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ABSTRACT

Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new
target domain with only unlabeled data. Most existing methods suffer from noticeable negative trans-
fer resulting from either the error-prone discriminator network or the unreasonable teacher model.
Besides, the local regional consistency in UDA has been largely neglected, and only extracting the
global-level pattern information is not powerful enough for feature alignment due to the abuse use of
contexts. To this end, we propose an uncertainty-aware consistency regularization method for cross—
domain semantic segmentation. Firstly, we introduce an uncertainty-guided consistency loss with a
dynamic weighting scheme by exploiting the latent uncertainty information of the target samples. As
such, more meaningful and reliable knowledge from the teacher model can be transferred to the stu-
dent model. We further reveal the reason why the current consistency regularization is often unstable
in minimizing the domain discrepancy. Besides, we design a ClassDrop mask generation algorithm
to produce strong class-wise perturbations. Guided by this mask, we propose a ClassOut strategy
to realize effective regional consistency in a fine-grained manner. Experiments demonstrate that our
method outperforms the state-of-the-art methods on four domain adaptation benchmarks, i.e., GTAV
— Cityscapes and SYNTHIA — Cityscapes, Virtual KITTI — KITTI and Cityscapes — KITTIL.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Semantic segmentation aims to identify the semantic cat-
egory of each pixel in a given image. Recent studies have
shown rapid progress with a variety of CNN-based algorithms
trained on a large-scale annotated dataset to tackle this prob-
lem [47, 3, 4, 43]. However, due to the time-consuming pro-
cess of annotating pixel-wise labels [10], building such a large
annotated dataset is cost-expensive. Compared with manual an-
notation, the label of synthetic data is much easier to obtain, and
thus it is natural to use synthetic data to supervise the segmenta-
tion model instead of real data [58, 59]. However, there always
exists a significant performance drop when the learned source
models are directly applied to target data, due to the existence
of a domain gap between the synthetic images and real images.
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To address this issue, various unsupervised domain adap-
tation (UDA) techniques have been proposed from the do-
main distribution shift perspective to align the latent feature
distributions between the source domain and target domain.
Many researchers have exploited additional supervised signals
based on the adversarial framework such as depth [40, 5, 68],
style [83, 30, 87], category constraint [31, 8], decision bound-
ary [60, 39] and other domain-invariant information [50] to pro-
mote the feature alignment. However, due to the fact that it
always requires a domain classifier (discriminator) during the
training procedure, these adversarial-based approaches often
suffer from training instability and the phenomenon of negative
transfer [52, 9].

Consistency regularization is one of the non-adversarial
methods exploited in cross-domain segmentation to cope with
the negative effect caused by adversarial training [9, 73]. This
kind of consistency-based methods usually perform the feature-
level domain alignment between a student model and a teacher
model. The teacher model is an exponential moving average
(EMA) of the student model, and then the teacher model could
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Fig. 1: mloU comparison on the validation set of Cityscapes by adapting
from GTAS dataset to Cityscapes dataset. The blue line corresponds to the
conventional Mean Teacher strategy [9]. The orange line corresponds to the
consistency-based adaptation combined with our proposed uncertainty guided
module.

transfer the learned knowledge to the student. The target pre-
dictions of the student and teacher model under different per-
turbations are penalized by a consistency constraint.

In the previous consistency-based works [9, 57], a common
consistency loss, i.e., Mean Square Error, is used to ensure the
consistency between the student’s prediction and the teacher’s
prediction. We observe that such a simple consistency con-
straint is usually weak for domain adaptive semantic segmen-
tation, which is reflected in two respects. Firstly, this kind of
alignment did not consider the reliability of the teacher predic-
tions, and not all pixel-wise predictions are highly confident for
knowledge transfer. Directly imposing a consistency constraint
onto all pixels is inappropriate, which could harm the learn-
ing process by generating unreasonable guidance for the student
model. Secondly, although the whole training of consistency-
based adaptation is more stable than adversarial-based adapta-
tion, it is still insufficient. Due to the fact that the basic Mean-
Teacher structure may trigger the “error accumulation”, it could
take more training iterations to converge and even may lead to
early performance degradation during the adaptation process.
The performance curve on the target domain images is shown
in Fig. 1.

In the existing consistency regularization methods, e.g.,
[9, 57], the inconsistent penalty is usually adopted on the global
level for prediction map, while the region-wise consistency on
the local level is ignored, i.e., some contextual object occur-
rence should be consistent wherever the environments are. Only
extracting the global-level pattern information is not powerful
enough for the feature-level representation alignment. Without
this alignment, the performance will drop significantly in the
target domain. We attempt to learn the robust representations
to varying environments by exploring the fine-grained regional
consistency, to prevent the model from abusing the contexts.

Motivated by the above facts, we propose a novel
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uncertainty-aware consistency regularization scheme to address
the domain shift for cross-domain segmentation. Firstly, we
introduce a dynamic weighting scheme with an uncertainty-
guided consistency loss to capture the understanding of hidden
epistemic uncertainty of target predictions for UDA in seman-
tic segmentation. Secondly, we design a ClassDrop mask gen-
eration algorithm to produce strong class-wise perturbations.
Guided by this mask, we present an innovative ClassOut strat-
egy to keep the local regional consistency in a fine-grained man-
ner. The whole architecture includes a student model, a teacher
model, and our proposed uncertainty module.

In detail, our uncertainty-guided consistency constraints are
imposed between the Mean-Teacher system and our proposed
uncertainty module, which motivates both the student model
and teacher model to alternately promote each other by pro-
viding positive feedback, thus leading to the domain gap to
be gradually reduced. To cope with the instability of the con-
ventional consistency regularization framework, we introduce
a dynamic weighting scheme of the consistency loss, which is
to calculate a time-dependent threshold for filtering out the un-
reasonable predictions along with mining the highly confident
pixel-wise predictions of the target sample. In this manner, the
adaptation is realized in a more accurate direction, instead of
the rough distribution matching. To address the issue of local
regional consistency in UDA, we propose a ClassOut strategy to
learn more robust region-wise features under varying environ-
ments. Our main idea is that the same input image should be
invariant under the perturbations by randomly dropping some
categories. We design a ClassDrop mask generation algorithm
to generate such strong class-wise perturbations. This mask is
utilized to filter out the regions of the input target image and
the uncertainty mask at the same time to ensure regional con-
sistency on the local level.

Our main contributions are summarized as follows.

e We propose an uncertainty-aware consistency regulariza-
tion framework for cross-domain semantic segmentation,
which is a practical, intuitive and elegant contribution to
the field. It is also a simple yet effective method for UDA
in semantic segmentation.

e We design an uncertainty-guided consistency loss with a
dynamic time-dependent weighting scheme and further re-
veal the reason why the current consistency regularization
is often unstable in minimizing the domain discrepancy.
We also show that our method can effectively ease this is-
sue by mining the most reliable and meaningful samples
between the source and the target domains.

e We develop a ClassOut strategy for keeping the local re-
gional consistency in UDA. Meanwhile, we propose a
ClassDrop mask generation algorithm to produce strong
class-wise perturbations for guiding the ClassOut.

e We provide extensive experimental results with two com-
mon backbone networks, i.e., VGG16 and ResNet101 and
show that our approach achieves outstanding performance
on four challenging benchmark datasets including both the
synthetic-to-real adaptation and cross-city adaptation, i.e.,



GTAV — Cityscapes, SYNTHIA — Cityscapes, Virtual
KITTI — KITTT and Cityscapes — KITTL

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation is a highly active research field in
computer vision. Traditional works of semantic segmentation
mainly focused on manually designed image features. With the
recent surge of deep learning, a lot of CNN-based methods have
been studied and we have witnessed a rapid boost in semantic
segmentation performance. Long et al. [47] firstly formulated
semantic segmentation as a per-pixel classification problem and
proposed a fully convolutional network (FCN). With modifica-
tions for pixel-wise prediction, many recent approaches have
been proposed, such as DeepLab v2 [3], DeepLab v3+ [4],
EMANet [43], etc. Such models are generally trained on
datasets with pixel-wise annotation, e.g., Cityscapes [10], PAS-
CAL [14] and COCO [46]. However, building such large-
scale datasets with dense annotations costs expensive human
labor. An alternative approach is to train a model on syn-
thetic data generated from virtual 3D environments, for exam-
ple, GTAV [58], SYNTHIA [59], etc. Unfortunately, when di-
rectly applying the model trained on the synthetic data to the
real-world scenarios, the performance will be noticeably de-
graded. The main reason lies in the large domain gap or dis-
tribution shift between the source domain and target domains.

2.2. Domain Adaptation

In conventional machine learning, there holds a basic as-
sumption that the training data and testing data are sampled
independently from an identical distribution (i.i.d), while this
assumption does not always hold in real-world scenarios. Do-
main Adaptation aims to mitigate the performance drop caused
by the distribution mismatch between training and testing data
when applying the trained model into the testing data. Unsu-
pervised Domain Adaptation (UDA) refers to the setting when
the labeled target data is not available. This question has been
well studied in image classification. Please refer to [11] for
a comprehensive survey. Conventional methods aim to learn
domain-invariant representations through Maximum Mean Dis-
crepancy (MMD) [23, 48, 1, 63], geodesic flow kernel [24],
sub-space alignment [16], asymmetric metric learning[35]. In-
spired by GAN [26], adversarial learning is successfully ap-
plied in UDA to align the feature distributions from different
domains. DANN [22] was the pioneering work, it encouraged a
generator to enforce the two distributions to be as close as pos-
sible, and to fool the domain classifier at the same time. Most
of these UDA methods work on simple and small classifica-
tion datasets (e.g., MNIST [38] and SVHN [54]), and may have
limited performance in more challenging tasks, like semantic
segmentation.

2.3. Domain Adaptation for Semantic Segmentation

Recently many approaches have been proposed to address
the domain shift in semantic segmentation. Pioneered by [31],
Hoffman et al. proposed a domain-adversarial training method
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by aligning the features between two domains. Following this
line, many works have been introduced to address the cross-
domain semantic segmentation via the adversarial-based meth-
ods, which have achieved great successes in this field. This
kind of distribution alignment could be performed at different
representation layer, such as pixel-level [30, 61, 7, 25, 77, 78],
feature level [8, 50, 31, 82, 6, 2, 55] and output level [66, 67, 5,
52,76, 71]. Many researchers have exploited additional super-
vised signal based on the adversarial framework such as depth
[40, 5, 68], style [83, 30, 87], category constraint [31, 8], deci-
sion boundary [60, 39], and other domain-invariant information
to promote the feature alignment. Despite their efforts, these ap-
proaches need to maintain an extra discriminator network, thus
suffering from training instability and negative transfer [52, 9].

To tackle these issues, another line of non-adversarial meth-
ods, e.g., self-training [88, 89, 44, 15] have been recently stud-
ied and applied in the field of UDA. However, these meth-
ods need to generate pseudo labels and fine-tune the segmen-
tation model iteratively in many stages, they cannot be trained
end-to-end. Different from the above self-training approaches,
consistency-based methods [9, 57] is a completely different way
and a simple online method to learn domain-invariant informa-
tion in an end-to-end manner.

2.4. Consistency Regularization

Consistency Regularization is applied in the field of semi-
supervised learning, which employs unlabeled data to produce
consistent predictions under different perturbations [64]. Tar-
vainen et al. [64] firstly encouraged consistency between the
predictions of a student network and a teacher network. The
teacher’s weights are an exponential moving average of those
of the student, leading to faster convergence and improved re-
sults. French et al. [18] then applied the Mean-Teacher frame-
work to the unsupervised domain adaptation for image classi-
fication. To address the domain shift for magnetic resonance
imaging (MRI), Perone et al. [57] applied the self-ensembling
method to the medical imaging segmentation task. Considering
the UDA task for urban scenes, Choi et al. [9] proposed a self-
ensembling with the GAN-based data augmentation method for
cross-domain segmentation. Our work is mostly related to [9].
Inspire by the work [80] designed for semi-supervised 3D left
atrium segmentation, we propose to capture the latent uncer-
tainty understanding of the teacher model, and encourage the
student model to learn from that reliable knowledge.

3. Methodology

In this section, we present our uncertainty-aware consistency
regularization method for unsupervised domain adaptive seg-
mentation. Following the unsupervised domain adaptation pro-
tocol [8, 31, 6], the synthetic data is utilized as the source do-
main S, and the real data as target domain 7. In the source
domain, we have access to the synthetic images x; € S along
with their corresponding ground-truth labels y,. In the target
domain, only unlabeled images x; € T are available.
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Fig. 2: An overview of the proposed framework. The whole framework includes a student network, a teacher network updated by exponential moving average
(EMA), and our uncertainty module. A ClassDrop Mask is generated by the target image and then used to filter the local regions of the target image. The ClassDrop
target image is fed into the student network to get student prediction. We employ different augmentations G(¢;) for the input target sample, and they are fed into the
teacher model. In our uncertainty module, we perform N times stochastic forward passes to get an average teacher prediction. Then, with the estimation of predictive
entropy and the proposed dynamic threshold, we could get the uncertainty mask. Thus, the ClassDrop Mask is element-wise multiplied with the uncertainty mask
for filtering out the unreasonable predictions. Guided by the proposed dynamic weighting scheme and ClassOut strategy, our uncertainty-guided consistency loss
Lon could encourage the teacher model to transfer more reliable knowledge to the student.

3.1. Overview

The overview of our proposed uncertainty-aware consistency
regularization method is illustrated in Fig. 2. The whole frame-
work includes three modules: a student model fs, a teacher
model fr, and our uncertainty module. The key idea is to de-
crease the uncertainty of the error-prone teacher model as train-
ing progress thus leading the adaptation process in a more ac-
curate and stable way.

Specifically, a ClassDrop mask is generated by the target
image to provide strong class-wise perturbations by randomly
dropping some classes that are presented in the target image.
This mask will be utilized to filter out the local regions of
both the target image and the uncertainty mask (a mask we de-
fined to indicate the uncertain pixels). For the former, a Class-
Drop target image is fed into the student network to get stu-
dent prediction. For the latter, we will explain the data flow
in detail. Firstly, we employ data augmentation, e.g., Gaus-
sian Noise, for the input target samples. In our proposed uncer-
tainty module, we perform stochastic forward passes to calcu-
late the mean of target predictions. In this way, we are able
to employ our teacher model as a Bayesian network to esti-
mate the latent uncertainty information of the teacher predic-
tions. We formulate the uncertainty as the pixel-wise predic-
tive entropy. Then, we calculate a time-dependent threshold for
filtering out those unreasonable predictions along with mining
the high confident pixel-wise predictions of the target sample.
Thus, the ClassDrop Mask is element-wise multiplied with the
uncertainty mask for filtering out the unreasonable predictions.
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Fig. 3: Previous work vs. our approach.

With the help of the proposed dynamic weighting scheme, an
uncertainty-guided consistency loss is penalized to target pre-
dictions under different perturbations, which could lead the stu-
dent model to gradually learn from the more meaningful and re-
liable predictions of the teacher model during the training pro-
cess.

3.2. Uncertainty Module

As shown in Fig. 3, the uncertainty module serves as a bridge
for connecting the teacher model and the student model. Ac-
cording to the uncertainty estimation method in Bayesian net-
works [33], we are motivated to capture the understanding of
epistemic uncertainty using stochastic forward passes. In step
1, we perform the stochastic forward pass and then extract the
uncertainty information of the error-prone teacher model. We
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Fig. 4: The main idea of the ClassOut strategy is that the same input image
should be invariant under the ClassDrop perturbations. Specifically, we firstly
generate a ClassDrop mask from an original target image. Then, guided by this
mask, we calculate a consistency loss between the original prediction from the
teacher and the ClassDrop prediction from the student. Therefore, we can keep
the local regional consistency on a fine-grained level.

formulate the uncertainty as the pixel-wise predictive entropy.
In step 2, we calculate the uncertainty mask given our time-
dependent threshold, and a ClassDrop mask given the target
image. Guided by these masks, we enforce an uncertain-aware
consistency loss and a ClassOut Strategy onto the student pre-
dictions and the teacher predictions, thus the student model
could learn credible knowledge from the teacher.

The teacher’s weights @, at training step ¢ are updated by the
student’s weights @, with a smoothing coefficient a € [0, 1],
which can be formulated as follows:

O, =a-®_, +(1-a) O, (D)

where « refers to the EMA decay that controls the updating rate.

Specifically, we make N copies of the target image and in-
ject a Gaussian noise for the target predictions following prior
works [9]. Then, we perform N stochastic forward passes for
the target teacher sample to get the average teacher prediction.
Given a set of pixel-wise predicted class scores {Pgh’w’c) (x,)}fi |
of the target samples, the average teacher prediction is formu-
lated as:

3 1 > (h,w,c)
o=y Zl P (xy), )

where P. denotes the mean of the predictive probability of the
c-th class after N times stochastic forward passes. Thus, the
pixel-wise predictive entropy is as follows:

C
#(h,w) - _ Z ISC . log(pc), 3)

c=1

where ( refers to the predictive entropy in pixel level. All the
volumes of each pixel’s uncertainty forms a set Z = {¢ }fi I

3.3. Dynamic Weighting Scheme

With the help of the uncertainty of each pixel, we could cal-
culate a dynamic threshold to filter out the unreliable pixel-wise
prediction. On top of that, certain pixels with high confident
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probabilities will be left and the student model could gradually
learn the reliable target predictions from the teacher model.

In particular, we first calculate the uncertainty threshold R
to select the confident pixels according to the uncertainty map
we have estimated. Inspired by the ramp-up function of consis-
tency weight in [9], we came up with the Eq. 4, which dynami-
cally increases the threshold while the uncertainty is decreased
during the training process. This design is a time-dependent
ramp-up function, which changes dynamically over time:

R=a+(1-0q)- eﬁ(l—f/tmax)2 . Zmp (4)

where ¢ denotes the current training step and #,,,, is the maxi-
mum training step. Z,, means the upper bound of the volumes’
self-information, which is denoted by Zg,, = sup{u}Y ,. And
and S are two hyper-parameters.

The uncertainty-aware consistency loss L, is imposed be-
tween the prediction maps extracted from the student and the
predictions from the teacher network.

H W
Leon(fs, fr) = D" D 1™ < Ry
e )

Mo, yo) = for o) I,

where 7 is an indicator function, and x7, and xr, are two in-
put target samples with different augmentations. fy,) and
fo(xr) are the student and teacher prediction map after the
softmax function, respectively. Note that the prediction map
Jo (xr,) used for consistency regularization is the stochastic one
rather than the average one. Our uncertainty mask Mycertainy =
I(u™" < R) can reweigh not only the Mean Squared Error
(MSE) loss but also the Cross-Entropy Loss. For simplicity, we
use the Mean Squared Error (MSE) in this paper.

3.4. ClassOut Strategy

Previous consistency regularization methods, e.g., [9, 57],
usually impose the inconsistent penalty on the global level for
prediction map, while the region-wise consistency on the lo-
cal level is largely ignored, i.e., some contextual object occur-
rence should be consistent whatever the environments are. Only
extracting the global-level pattern information is not powerful
enough for the feature-level representation alignment. Due to
the lack of local regional consistency, the performance will drop
significantly in the target domain. Our goal is to learn the robust
representations to varying environments by exploring the fine-
grained regional consistency, to prevent the model from abusing
the contexts.

Firstly, we propose an innovative ClassDrop mask generation
algorithm to provide strong class-wise perturbations, as shown
in Algorithm 1. To be specific, we firstly get the pseudo labels
Yy from the target predictions fy (Xr). The set of the classes
presented in ¥ are noted as C. We get a class ratio § sam-
pled from a uniform distribution. Then, we randomly select
0|C| classes in C. A binary mask M is generated by setting the
pixels from those classes to 1 in M, whereas all others will have
a value 0. This mask is utilized to filter out the local regions in
both the target image and the uncertainty mask by an element-
wise multiplication.



Algorithm 1: ClassDrop Mask Generation Algorithm

Input: teacher model fp, target image X7, min class
ratio a, and max class ratio b.
Qutput: ClassDrop mask M
1 fo < fo(Xr);
2 Y7« arg max, f;r @, j,c);
3 C « Set of the classes present in Yr;
4 0 < Ula,b),;
5 ¢ « Randomly select 6|C| classes in C;
6 for each i, j do

, LM(LJ):{ 1, if Y7(i, j) € ¢

0, otherwise

8 return M;

The main idea of the ClassOut strategy is that the same input
image should be invariant under the ClassDrop perturbations.
Thus, guided by the ClassDrop mask, we calculate a consis-
tency loss between the original prediction from the teacher and
the ClassDrop prediction from the student. Therefore, we can
keep the local regional consistency:

Leon = IM © (fy (M © X1) — fo (X7)IP, (©6)

3.5. Unified Training

Consistency Loss: By unifying the ClassOut strategy and the
dynamic weighting scheme into the same framework to real-
ize end-to-end training, we reformulate the consistency loss as
follows:

2
Lcon = “Mclamdmp © Muncerminty O} (fH(Mclassout © XT) - f(')’ (XT))” 5

(M

where the final consistency loss is reweighted by the uncer-
tainty mask Mypcerrainty (defined in section 3.3) and the Class-
Drop mask M504 (defined in section 3.4). In other words,
the reweighted mask of the consistency loss is the element-wise
multiplication between the uncertainty mask M,ccrsqiny and the
ClassDrop mask M_js50u- We simplify the previous definition
and reformulate it as follows:

PN 1, if ?T(iv ]) € Cremain
Mclassdrop(h J) - { 0’ otherwise (8)
oo ) LafuG ) <R

Muncertamty(l’ ]) - { O, OtherWise (9)

where ¢emain = O|C| is the selected classes from a class set, u
is the predicted entropy defined in Eq. 3 and R is the dynamic
threshold defined in Eq. 4.

Supervised Loss: The segmentation loss Ly, is the cross-
entropy loss for optimizing the images from the source domain,
which can be defined as:

c

Lyeg = = i ﬁ D log (P, (10)

h=1 w=1 c=1
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where y, is the ground truth for source images and P, =
fs ((2;)m7)y is the segmentation output of source-translated in-
put images.

Total Loss: The total 1oss Ly, is the weighted sum of the seg-
mentation loss Ly, and the consistency loss L,,, and can be
written as:

Ligtal = Lseg + AconLecons (11)

where L, is the combination of Equation 5 and Equation 7.
Acon 18 the dynamic weight of the consistency loss. To balance
the segmentation loss and the consistency loss, we use the same
ramp-up function A, as [65]. It is to increase the dominance
of L., during the early training steps and to increase the domi-
nance of L., during the late training steps.

3.6. Discussion

In this subsection, we will discuss the main differences be-
tween the existing research and our proposed method.

There exist some works [72, 36] which used uncertainty esti-
mation in domain adaptation; however, those methods [72, 36]
always need to maintain a Bayesian Discriminator in adversar-
ial training, thus suffering the drawbacks of negative transfer
and remarkable instability of training. Besides, their methods
only work well on the simple and small classification dataset,
and can hardly work well in structured tasks, e.g., semantic
segmentation. Therefore, we do not compare the experimen-
tal results with these methods in Section 4. Our uncertainty-
aware consistency regularization shows that a non-adversarial
approach can achieve the state-of-the-art as well without the
need of maintaining an extra discriminator network or carefully
tuning the optimization procedure for min-max problems dur-
ing the domain adaptation procedure.

Different from [28, 84], we focus on investigating the prob-
lem of “error accumulation” in consistency regularization,
rather than self-training. In contrast to [80] that targets the
semi-supervised learning for the 3d left atrium segmentation
task, while we target the unsupervised domain adaptation for
the image semantic segmentation task. Our method differs from
these approaches in several aspects. Firstly, we propose
a dynamic weighting scheme and a ClassOut strategy for the
uncertainty-consistency loss. The uncertainty mask, Classdrop
mask are employed in a completely different way from previ-
ous works [72, 36, 28, 80]. We further reveal the reason why
the current consistency regularization is often unstable in min-
imizing the distribution discrepancy in Section 1 and Section
4.1. Besides, we also show that our method can effectively ease
this issue by mining the most reliable and meaningful sam-
ples between the source and the target domains. To sum up,
our uncertainty-aware consistency regularization framework is
a practical, intuitive and elegant contribution to the field, and
it is also a simple yet effective unsupervised domain adapta-
tion method for semantic segmentation. To our best knowledge,
there are no such domain adaptive segmentation methods pub-
lished before.



4. Experiments

In this section, we verify the effectiveness of our method
with two common backbone networks, i.e., VGG16 and ResNet
101, on both the synthetic-to-real adaptation and cross-city
adaptation on four challenging benchmark datasets, i.e., GTAV
— Cityscapes, SYNTHIA — Cityscapes, Virtual KITTI —
KITTI and Cityscapes — KITTI.

4.1. Datasets

Cityscapes [10] is a dataset focused on autonomous driving,
which consists of 2,975 images in the training set, and 500
images in the validation set. The images have a fixed spatial
resolution of 2048 x 1024 pixels. For the sake of the fairness
of experimental results, we follow the same evaluation proto-
col [66, 69, 52], i.e. we train the model on the unlabeled train-
ing set and report the results on the validation set.

GTAV [58] is a synthetic dataset including 24,966 photo-
realistic images rendered by the gaming engine Grand Theft
Auto V (GTAV). The resolution of images is 1914 x 1051 pix-
els which is similar to Cityscapes that the semantic categories
are also compatible between the two datasets. We use all the 19
official training classes in our experiments.

SYNTHIA [59] is another synthetic dataset composed of 9,400
annotated synthetic images with the resolution 1280 x 960.
Like GTAYV, it has semantically compatible annotations with
Cityscapes. Following the prior works [8, 82, 6], we use the
SYNTHIA-RAND-CITYSCAPES subset [59] as our training
set.

KITTI [20] is a real-world dataset containing 7,481 images
with bounding boxes and another 200 images with pixel-level
labels. In the detection task, we split the training set and the
validation set manually with a ratio of 9 : 1 following [27]. In
the segmentation task, it is used as the target domain only due
to the lack of pixel-level annotations.

Virtual KITTI [21] is a synthetic dataset which clones the
scenes from the KITTI with 21,260 images. Each image is
densely annotated at pixel level with category and depth infor-
mation. It is designed to mimic the conditions of KITTI dataset
and has similar scene layouts, camera viewpoints and image
resolution to KITTI dataset.

4.2. Implementation details

Following common UDA protocols [9, 73, 66, 52], we em-
ploy the VGG-16 [62] and ResNet 101 [29] as the backbone of
the DeepLab-v2 [3] in our implementations, and the backbone
model is pre-trained on ImageNet [12]. For the DeepLab-v2
network, we use Adam as the optimizer. The initial learning
rate is 1 x 107>, and the weight decay is 5 x 107, In our
uncertainty module, we perform N = 8 times stochastic for-
ward passes to capture the understanding of latent epistemic
uncertainty. We set the EMA decay a to 0.999 during the train-
ing process. Following [37, 64, 9],the consistency weight is a
ramp-up function: A, = Ao X e 30~/ where Ay is an ini-
tial constant. This time-dependent threshold function is used to
increase the certainty at later training steps. We set @ = 0.75
and S = -5 in all experiments. Our method is implemented in
Pytorch on a single NVIDIA GTX 3090 Ti.

4.3. Comparisons with the State-of-the-art Techniques

We compare the results between our method and the state-
of-the-art methods on four challenging benchmarks, which
includes the synthetic-to-real adaptation, i.e., “GTAV —
Cityscapes” and “SYNTHIA — Cityscapes”, “Virtual KITTI —
KITTI” and cross-city adaptation, i.e., “Cityscapes — KITTI”.
With VGG16 backbone, our proposed method significantly out-
performs the state-of-the-art methods by 5% ~ 8% on GTAV
— Cityscapes, and 2% ~ 7% on SYNTHIA — Cityscapes.
Besides, it is superior to the non-adaptive baseline by 19.5%
on GTAS — Cityscapes and 20% ~ 24% on SYNTHIA —
Cityscapes. With ResNet101 backbone, our proposed method
outperforms the state-of-the-art methods by 1% ~ 3% on GTAV
— Cityscapes, and 2% ~ 6% on SYNTHIA — Cityscapes.

4.3.1. Results on GTAV — Cityscapes

As shown in Table 1 and Table 3, we present the adap-
tation results from GTAV to Cityscapes with VGG16 and
ResNet 101, respectively. Source-only denotes the baseline
Deeplab-v2 [3] is trained with only source domain data. In
the works [82, 66, 6, 52, 76, 55, 70], they mainly focused
on distribution alignment via different adversarial mechanisms.
But promoting feature alignment only on the high representa-
tion level is not enough, i.e., feature level [82, 6] or output
level [66, 52, 71]. The best results of mloU among them are
still about 7% worse than our results. To further reduce the do-
main gap, Hoffman ez. al [30] introduced an image-to-image
translation model to perform a style transfer process on the low
appearance level. Such techniques are further integrated into
[71,44, 61, 87, 9] to achieve higher performance, while they are
still about 5% ~ 10% worse than our results. Another line of
non-adversarial methods [82, 88, 69] were proposed to address
the negative effect of adversarial training. The self-ensembling
with GAN-based augmentation [9] has been recently proposed
and surpassed most of the previous works. In Table 1, our
method could get about 5.3% improvements compared to this
work [9]. Extensive experiments in Table 1 and Table 3 show
that our approach achieves a new top performance.

4.3.2. Results on SYNTHIA — Cityscapes

As shown in Table 2 and Table 9, we list the adaptation
results on the task "SYNTHIA — Cityscapes” with VGG16
and ResNet 101, respectively. Due to the fact that the base-
lines [66, 52] only calculate the results using 13 categories, we
also list results for the 13 categories for a fair comparison. Al-
though the domain gap between SYNTHIA and Cityscapes is
much larger than that of GTAV to Cityscapes, we could observe
in Table 2 that our uncertainty-aware consistency regularization
still performs well in terms of both mloU and per-class IoU.
In some semantic categories, such as large objects, e.g., road,
building, wall, vegetation, sky, efc., our method could capture
the understanding of epidemic uncertainty and remarkably in-
crease the certainty of these categories during the training pro-
cedure. In Table 2, the proposed method significantly outper-
forms the state-of-the-art techniques by 2.5% in mloU16 and
2% in mloU13 with VGG16 backbone. It is superior to the non-
adaptive baseline by 18.9% in mloU16 and 24.5% in mIoU13.



Table 1: Comparison results (mIoU) from GTAV to Cityscapes (with VGG16 backbone).
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Source Only ‘ 61.0 185 662 18.0 19.6 19.1 224 155 79.6 285 580 445 17 66,6 141 1.1 00 32 07 ‘ 28.3
SIBAN [50] 834 13.0 778 204 175 246 228 96 813 296 773 427 109 760 228 179 57 142 20 | 342
CyDADA [30] 852 372 765 21.8 150 238 229 215 805 313 607 505 9.0 769 171 282 45 98 00 |354
AdaptSegNet [66] 873 298 786 21.1 182 225 215 110 797 296 713 468 65 801 230 269 00 106 03 | 350
ROAD [6] 854 312 786 279 222 219 237 114 807 293 689 485 141 780 19.1 238 94 83 0.0 | 359
CLAN [52] 88.0 30.6 792 234 205 261 230 148 81.6 345 720 458 79 805 266 299 00 107 00 | 36.6
AdaptPatch [67] 873 357 795 320 145 215 248 137 804 320 705 505 169 81.0 208 281 41 155 41 |375
APODA [76] 884 342 77.6 237 183 248 249 124 80.7 304 68.6 489 179 80.8 270 272 62 191 10.2 | 38.0
CrCDA [32] 86.8 37.5 804 307 181 268 253 151 815 309 721 528 190 821 254 292 10.1 158 3.7 | 39.1
SWD [39] 91.0 357 780 21.6 21.7 318 302 252 802 239 741 531 158 793 221 265 15 172 304 | 399
DCAN [42] 823 2677 774 237 205 204 303 159 809 254 695 526 11.1 79.6 249 212 13 170 6.7 | 362
CrDoCo [7] 89.1 332 80.1 269 250 183 234 128 77.0 29.1 724 551 202 799 223 195 1.0 20.1 187 | 38.1
CDA [82] 729 300 749 121 132 153 168 141 793 145 755 357 100 621 206 190 0.0 193 12.0 | 314
CBST [42] 66.7 268 7377 148 95 283 259 101 755 157 516 472 62 719 37 22 54 189 324 | 309
ADVENT [69] 86.8 285 78.1 27.6 242 207 193 89 788 293 69.0 479 59 79.8 259 341 00 113 03 | 356
PyCDA [45] 86.7 248 809 214 273 302 266 21.1 86.6 289 588 532 179 804 188 224 4.1 9.7 62 | 372
LSD-seg [61] 88.0 305 78.6 252 235 167 235 11.6 787 272 719 513 195 804 198 183 09 208 184 | 37.1
SSF-DAN [13] 88.7 321 795 299 220 238 21.7 107 80.8 29.8 725 495 161 821 232 181 35 244 81 |377
Conservative Loss [87] | 85.6 383 786 272 184 253 250 17.1 815 313 706 505 223 813 255 210 0.1 189 43 | 381
PIT [27] 862 350 82.1 31.1 221 232 294 285 793 31.8 819 521 232 804 295 269 30.7 205 12 | 418
BDL [44] 89.2 409 812 29.1 192 142 290 196 837 359 807 547 233 827 258 280 23 257 199|413
SIM [71] 88.1 358 83.1 258 239 292 288 286 830 367 823 537 228 823 264 386 00 196 17.1 | 424
TGCF-DA + SE [9] 90.2 515 8.1 150 10.7 37.5 352 289 841 327 759 627 199 826 229 283 0.0 230 254|425
Ours | 951 665 847 351 198 312 350 321 862 434 825 610 251 871 353 461 00 246 175478
Table 2: Comparison results (mIoU) from SYNTHIA to Cityscapes (with VGG16 backbone).
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Source Only ‘ 68 154 568 08 0.1 146 47 68 725 786 41.0 78 469 47 1.8 21 ‘ 22.6 ‘ 24.1
Cross-city [8] 62.7 256 783 - - - 12 54 813 810 374 64 635 161 12 46 - 35.7
SIBAN [50] 70.1 25.7 80.9 - - - 38 72 723 805 433 50 733 160 1.7 3.6 - 37.2
ROAD [6] 717 300 775 96 03 258 103 156 776 79.8 445 166 67.8 145 7.0 238 | 362 -
AdaptSegNet [66] 789 292 755 - - - 0.1 48 726 767 434 88 71.1 160 3.6 84 - 37.6
CLAN [52] 80.4 30.7 747 - - - 1.4 80 77.1 79.0 465 89 738 182 22 99 - 39.3
AdaptPatch [67] 726 295 772 35 04 210 14 79 733 790 457 145 694 196 74 165 | 33.7 | 39.6
SPIGAN [40] 71.1 298 714 37 03 332 64 156 812 789 527 131 759 255 100 20.5 | 36.8 -
CrCDA [32] 745 305 786 6.6 0.7 212 23 84 774 79.1 459 165 731 241 9.6 142 | 352 | 4l1.1
APODA [76] 829 314 721 - - - 104 97 750 763 485 155 703 113 12 294 - 41.1
SWD [39] 833 354 821 - - - 122 126 838 765 474 120 715 179 16 297 - 43.5
CrDoCo [7] 622 212 728 42 08 301 41 107 763 73.6 456 149 692 141 122 230 | 334 -
DCAN [42] 799 304 708 1.6 0.6 223 6.7 230 769 739 419 167 61.7 115 103 38.6 | 354 -
CDA [82] 652 261 749 01 05 107 37 30 761 706 471 82 432 207 0.7 13.1 | 29.0 | 348
CBST [88] 69.6 287 695 121 0.1 254 119 13.6 820 819 49.1 145 660 6.6 3.7 324|354 | 36.1
ADVENT [69] 679 294 719 63 03 199 06 26 749 749 354 9.6 678 214 41 155|314 | 36.6
PyCDA [45] 806 266 745 20 0.1 181 137 142 808 71.0 480 190 723 225 121 18.1 | 359 | 426
Conservative Loss [87] | 80.0 314 729 04 0.0 224 81 167 748 722 509 127 539 156 1.7 335 | 342|403
LSD-seg [61] 80.1 29.1 775 28 04 268 11.1 180 781 767 482 152 705 174 87 16.7 | 36.1 -
GIO-Ada [5] 783 292 769 114 03 265 108 172 817 819 458 154 68.0 159 7.5 304 | 373|430
SSFE-DAN [13] 87.1 36,5 79.7 - - - 135 78 812 767 50.1 127 780 350 4.6 1.6 - 434
PIT [27] 81.7 269 784 63 02 198 134 174 767 741 475 224 760 21.7 19.6 27.7 | 38.1 | 449
BDL [44] 720 303 745 01 03 246 102 252 805 800 547 232 727 240 75 449 | 39.0 -
TGCF-DA + SE [9] 90.1 486 807 22 02 272 32 143 821 784 544 164 825 123 1.7 21.8 | 385 | 46.6
Ours | 931 532 811 26 06 291 78 157 817 81.6 536 20.1 827 229 77 313|415 ] 486




Table 3: Comparison results (mIoU) from GTAV to Cityscapes (with ResNet 101 backbone).
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Method Venue : ¥ 32 % 5 &2 2 2 ¢ 5 7 & ¥ 5 E 35 % & Z|°%
Source Only ‘ - 633 157 594 86 152 183 269 150 805 153 73.0 510 17.7 597 282 331 35 232 167 ‘ 329
BDL [44] CVPR’19 | 91.0 447 842 346 27.6 302 360 360 850 43.6 830 586 31.6 833 353 497 33 288 356|485
APODA [76] AAAI’'20 | 856 328 79.0 295 255 268 34.6 199 837 406 779 592 283 84.6 346 492 80 326 39.6 | 459
STAR [49] CVPR’20 | 88.4 279 80.8 273 256 269 316 208 835 341 766 605 272 842 329 382 1.0 302 312|436
IntraDA [55] CVPR’20 | 90.6 37.1 82.6 30.1 19.1 295 324 20.6 857 40.5 797 587 31.1 863 315 483 0.0 302 358|463
SIM [71] CVPR’20 | 90.6 447 84.8 343 28.7 316 350 376 847 433 853 57.0 315 83.8 426 485 1.9 304 390 | 492
LSE [53] ECCV’20 | 90.2 40.0 835 319 264 326 387 375 81.0 342 846 61.6 334 825 328 459 6.7 29.1 30.6 | 475
WLabel [56] ECCV’20 | 916 474 840 304 283 314 374 354 839 383 839 612 282 837 288 41.3 88 247 464 | 482
CrCDA [32] ECCV’20 | 924 553 823 31.2 29.1 325 332 356 835 348 842 589 322 847 406 46.1 2.1 31.1 327 | 48.6
FADA [70] ECCV’20 | 925 475 851 37.6 328 334 338 184 853 377 835 632 397 875 329 478 1.6 349 395|492
LDR [74] ECCV’20 | 90.8 414 847 351 275 312 38.0 328 856 421 849 59.6 344 850 428 527 34 309 381|495
CCM [41] ECCV’20 | 935 57.6 846 393 241 252 350 173 850 406 865 587 287 858 490 564 54 319 432|499
CD-SAM [75] | WACV’21 | 91.3 46.0 845 344 297 32,6 358 364 845 432 83.0 600 322 832 350 467 0.0 337 422|492
ASA [85] TIP’21 89.2 27.8 813 253 227 287 365 196 838 314 77.1 592 298 843 332 456 169 345 308 | 45.1
CLAN [51] TPAMI'21 | 88.7 355 803 275 250 293 364 281 845 370 766 584 297 812 388 409 56 329 288|455
DAST [79] AAAT’21 922 490 843 365 289 339 388 284 849 41.6 832 600 287 872 450 453 74 338 328|496
Ours ‘ - ‘ 91.3 486 855 358 314 36.7 375 368 863 403 857 643 31.1 877 367 449 159 389 554 ‘ 51.9

Table 4: Segmentation results of Virtual KITTI — KITTI.

Method | mIoU
GIO-Ada (CVPR’19) [5] | 53.50
Self-Ensembling (ICCV’19) [9] ‘ 55.45
CutMix (BMVC’20) [17] | 55.58
CowMix (Arxiv’20) [19] | 56.07
DACS (WACV’21) [65] | 55.51
PIT + CutMix (ICCV’21) [27] | 56.72
PIT + CowMix (ICCV’21) [27] | 57.24
PIT + DACS (ICCV’21) [27] 56.57
Ours ‘ 60.16

In Table 9, the proposed method outperforms the state-of-the-
art approaches by 2% ~ 5% with ResNet101 backbone.

4.3.3. Virtual KITTI — KITTI and Cityscapes — KITTI

In addition to the two commonly-used benchmarks, we
also conduct experiments on another synthetic-to-real adapta-
tion, i.e., Virtual KITTI — KITTI, and cross-city adaptation,
i.e., Cityscapes — KITTI, to validate the effectiveness of our
method. Table 4 shows the results of adapting the model from
Virtual KITTI to KITTI. We reproduce Self-Ensembling [9],
CutMix [17], CowMix [19], DACS [65] in the same setting.
The results of GIO-Ada [5] and PIT [27] are reported in the
original papers. We can see that our method significantly im-
proves the mloU by 3.4% ~ 6.6% compared with the existing
UDA methods. In Table 5, we adapt from Cityscapes to KITTI,
where the source domains and target domain have different dis-
tributions in cross-city road scenes and street views. Our pro-
posed method can outperform the state-of-the-art methods by
around 1%. Table 5 demonstrate our effectiveness in cross-city
adaptation.

Table 5: Segmentation results of Cityscapes — KITTIL.

Method | mIoU
Self-Ensembling (ICCV’19) [9] | 59.54
CutMix (BMVC’20) [17] | 58.78
CowMix (Arxiv’20) [19] | 59.15
DACS (WACV’21) [65] | 59.19
PIT + CutMix (ICCV’21) [27] | 60.09
PIT + CowMix (ICCV’21) [27] | 60.37
PIT + DACS (ICCV’21) [27] 60.82
Ours | 61.62

Table 6: Ablation of each component on SYNTHIA — Cityscapes.

baseline  Muucerainy  Metassow | mIoU | Gain
v 515 | -
N N 535 | 20
vV vV Vv | 559 | 44

4.4. Ablation Study

Ablation of each component: In Table 6, we investigate
the effects of different design components in SYNTHIA —
Cityscapes with ResNet101 backbone. The uncertainty mask
M yncertainry and the ClassDrop mask M j4gs0u T€veals the contri-
bution of the proposed dynamic weighting scheme and the Clas-
sOut strategy are complementary. The consistency regulariza-
tion baseline is 51.5%. By adding the Myceriainty and Mejagsour
sequentially, we boost the mloU with an additional +2.0% and
+2.4%, achieving 53.5% and 55.9%, respectively. These im-
provements show the effects of individual components of our
proposed approach.

Comparison to the related work [80] : In Table. 7, we show
the experimental comparison on two benchmark datasets with
ResNet 101 backbones to demonstrate its effectiveness. Note
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Fig. 5: Visualization results of GTAS5 — Cityscapes (first and second rows) and SYNTHIA — Cityscapes (third and fourth rows). Segmentation results at 10K
training steps (first and third rows) and 56K training steps (second and fourth rows). The fourth and fifth columns illustrate the predictive entropy and our uncertainty

mask.

Table 7: Comparisons with the related work [80]. on GTAV — Cityscapes
with ResNet 101 backbone.

mloU 13
method (SYN)

mloU
(GTAV)

Mean Teacher [9]‘ 43.1 ‘ 45.9
+ Yu et al. [80] 44.6 47.6

+ Ours 51.9 55.9

that all the experimental results of Table. 7 are conducted
on the same Mean-Teacher baseline with ResNet 101 back-
bones. We replace the proposed method with the approach [80],
and we find that the improvements of [80] are limited over
the Mean Teacher baseline, only achieving 44.6 and 47.6 in
GTAV — Cityscapes and SYNTHIA — Cityscapes, respec-
tively. Our proposed method outperforms the related work [80]
by 7.3 % and 8.3 % on GTAV — Cityscapes and SYNTHIA —
Cityscapes, achieving 51.9% and 55.9%, respectively.
Comparison to the related work [9] : In Table 8, we com-
pare our method with the non-adaptive baseline and Self-
Ensembling (SE) [9] with VGG16 backbone. L., denotes the
supervised segmentation loss, L, refers to the common Mean
Square Error used in [9], and L., is our uncertainty-guided
consistency Loss with the dynamic weighting scheme. As we
can see, the Source Only baseline achieves 28.3% from GTAV
dataset to Cityscapes dataset. We see that in the third row, Choi
et al. achieves a performance of 32.6% in the original consis-
tency loss (Lseg + Lys). Our uncertainty-guided consistency
loss achieves about 3.0% improvement over directly using the
Mean Square Error (Leg + Leon), reaching 35.6% in mloU.

As mentioned in Section 2, pixel-level adaptation is also

Table 8: Ablation study of each module’s improvement from GTAS to
Cityscapes with VGG16 backbone. Ly,: Segmentation loss, Lys: Mean
Square Error used in [9], Lco,: Our Uncertainty-Guided Consistency Loss, 7"
Image-to-Image translation for Style transfer.

Method Component mloU Gain
Source Only Lyeg 28.3 -

Choi et al. [9] Lo+ Lpse 326 443
Ours (W/0 Mjassour)  LsegtLeon 35.6 +7.3
Choi et al. [9] Lo +IT [9] 354  +4.1
Ours (W/0 Meiassout) Lseg+IT> [44] 351 +3.8
Choi et al. [9] Lgeg+Lyse+IT) 42,5 +14.2
Ours (W/0 M jag50u) LgegtLeon+ITy 47.8  +19.5

a key factor in minimizing the discrepancy of data distribu-
tion. Therefore, it is helpful to utilize a transferred source do-
main image dataset whose appearance is more similar to that
of the target-domain image dataset. Following common prac-
tice [71, 44], we adopt the transferred GTAS images of [44]
which utilizes a CycleGAN][86] structure to adapt the style of
GTAV images to the style of Cityscapes images. In the fifth row
and sixth row of Table 3, we could find that our Image-to-Image
Translation achieves a similar performance compared to [9]. On
top of that, as we can see in the last row, our final adaptive per-
formance is superior to the state-of-the-art by 5.3%, resulting
in a 19.5% increase in mIoU over the non-adaptive baseline.

4.5. Analysis

In this section, we provide visualization results and provide
some analysis of our proposed framework.

Fig. 6 shows the comparison results of the per-class IoU gain
and comparisons of mloU between the SE baseline [9] and our
proposed method. In many large categories, i.e., road, building,



Table 9: Comparison results (mIoU) from SYNTHIA to Cityscapes (with ResNet 101 backbone).
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Source Only ‘ - 36.314.668.8 56 9.1 69.079.452.511.349.8 9.5 11.0 20.7‘29.5
BDL [44] CVPR’19 |86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3|51.4
DADA [68] | ICCV’19 |89.244.8 81.4 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8|49.8
STAR [49] | CVPR’20 |82.6 36.2 81.1 12.2 8.7 78.4 82.2 59.0 22.5 76.3 33.6 11.9 40.8|48.1
IntraDA [55] | CVPR’20 |84.3 37.779.5 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5|48.9
LTIR [34] |CVPR’20(92.653.279.2 1.6 7.5 78.6 84.452.6 20.0 82.1 34.8 14.6 39.4|49.3
SIM [71] CVPR’20 [83.044.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8(52.1
LSE [53] ECCV’20(82.943.1 78.1 9.1 14.477.0 83.558.125971.938.029.4 31.2|49.4
CrCDA [32] |ECCV’20(86.244.979.5 9.4 11.8 78.6 86.557.2 26.1 76.8 39.9 21.5 32.1{50.0
WLabel [56] [ ECCV’20 [92.0 53.5 80.9 3.8 6.0 81.6 84.4 60.8 24.4 80.5 39.0 26.0 41.7|51.9
CD-SAM [75]|WACV’2182.542.2 81.3 18.3 15.9 80.6 83.5 61.4 33.272.9 39.3 26.6 43.9(52.4
CLAN [51] |TPAMI’21(82.7 37.2 81.517.1 13.1 81.2 83.3 55.522.1 76.6 30.1 23.5 30.7|48.8
ASA [85] TIP’21 [91.248.580.4 5.5 5.2 79.583.6 56.421.9 80.3 36.2 20.0 32.9|49.3
DAST [79] | AAAT’21 [87.1 44.5 82.3 13.9 13.1 81.6 86.0 60.3 25.1 83.1 40.1 24.4 40.5|52.5
Ours ‘ - 85.5 42.5 83.0 20.9 25.5 82.5 88.0 63.2 31.8 86.5 41.2 25.9 50.7|55.9
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Fig. 6: Comparisons of Per-Class IoU Gain between Choi et.al [9] and ours w/o
IT with VGG16 backbone in GTAV — Cityscapes.
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Fig. 7: Parameter analysis about 1o (SYNTHIA — Cityscapes).

sky, that have long boundaries, we have achieved a per-class
IoU performance improvement. In other static categories, such
as sidewalk, sign, vegetation and terrain, our method achieves a
lower performance degradation than [9]. Besides, as we can see
in Table 3 and Table 9, our method shows good performance
in some moving objects, e.g., motorcycle, bicycle, etc. Our
method obtains an overall better performance than [9].

4.5.1. Visualization

The effectiveness of the uncertainty-aware consistency regu-
larization is shown in Fig. 5. We visualize the student predic-
tion, teacher prediction, the entropy map of the teacher model,
and our uncertainty mask. In Fig. 5, as we can see in the fourth
column, the predictive entropy captures the latent epidemic un-
certainty, especially for some specific large objects, such as
car and truck. In the fifth column, the white pixels of the un-
certainty mask are the ones with higher confidence. The first
and third rows show that our uncertainty mask effectively fil-
ters out the unreasonable pixels and guides the teacher to be a
good proxy for training the student network in the early stage
of the training process. In addition, the second and fourth rows
show that our uncertainty module pays attention to the semantic
boundary of objects in the later training stage.

These qualitative results are consistent with our motivations
and reveal the reason why current consistency regularization
methods are often unstable in minimizing the distribution dis-
crepancy, which lies in two aspects. Firstly, directly impos-
ing a simple MSE constraint as consistency loss onto all pix-
els could harm the learning process by generating unreasonable
guidance from the teacher to the student model. Secondly, due
to the “error accumulation” in the teacher model, it could take
more training iterations to converge and even may lead to early
performance degradation during the adaptation process. In the
second row of Figure 4, the entropy is low and not obvious to
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Fig. 8: Semantic segmentation qualitative results from GTAS to Cityscapes. From left to right: target image, ground truth, source-only prediction, and predictions
using our method.



Table 10: Parameter analysis about a.

a 0.675|0.70 | 0.725 | 0.75 | 0.775 | 0.80
mean IoU | 54.0 | 53.9 | 55.1 |54.5| 54.7 | 53.3

human naked eyes. However, our uncertainty mask can still
filter out these uncertain areas. The main reason is that our dy-
namic weighting scheme can enable dynamic adjustion during
the training. When the entropy is low, the dynamic threshold
will be updated accordingly, and thus, we can filter out theses
unobvious areas.

In Fig. 8, we illustrate some qualitative results of our models
tested on the validation sets of Cityscapes [10] dataset. Fol-
lowing prior works [73, 30, 81], we show the target image,
ground truth, source only prediction, and our prediction from
left to right. Without domain adaptation, the model trained
only on source supervision produces noisy segmentation pre-
dictions. With the help of our uncertainty-aware consistency-
regularization, our method manages to produce correct predic-
tions at a high level of confidence.

4.5.2. Parameter Analysis

In this section, we investigate the sensitivity of hyper-
parameters A, @, 8, N and augmentations.
Effect of 1p: Ay means the initial state of consistency weight
Acon, Which balances the domain adaptation process among dif-
ferent loss functions, and it is crucial in the training process. In
Fig. 7, the best performance from SYNTHIA to Cityscapes (w
VGG16 backbone) occurs when the initial value of Ay is 0.1.
The results of mean mIoU over the 16 common classes are re-
ported.
Effect of a: In this experiment, we set § = =5, N = 8 to check
the sensitivity of @ in SYNTHIA to Cityscapes (w ResNet101
backbone). « is the initial state of the dynamic threshold in Eq
4. In Table 10, we find that when « is set to 0.725, we can
obtain the highest performance.
Effect of B: In this experiment, we adapt from SYNTHIA to
Cityscapes (w ResNet101 backbone) to discuss the selection of
the parameter 8, which controls the exponential speed of the
dynamic threshold in Equation 4. We set the other parame-
ters @ = 0.75, N = 8. In Table 11, we observe that the high-
est mloU on target domain is achieved when the value of S is
around —4.8, which means that, under such condition, the ex-
ponential speed benefits the dynamic threshold of the domain
adaptation the most.
Effect of N: In this part, we analyze the selection of N, which
is the copy numbers of target image in the stochastic forward
pass. We set the other parameters as: @ = 0.75, 8 = =5. In
Table 12, we find that when N is set to 8, it achieves the best
performance in SYNTHIA to Cityscapes (w ResNet101 back-
bone). Therefore, N is set to 8 in all experiments.
Effects of Augmentations: We investigate the sensitivity of
augmentation, e.g, Gaussian noise, color jittering, random crop.
GN, CJ, RC are the abbreviation of Gaussian noise, color jitter-
ing, random crop, respectively. The ablations of each augmen-
tation are shown in Table 13 when adapting from SYNTHIA

13

Table 11: Parameter analysis about 3.

B -53]-52|-51|-50|-49|-48|-4.7
mean IoU | 54.2 | 54.7 | 53.7 | 54.5 | 54.7 | 55.9 | 54.5

Table 12: Parameter analysis about N.

N 6 7 8 9 10
mean IoU | 53.6 | 54.0 | 54.5 | 53.4 | 54.1

to Cityscapes (w ResNet101 backbone). From the Table 13,
we can observe that augmentations are complementary and our
consistency regularization needs to be conducted under the con-
dition that the student image and the target image are imposed
with different augmentations.

4.6. Limitations

1) We develop a unified uncertainty-aware consistency regular-
ization in this work. Though our method has achieved very
good results, it can hardly treat the stuff regions and the in-
stances of things in a different manner to reduce the uncertainty.
2) The scale-invariant feature across different frames are ne-
glected in this work, which can be utilized as prior knowledge
for effective domain adaptation for video semantic segmenta-
tion. As future work, these interesting points will be investi-
gated.

5. Conclusion

In this paper, we proposed an uncertainty-aware consistency
regularization technique to address the domain shift for cross-
domain segmentation. Our uncertainty module is capable of
estimating the latent uncertainty map for the purpose of a bet-
ter knowledge transfer. Specifically, We first introduced an
uncertainty-guided consistency loss with a dynamic weight-
ing scheme for filtering out the unreasonable pixels and min-
ing the high confident predictions of target samples. Secondly,
we present a ClassDrop mask generation algorithm to gener-
ate class-wise perturbations. Guided by this mask, we present a
ClassOut strategy to keep the local regional consistency in vary-
ing environments. Experimental results verify that our method
is superior to existing state-of-the-art approaches on four chal-
lenging benchmark datasets.
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Table 13: Ablation study of each augmentation.
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