method to process backlit images in various scenes. Firstly, we

construct the first large-scale BAcklit Images Dataset (BAID)

which contains 3000 backlit images and the corresponding

ground truth. It covers a broad range of scenes, subjects, and

lighting conditions. Furthermore, we propose a saliency guided

backlit image enhancement network, which we refer to as Back-

litNet. Specifically, we use a two-level nested U-structure to ex-

tract saliency information from different receptive fields. Such a

multi-scale nested structure prompts our model to fully consider

the brightness of entire images and specific objects in backlit ar-

eas. Then, we introduce a bilateral grid to estimate the transfor-

mation from input to output. Unlike the direct processing of the

output from U-structure, transformation based on the bilateral

grid has the advantages of resolution-independent, rapidity and

no artifact. Finally, through the histogram statistics of backlit

images and normal images, we obtain prior knowledge of the

brightness distribution and design a loss function based on it.

The main contributions can be summarized as follows:

• We build a large-scale backlit image dataset (BAID) which

contains 3000 backlit images and the corresponding high-

quality ground truth. To the best of our knowledge, it is

the first large-scale dataset for backlit image enhancement.

The constructed dataset makes end-to-end learning of ro-

bust backlit enhancers possible and promotes the applica-

tion of neural networks in backlit image enhancement.

• We design a novel backlit image enhancement framework,

which efficiently restores ill-exposed regions of backlit im-

ages based on subject salience and brightness distribution

prior knowledge without damaging the well-exposed re-

gions.

• We evaluate the proposed method on the BAID dataset and

two public small-scale backlit image datasets. The results

show that our model achieves state-of-the-art performance

both on visual effects and commonly-used metrics.

2. Related Work

Segmentation-based Method. Segmentation-based methods

often segment an image into backlit and frontlit regions and

process them separately. Li et al. (2015) design a two-

component Gaussian mixture model to obtain underexposed

and overexposed regions and perform different tone-mappings

on them, respectively. Li and Wu (2018) further introduce an

object-guided segmentation method followed by spatially adap-

tive tone mapping. Vazquez-Corral et al. (2018) propose a vari-

ational region split model to obtain a set of weight maps, which

can divide the image into darker and lighter areas. Then, they

compute as many tone-cures as weight maps and apply them

to the original image. Trongtirakul et al. (2020) present an

unsupervised single backlit image enhancement method, which

stretches luminance in piece-wise regions and uses a logarith-

mic weighted luminance function to enhance the stretched im-

ages. However, these methods are time-consuming and not

suitable for high-resolution images. In addition, the accuracy

of segmentation is vulnerable to the complexity of the scene,

which can lead to unstable enhancement results.

Fusion-based Method. Fusion-based methods address this

problem by processing backlit images in different function

spaces and fusing them using a specific fusion algorithm. Wang

et al. (2016) introduce a multi-scale fusion-based method,
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which can simultaneously improve luminance and contrast. At

the same time, the method selects exposedness as the weight

map to measure and extract more details of the input image.

Buades et al. (2020) adopt gamma and logarithmic tone map-

ping functions to improve the contrast of backlit images in each

color channel of the RGB space. Then, they fuse images based

on a modified Mertens algorithm (Mertens et al., 2007) and

refine the fused images by sharpening details and correcting

chrominance. Ueda et al. (2020) use the triangular-shaped uni-

modal histogram to improve the bimodal distribution of the in-

tensity histogram of a backlit image. However, these methods

are not robust to changeable scenes due to many fixed parame-

ters. Meanwhile, the enhanced result is prone to objectionable

color distortion and unnatural illumination when images con-

tain quite dark regions.

Learning-based Method. Unlike the great success of deep

learning in other vision tasks, few researches have been done

on learning-based backlit image enhancement methods due to

the absence of a large-scale backlit image dataset. At present,

to our knowledge, there is only one learning-based method

for backlit image enhancement, namely ExCNet (Zhang et al.,

2019a). It is a zero-shot scheme that utilizes a block-based

loss function to guide the restoration progress to estimate “S-

curve” for image enhancement. But this method requires iter-

ative training for each test image to obtain an image-specific

“S-curve”, which makes the model non-real time. Recently,

learning-based methods in the field of general image enhance-

ment have developed rapidly. Chai et al. (2020) estimate the

coefficient of parameterized color mapping through CNN and

apply it to original images of any resolution. Zeng et al. (2020)

learn multiple image-adaptive 3-dimensional tables in couple

with a lightweight CNN weight predictor to manipulate the

color and tone of images in real-time. Zamir et al. (2020)

combine contextual information and spatial details by paral-

lel multi-resolution convolution streams and attention based on

multi-scale feature extraction and aggregation. Although these

methods demonstrate their effectiveness in image enhancement

benchmark datasets (Bychkovsky et al., 2011; Hasinoff et al.,

2016; Wei et al., 2018), they do not consider the specific char-

acteristics of the backlit images. Our pipeline is complemen-

tary to existing methods in two ways: First, we collect the first

large-scale backlit image dataset, which further facilitates the

relevant learning-based research. On the other hand, we de-

velop an effective and efficient model that can restore underex-

posed backlit regions while preserving the harmony of overall

brightness without image degradation.

3. The BAcklit Images Dataset

Large-scale datasets are indispensable for training a robust

backlit image enhancement model. However, due to the diver-

sity of lighting conditions, the complexity of scenes and the

large cost of manual editing, there is no large-scale backlit im-

age benchmark dataset currently. Existing backlit image en-

hancement researches usually use Li and Wu dataset (Li and

Wu, 2018) and Vonikakis et al. dataset (Vonikakis et al., 2018)

to verify the performance of their methods. However, the num-

bers of images in the two datasets are only 23 and 38 respec-

tively, which is far from sufficient to train neural networks. Be-

sides, the lack of ground truth makes these two datasets impos-

sible for end-to-end model training. In order to train an end-

to-end network and promote the application of CNNs in backlit

image enhancement, we contribute a large-scale publicly avail-

able backlit image enhancement dataset with high-resolution,

named BAcklit Images Dataset (BAID), containing 3000 back-

lit images and the corresponding ground truth.

To ensure obtaining a general and robust backlit image en-

hancer, the dataset should cover a broad range of scenes, sub-

jects, weather and lighting conditions with commonly used

capture devices. Therefore, our dataset, BAID, contains vari-

ous representative real-world scenes (e.g., libraries, parks and

streets) and diverse categories (e.g., people, buildings and

plants). Table 1 reports the number of different categories and

Figure 3 shows several samples of the dataset. Meanwhile, aim-

ing to simulate the situations we encounter in daily life as much

as possible, we set AUTO mode in camera to capture images

in the resolution of 5472×3648 and 3648×5472 using Canon
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Table 1. The number of images in different categories of the proposed BAID dataset.

Category
Outdoor Indoor

people vehicle building plant sculpture people plant furniture ornament

#Images 975 186 325 226 177 390 195 262 264

Table 2. The number of images taken by different cameras of the proposed BAID dataset.

Camera Brand Canon EOS 5D Mark III Canon EOS 6D Canon EOS 70D Nikon D750

#Images 704 732 754 810

EOS 5D Mark III, Canon EOS 6D, Canon EOS 70D and Nikon

D750. As shown in Table 2, the number of images taken by

different cameras is roughly balanced. It is worth noting that

we provide different images formats containing RAW, PNG and

JPEG formats.

Moreover, high-quality ground truth is crucial for training a

supervised neural network. Therefore, we recruit five profes-

sionally trained photographers to retouch the captured backlit

images using Adobe Lightroom. Then, we invite 20 volunteers

to rate the images among the five results of each image to ob-

tain the best one as the ground truth. By this means, we can

get relatively objective reference images as shown in the bot-

tom row of Figure 3. Finally, we randomly split the dataset into

two subsets: 2600 images for training and 400 for testing.

4. The Proposed Method

Backlit images are different from low-light images in that

they have a higher dynamic range and contain over-exposed,

well-exposed and under-exposed regions simultaneously. Thus,

when processing backlit images, we need to pay more attention

to the local backlit region while ensuring the naturalness of the

whole images. Existing methods typically separate the fore-

ground and background and process them separately. However,

there are several disadvantages: low efficiency of multi-stage,

inaccurate segmentation in complex scenes and unnatural edges

of the fused result. To address these problems, we propose an

end-to-end backlit image enhancement network BacklitNet.

4.1. Network Architecture

BacklitNet consists of a dual-resolution framework and a

powerful feature extractor. Given an input image I, the en-

hanced result Î is formulated as

Î = U(A(X), g, I) (1)

where X = f (I) is the features of the input, which is obtained

from our feature extractor. A(·) is the bilateral grid storing the

transform coefficients of X. g is the guidance map transformed

from I. U(·) is a bilateral grid upsampling function. The de-

tailed network is provided below.

Dual-resolution Framework. Figure 2 illustrates the frame-

work of BacklitNet. In order to process high-resolution im-

ages quickly, the model is divided into two branches. One is

a high-resolution branch (the pink area in Figure 2), the other

is a low-resolution branch (the green area in Figure 2). In the

low-resolution branch, the downsampled image passes through

a low-level feature extractor and a two-level nested U-structure

to learn the transform coefficients from input to output and store

it in a 3D bilateral grid. Calculation at low-resolution makes

this process efficient. In the high-resolution branch, we per-

form the nonlinear transformation on the original input to ob-

tain a full-resolution edge-aware guidance map which guides

the upsampling of bilateral grid. Then, utilizing the principle

of Bilateral Guided Upsampling (BGU) (Chen et al., 2016) and

the slice operation mentioned in Gharbi et al. (2017), we up-

sample the 3D bilateral grid to obtain 2D full-resolution coeffi-
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cient maps. Specifically, under the guidance of a full-resolution

guidance map g, the transform coefficients in the bilateral grid

A are sampled by tri-linearly interpolation in the spatial domain

and intensity domain, which can be written as

Ām[x, y] =
∑
i, j,k

τ (sxx − i) τ
(
syy − j

)
τ(d · g[x, y] − k)Am[i, j, k]

(2)

where τ(·) = max(1− | · |, 0) is a linear interpolation kernel, sx

and sy are the width and height ratios of the grid’s dimensions

to the input’s dimensions. The depth d is set to 8. By doing this,

we obtain a set of full-resolution coefficient maps Ā containing

pixel-wise transformation information. Then, we apply Ā to

input I (nI = 3) to obtain each channel of output Îc.

Îc[x, y] = ĀnI+(nI+1)c[x, y] +

nI−1∑
c′=0

Āc′+(nI+1)c[x, y]Ic′ [x, y] (3)

We upsample the transformation coefficients instead of image

pixels, which reduce the loss of detail and prevent artifacts.

Through the framework, BacklitNet can obtain high quality

full-resolution results with low computational cost.

Feature Extractor. How to extract features of the backlit area

is crucial in the task of backlit image enhancement. However,

the existing methods, like ExCNet (Zhang et al., 2019a), do not

design a particular model to extract the features of the back-

lit area. Meanwhile, preserving the harmony and naturalness

of the overall brightness of images is equally essential. Under

these circumstances, we treat the backlit area as a salient area

and incorporate the idea of salient object detection (SOD) (Liu

et al., 2019a,b; Qin et al., 2019) into backlit image enhance-

ment. SOD-based design empowers the network to focus more

on the backlit region to extract semantic and lighting features.

Specifically, we use a two-level nested U-structure to learn

enriched semantic and spatial information. Overall, its top level

is a big U-structure consisting of three blocks: semantics per-

ception block (SP), lighting acquisition block (LA) and fusion

adjustment block (FA). Its bottom level is a residual U-structure

whose detailed configurations are presented in the supplemen-

tary material. Many previous researches (Huang et al., 2020;

Kohl et al., 2018; Ronneberger et al., 2015; Wang et al., 2019b)

have demonstrated the effectiveness of U-structure to extract

(a) Input (b) Feature map

Fig. 4. Visualization of input images and their feature maps obtained from

the lighting acquisition block of BacklitNet.

global and local features. Concretely, SP aims to perceive the

semantic information of foreground and background and LA

is to obtain global lighting conditions information. Then, FA

fuses semantic and lighting information and learns the inten-

sity value of different areas. The structure of SP, LA, and FA

are similar, including an input convolution layer, a symmetric

encoder-decoder structure and a residual connection. The dif-

ference is that, in the last layer of the encoder in LA, we add

max pooling and average pooling to further enlarge receptive

field to capture global lighting features. Utilizing the nested

U-structure, our model enables to extract and aggregate multi-

scale and multi-level contextual and exposure features in differ-

ent receptive fields.

Figure 4 gives the visualization of input backlit images and

corresponding feature maps obtained from the LA block. As

Figure 4(b) shows, backlit foreground accompany with larger

activation value, which means the exposure of these areas will

be improved significantly. On the contrary, the well-exposed

background is given a relatively small activation value, changes

in exposure will decrease accordingly. The results prove that

the proposed feature extractor can fully exploit lighting infor-

mation and effectively extract global saliency information.

4.2. Loss Function

We introduce a simple but effective backlit image brightness

distribution prior knowledge. The prior is a kind of statistics

of the backlit and normal light images. Specifically, count-

ing the intensity histograms (as shown in Figure 5) of a large
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number of backlit image pairs, we obtain the following prior

knowledge: Compared with the intensity distribution of nor-

mal images, backlit images have a denser distribution of pixels

in the low-intensity part, namely, the underexposed foreground

region. Considering the change in distribution, we integrate the

prior into the loss function to guide the network to restore the

tone and details information of the darker foreground regions.

The constraint Lbacklit is formulated as

Lbacklit =
1
N

N∑
i=0

(Îi −Gi)2 · exp(λ · |Ii −Gi|) (4)

where I and Î are the input and output images of the proposed

network, respectively. G is the ground truth image retouched

manually. i is the index of each pixel in the image, N is the

number of pixels in the image. The term exp(λ · |Ii − Gi|) can

strengthen the supervision of under-exposed foreground regions

by using the brightness distribution prior of the corresponding

image pairs, which can be controlled by λ. In such a way, the

model can pay more attention to the backlit region in the train-

ing process. In addition, we introduce the perceptual loss to

improve the authenticity and naturalness of enhanced results

Lperceptual = ‖ϕ(G) − ϕ(Î)‖22 (5)

where ϕ is the feature map extracted from a VGG-16 model pre-

trained on ImageNet. Therefore, the loss function L of Backlit-

Net is denote as

L = Lbacklit + Lperceptual (6)

5. Experiment

5.1. Datasets

We evaluate our model on the proposed BAID dataset

and two public small-scale backlit image datasets: Li

and Wu dataset (Li and Wu, 2018) and Vonikakis et al.

dataset (Vonikakis et al., 2018), which contains 38 and 23 im-

ages, respectively. Additionally, in order to verify the stability

and generalization of our model, we also conduct experiments

Fig. 5. Intensity histogram of backlit images and normal light images.

on the low-light benchmark dataset LOL (Wei et al., 2018), in-

cluding 500 real low-light image pairs and 1000 synthetic im-

ages pairs.

5.2. Evaluation Metrics

To comprehensively evaluate our model, four commonly-

used metrics are used to measure the enhanced results including

PSNR, SSIM (Wang et al., 2004), ∆E∗ (Backhaus et al., 2011)

and NIQE (Mittal et al., 2013). ∆E∗ is a color difference metric

defined in the CIELAB color space, which reflects human per-

ception. NIQE is a blind image quality assessment metric using

measurable deviations from statistical regularities observed in

an image. Contrary to PSNR and SSIM, a smaller ∆E∗ and

NIQE means better performance.

5.3. Implementation Details

We build our model on PyTorch and train it for 200 epochs

with a mini-batch size of 32 on an NVIDIA 2080Ti GPU.

The input images with arbitrary resolution are downsampled

to 384×384 in the low-resolution branch of BacklitNet. To pre-

vent over-fitting, we use random flipping and rotation for data

augmentation. We set λ =2 during the period of training, which

is determined by a large number of experiments. The entire net-

work is optimized by Adam optimizer. The initial learning rate

is set to 0.001 for the first 100 epochs and decreases by half

every 10 epochs.
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(a) Input (b) Wang et al. (Wang et al.,

2016)

(c) Li and Wu (Li and Wu,

2018)

(d) ExCNet (Zhang et al.,

2019a)

(e) Buades et al. (Buades et al.,

2020)

(f) RetinexNet (Wei et al.,

2018)

(g) KinD (Zhang et al., 2019b) (h) DeepUPE (Wang et al.,

2019a)

(i) HDRNet (Gharbi et al.,

2017)

(j) DPED (Ignatov et al., 2017)

(k) Zeng et al. Zeng et al.

(2020)

(l) MIRNet (Zamir et al., 2020) (m) Chai et al. (Chai et al.,

2020)

(n) Ours (o) GT

Fig. 6. Qualitative comparison with state-of-the-art image enhancement methods on the proposed BAID dataset.

(a) Input (b) Wang et al. (Wang et al.,

2016)

(c) Li and Wu (Li and Wu,

2018)

(d) ExCNet (Zhang et al.,

2019a)

(e) Buades et al. (Buades et al.,

2020)

(f) RetinexNet (Wei et al.,

2018)

(g) KinD (Zhang et al., 2019b) (h) DeepUPE (Wang et al.,

2019a)

(i) HDRNet (Gharbi et al.,

2017)

(j) DPED (Ignatov et al., 2017)

(k) Zeng et al. (Zeng et al.,

2020)

(l) MIRNet (Zamir et al., 2020) (m) Chai et al. (Chai et al.,

2020)

(n) Ours

Fig. 7. Qualitative comparison with state-of-the-art image enhancement methods on the Li and Wu dataset whose ground truth is not provided.
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5.4. Comparison with State-of-the-art

Quantitative Comparison. We compare our method quantita-

tively with four backlit image enhancement methods (Buades

et al., 2020; Li and Wu, 2018; Wang et al., 2016; Zhang et al.,

2019a), three excellent low-light image enhancement methods

(Wei et al., 2018; Wang et al., 2019a; Zhang et al., 2019b) and

five state-of-the-art general image enhancement methods (Chai

et al., 2020; Gharbi et al., 2017; Ignatov et al., 2017; Zeng et al.,

2020; Zamir et al., 2020). We retrained these aforementioned

methods on the same dataset using the public source codes pro-

vided by the authors. For a fair comparison, we tried differ-

ent hyperparameters and found that the recommended hyper-

parameters perform best. Therefore, we use the recommended

hyperparameters. In the training phase, we visualized the loss

curve of each method to ensure convergence. Table 3 reports the

quantitative results on the BAID dataset. It is evident that our

method achieves the best results far surpassing existing backlit

image enhancement methods in terms of PSNR, SSIM, ∆E∗ and

NIQE. Because there is no ground truth in Li and Wu dataset

and Vonikakis et al. dataset, we use the no-reference metric

NIQE to perform quantitative comparisons. As shown in Ta-

ble 4, the proposed method performs favorably against the state-

of-the-art methods. BacklitNet can not only enhance backlit

images, but also achieve satisfactory results on low-light image

enhancement task. Table 5 reports the quantitative results of our

method and state-of-the-art methods on the LOL dataset. As

we can see, our method obtains the best SSIM and comparable

PSNR that is slightly lower than MIRNet (Zamir et al., 2020).

The results further confirm the effectiveness of our method.

Qualitative Comparison. To give an intuitive understanding of

the promising performance of BacklitNet, we illustrate the sam-

ple results of BacklitNet and several state-of-the-art methods.

Except for the BAID dataset, we also conduct experiments on

two widely-used testing datasets without corresponding ground

truth: Li and Wu dataset (Li and Wu, 2018) and Vonikakis et

al. dataset (Vonikakis et al., 2018). More qualitative results can

be seen in the supplementary materials. Figures 6 and 7 show

the results of the compared methods on different test images of

Table 3. Quantitative comparison on the proposed BAID dataset with state-

of-the-art methods, including (i) backlit image enhancement methods, (ii)

low-light image enhancement methods and (iii) general image enhance-

ment methods. The best and the second-best scores are shown in bold and

underlined, respectively.

Method PSNR SSIM ∆E∗ NIQE

Wang et al. (Wang et al., 2016) 17.96 0.86 13.35 3.60

Li and Wu (Li and Wu, 2018) 17.16 0.82 13.10 4.86

ExCNet (Zhang et al., 2019a) 19.31 0.90 11.41 2.94

Buades er al. (Buades et al., 2020) 17.47 0.89 13.46 3.67

RetinexNet (Wei et al., 2018) 21.26 0.90 9.67 3.48

KinD (Zhang et al., 2019b) 22.69 0.91 7.76 3.06

DeepUPE (Wang et al., 2019a) 21.05 0.90 9.73 2.97

HDRNet (Gharbi et al., 2017) 23.78 0.95 7.54 2.91

DPED (Ignatov et al., 2017) 22.97 0.93 8.24 3.04

Zeng et al. (Zeng et al., 2020) 23.21 0.93 7.62 3.16

MIRNet (Zamir et al., 2020) 24.21 0.94 7.00 4.69

Chai et al. (Chai et al., 2020) 21.39 0.88 9.49 4.72

BacklitNet (Ours) 25.06 0.96 6.45 2.81

Table 4. Quantitative comparison on the Li and Wu dataset and Vonikakis

et al. dataset in terms of NIQE with state-of-the-art methods, including

(i) backlit image enhancement methods, (ii) low-light image enhancement

methods and (iii) general image enhancement methods. The best and the

second-best scores are shown in bold and underlined, respectively.

Method Li and Wu dataset Vonikakis et al. dataset

Wang et al. (Wang et al., 2016) 3.41 2.68

Li and Wu (Li and Wu, 2018) 3.31 3.19

ExCNet (Zhang et al., 2019a) 3.21 2.08

Buades et al. (Buades et al., 2020) 3.41 2.14

RetinexNet (Wei et al., 2018) 3.79 2.48

KinD (Zhang et al., 2019b) 3.14 2.59

DeepUPE (Wang et al., 2019a) 3.15 2.05

HDRNet (Gharbi et al., 2017) 3.07 1.99

DPED (Ignatov et al., 2017) 3.10 2.66

Zeng et al. (Zeng et al., 2020) 3.32 2.54

MIRNet (Zamir et al., 2020) 3.06 3.76

Chai et al. (Chai et al., 2020) 3.41 3.19

BacklitNet (Ours) 2.88 1.96
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Table 5. Comparison with state-of-the-art methods on the LOL dataset. The best and the second-best scores are shown in bold and underlined, respectively.

Method HDRNet DPED RetinexNet KinD DeepUPE Chai et al. Zeng et al. MIRNet BacklitNet

(Gharbi et al., 2017) (Ignatov et al., 2017) (Wei et al., 2018) (Zhang et al., 2019b) (Wang et al., 2019a) (Chai et al., 2020) (Zeng et al., 2020) (Zamir et al., 2020) (ours)

PSNR 18.75 19.71 16.77 20.86 19.56 16.56 19.97 24.14 22.79

SSIM 0.80 0.80 0.55 0.80 0.74 0.79 0.81 0.83 0.85

Time (ms) 6.78 58.6 94.8 33.2 7.04 11.3 2.50 710 3.86

these datasets. As we can see, our method achieve appealing

results in various scenes. Specifically, in terms of visibility of

the images, Wang et al. (Wang et al., 2016), DeepUPE (Wang

et al., 2019a) and Chai et al. (Chai et al., 2020) cannot produce

satisfactory results such a fact can be observed through exam-

ple shown in Figures 6(b), 6(h), 6(m), 7(b), 7(h) and 7(m). The

enhanced results by Li and Wu (Li and Wu, 2018) and MIR-

Net (Zamir et al., 2020) are prone to produce halo artifacts in

Figures 6(c) and 6(i). Additionally, as shown in Figures 6(d)

and 6(e), the foreground edges generated by ExCNet (Zhang

et al., 2019a) and Buades et al. (Buades et al., 2020) are un-

natural. For low-light enhancement methods, the enhanced re-

sults by RetinexNet (Wei et al., 2018) and KinD (Zhang et al.,

2019b) suffer from severe color deviation and artifacts in back-

lit scenes, which are demonstrated in Figures 6(f), 6(g), 7(f) and

7(g). DPED (Ignatov et al., 2017) and Zeng et al. (Zeng et al.,

2020) decrease the contrast of images in Figures 6(j), 6(k), 7(j)

and 7(k). As shown in Figures 6(i) and 7(i), HDRNet (Gharbi

et al., 2017) work well for restoring backlit images. However,

both of them do not brighten the dark regions specifically. In

contrast, BacklitNet is able to enhance backlit images with sat-

isfactory visual effect, harmonized brightness, natural contrast

and no objectionable artifacts under diverse light conditions.

User Study. Moreover, we conduct a user study with 50 par-

ticipants (25 males and 25 females) to evaluate the subjective

perception of different methods. For a fair comparison, the

user study is conducted in the same environment (room, display

and light). Specifically, we randomly select 50 testing images

from the BAID dataset, Li and Wu dataset and Vonikakis et al.

dataset. Then, we perform a pairwise comparison between the

enhanced results of all the methods. In order to avoid subjec-

tive bias, the group of images and the order of method pairs

Table 6. Psychophysical analysis of competing methods using the Bradley-

Terry model. The best and the second-best scores are shown in bold and

underlined, respectively.

Method Bradley-Terry score Rank

Wang et al. (Wang et al., 2016) -1.13 10

Li and Wu (Li and Wu, 2018) -0.15 9

ExCNet (Zhang et al., 2019a) 0.42 6

Buades et al. (Buades et al., 2020) -1.86 11

RetinexNet (Wei et al., 2018) -2.44 12

KinD (Zhang et al., 2019b) 1.19 4

DeepUPE (Wang et al., 2019a) 0.39 7

HDRNet (Gharbi et al., 2017) 1.98 2

DPED (Ignatov et al., 2017) 0.88 5

Zeng et al. (Zeng et al., 2020) -0.06 8

MIRNet (Zamir et al., 2020) 1.69 3

Chai et al. (Chai et al., 2020) -3.16 13

BacklitNet (Ours) 2.25 1

are randomized. For each pairwise comparison, there are three

options for the participant to choose: “left is better”, “right is

better” and “no preference”. Finally, we use the Bradley-Terry

model to estimate the subjective score and rank the evaluation

results. As shown in Table 6, results generated by our method

are more preferred by human subjects.

Running time. Apart from the quantitative comparison of

image quality, we also evaluate the running time of the com-

pared methods in different resolutions. The average time of all

methods on the BAID dataset measured by milliseconds is re-

ported in Table 7, which indicates the proposed method signif-

icantly advances the existing backlit image enhancement meth-

ods (Buades et al., 2020; Li and Wu, 2018; Wang et al., 2016;

Zhang et al., 2019a). Compared to high-speed general image
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Table 7. Running time (ms) comparison at different resolutions on the pro-

posed BAID dataset with state-of-the-art methods, including (i) backlit im-

age enhancement methods, (ii) low-light image enhancement methods and

(iii) general image enhancement methods. The best and the second-best

scores are shown in bold and underlined, respectively. “N.A.” means that

the result is not available.

Method 512×512 1920×1080 5472×3648

Wang et al. (Wang et al., 2016) 102 767 7.6e3

Li and Wu (Li and Wu, 2018) 3.5e4 2.6e6 N.A.

ExCNet (Zhang et al., 2019a) 9.5e3 1.2e4 2.9e4

Buades et al. (Buades et al., 2020) N.A. N.A. N.A.

RetinexNet (Wei et al., 2018) 3.84 283 N.A.

KinD (Zhang et al., 2019b) 3.76 261 N.A.

DeepUPE (Wang et al., 2019a) 7.4 41.2 621

HDRNet (Gharbi et al., 2017) 7.15 39.3 592

DPED (Ignatov et al., 2017) 61.9 482 N.A.

Zeng et al. (Zeng et al., 2020) 2.45 2.55 3.17

MIRNet (Zamir et al., 2020) 762 N.A. N.A.

Chai et al. (Chai et al., 2020) 7.00 N.A. N.A.

BacklitNet (Ours) 3.71 4.81 4.92

Table 8. Results of ablation study on different values of λ.

λ = 0 λ = 1 λ = 2 λ = 3 λ = 4

PSNR 24.34 24.65 25.06 24.45 24.19

SSIM 0.955 0.958 0.959 0.957 0.955

∆E∗ 7.04 6.72 6.45 6.92 7.06

NIQE 8.52 8.48 8.45 8.49 8.51

Fig. 8. Results of ablation study on different values of depth d.

Table 9. Results of ablation study on different blocks.

SP LA FA PSNR SSIM ∆E∗ NIQE

– – – 22.31 0.939 8.53 8.77

X – – 24.18 0.948 6.89 8.64

X X – 24.86 0.956 6.60 8.53

X X X 25.06 0.959 6.45 8.48

enhancement methods (Chai et al., 2020; Gharbi et al., 2017;

Wei et al., 2018; Wang et al., 2019a; Zhang et al., 2019b; Zeng

et al., 2020), we obtain a comparable result, which satisfies the

real-time requirement of practical application. As the resolu-

tion of the image increases, our speed advantage becomes more

obvious. Table 5 shows the running time of all methods on the

LOL dataset. It is obvious that BacklitNet can achieve a balance

of efficiency and performance.

5.5. Ablation study

In this section, we explore the influence of different compo-

nents in our method. Firstly, we conduct an ablation study to ex-

plore the influence of the weight factor λ in Equation 4. All the

experiments follow the same implementation setup. The quan-

titative results are reported in Table 8. One can see that, λ=2

outperforms other choices, and exceed λ=0 in PSNR, SSIM,

∆E∗ and NIQE by 0.72, 0.004, 0.59 and 0.07, respectively. It is

worth noting that even if we set λ=0, our qualitative results are

better than the existing methods, which further demonstrates

the effectiveness of the designed network architecture. More

qualitative results are shown in the supplementary material,

from which we see that the visual effect is more appealing when

λ=2. Consequently, we select λ=2 for all the experiments.

Furthermore, we conduct experiments to investigate the

value of the depth parameter d in Equation 2. We explore the

effects of different depth values on both the quality and speed

of our method. As shown in Figure 8, the network with a larger

depth performs better but becomes more time-consuming. To

achieve a trade-off between efficiency and quality, we set the

value of depth d to 8.

In addition, we evaluate the effect of semantics perception
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(a) Nikon Z5 (b) Canon 850D (c) Sony A7

Fig. 9. Qualitative comparison on different camera brands. The odd and

even rows are input and output images, respectively.

block (SP), lighting acquisition block (LA) and fusion adjust-

ment block (FA). Table 9 shows that each block contributes to

generating better results.

5.6. Generalization

To explore the performance of BacklitNet on different cam-

era brands, we capture backlit images with Nikon Z5, Canon

850D and Sony A7, which are not used in the BAID dataset.

The captured images contain 7 indoor scenes and 8 outdoor

scenes and each scene contains three images taken by three dif-

ferent cameras. Although there are slight differences in each

set of images due to the difference in camera lenses and sen-

sors, we ensure that the three images in each set are taken under

the same scene and lighting condition. Then, we use the model

trained on the BAID dataset to enhance these backlit images.

As shown in Figure 9, BacklitNet performs well on different

camera brands in each scene. Specifically, BacklitNet restores

the ill-exposed backlit regions while preserving the harmony of

overall brightness without image degradation. The quantitative

results on 15 scenes shown in Table 10 further demonstrate that

the performance of BacklitNet does not depend on the camera

brand.

Table 10. Quantitative comparison on different camera brands in terms of

NIQE.

Camera Brand Nikon Z5 Canon 850D Sony A7

NIQE 2.94 2.87 2.83

6. Conclusions

In this paper, we propose a novel learning-based network

BacklitNet for backlit image enhancement. The main inno-

vations are as follows: 1) we build, to the best of our knowl-

edge, the first large-scale backlit image dataset which contains

3000 backlit images with different backlit degrees and cor-

responding high-quality references; 2) we introduce the idea

of salient object detection into our network to learn enriched

semantic and spatial information; 3) we present the prior of

backlit image brightness distribution and integrate it into the

loss function, which can pay more attention to the local back-

lit region while preserving the harmony of overall brightness.

Through these strategies, we can not only restore the under-

exposed foreground in various scenes, but also recover harmo-

nious illumination, natural contrast and clear details in backlit

images. Consistent achievement of state-of-the-art results on

four datasets corroborates the effectiveness and stability of the

proposed method.
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