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Abstract: 

In the 21st century, advances in computer science have impacted archaeology, most recently in the 

development of automated algorithms. Like most technology, these methods have been the source 

of ongoing debate, particularly in their utility for archaeology. Here, I focus on a contribution of 

automation and machine learning in archaeology that is often overlooked: the ability of computer 

algorithms to codify unambiguous, semantically consistent definitions. Archaeology has long 

struggled with establishing consistent characterizations of the phenomena it studies. As such, I 

argue that the procedures used for automated methods are useful for archaeologists – even outside 

of automated analyses – by allowing for the creation of consistent definitions which permit for 

reproducible research designs. 
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There is no denying that methods involving machine learning have made substantial waves 

in archaeological research in the past decade (Davis 2019; Lambers 2018; Traviglia & Torsello 

2017). With methodological innovation, debates often ensue, generally focusing on the newest 

advancement and their usefulness for certain research tasks. There is a longstanding debate 

regarding automated methods and their utility, accuracy, and place within archaeological inquiry 

(Bennett et al. 2014; Casana 2014; Davis 2019; Hanson 2010; Orengo & Garcia-Molsosa 2019; 

Parcak 2009; Vershoof-van der Vart & Lambers 2019), with some arguing that these methods are 

currently too problematic to be taken seriously and others believing they are some of the most 

important contributions to archaeology in the 21st century. However, there are significant 

contributions that can be made by these methods that go beyond automation itself. Specifically, 

computer automation’s contributions delve into archaeological definitions and metalanguage. 

Here, I argue that the process of developing machine learning approaches in archaeology 

can be useful to researchers more broadly for developing semantically consistent metalanguage. 

Due to the diversity of archaeological information and its collection methods, the issue of data 

compatibility is well-established (Binding et al. 2008; Snow et al. 2006; Wise and Miller 1997). 

Computer automation presents one means by which to address this long-standing problem. Yet, 

within the debate on computer automation in archaeology, rarely is the importance of semantic 

consistency considered. It is my hope that this article contributes to the ongoing debate surrounding 

machine learning and automation in archaeological analysis. 

1.1 The Issue of Metalanguage 

Since archaeology’s inception, researchers have argued over definitions. This has led to 

the turning of complicated phenomena into simple phrases; and these phrases then become even 

more complicated than the phenomena they are supposed to define. Take the definition of 
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“settlement” or “site” as an example. Over the course of archaeological history, there have been 

dozens, if not hundreds of different definitions (Dunnell 1992; Parsons 1972; Trigger 1967). The 

notions of “settlement” or “site” – foundational concepts for archaeologists – are still very much 

abstruse in meaning, not unlike other concepts like “culture” (e.g., Descola 2013; Kroeber & 

Kluckhone 1952; Osgood 1951; Harris 2018 [1970]). The ambiguity surrounding such concepts 

makes their study a dubious task, as each researcher will have to explain the very nature of how 

they define these phenomena. 

This problem of metalanguage goes well beyond “settlements” or definitions of large, 

encompassing concepts studied by anthropologists and archaeologists. The definition of specific 

objects also suffers this problem. Take a ceramic sherd. We can say many things about it (i.e., 

what it is made of, whether or not it is decorated, how it was produced, etc.). But if asked to 

describe to a non-archaeologist how to identify a ceramic sherd, specifically in the field, it becomes 

more complicated. You must first define what a ceramic sherd is: it is a fraction of a container. 

Then, to identify these sherds in the field, you must also explain the variability that they can have: 

every material they could be made of, different properties that different sherds can exhibit, the 

presence or absence of defining characteristics like ceramic bases, rims, etc., and how to 

distinguish them from other non-archaeological materials that look similar to sherds in a given 

landscape. Obviously, we can come to agreed-upon definitions of what ceramics are, as 

demonstrated by the significant advances in the fields of petrography, chemistry, morphometry, 

etc. (Rice 2015). Nonetheless, when describing ceramics macroscopically for field-based 

detection, definitions are often regionally specific, and identifying these nearly universal materials 

in different locations becomes difficult, even for experienced archaeologists. What then do 
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automated machine approaches to archaeology bring to this problem of metalanguage? The answer 

lies in semantic consistency.  

2.1 Semantic Consistency and Computer Automation 

In order for a computer to identify patterns in data in meaningful ways, it must first be 

programmed by an analyst. Specifically, the computer must learn: a) patterns that fit the target of 

analysis (i.e., an archaeological feature); b) patterns that do not fit with the target of analysis; and 

c) how to distinguish between a) and b).. This may sound obvious, but as the above examples 

indicate this is more complicated than it seems. Yet, machine learning approaches for 

archaeological pattern recognition, site detection, and other identification tasks have made great 

progress in recent years precisely because of the creation of clear, straightforward archaeological 

definitions. 

Computer code must be unambiguous and logical, and shortfalls in either of these aspects 

result in failure – either in terms of inaccurate outputs or in the failure of the entire procedure. In 

creating a computer algorithm for detecting a class of archaeological deposits, researchers must 

define the exact parameters of the features they are attempting to identify in a dataset. To return to 

the example of a ceramic sherd, recent developments in automated detection make a compelling 

case for the importance of machine learning in archaeology.  

Orengo and Garcia-Molsosa (2019) developed an automated pottery sherd detection method using 

drone imagery. This process detected a greater number of sherds than manual analysts on the 

ground, and part of the reason is semantic consistency. In Orengo and Garcia-Molsosa’s (2019) 

case, they define ceramics on the basis of specific size, texture, color, and elevation difference 

from surrounding ground surfaces. While not a perfect method, these results prove cost effective 
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and comparably accurate with manual survey techniques, resulting in greater control for 

problematic environmental variables (e.g., vegetation cover) and faster recording rates of artifacts. 

Additionally, this computerized method alleviates one of the major problems with manual methods 

of image analysis for survey: different analysts will identify some things while overlooking others 

(Hawkins et al. 2003; Schon 2000; Quintus et al. 2017). In training a computer, because of 

semantic consistency, the biases in identification are straightforward and identifiable, and can thus 

be improved upon by future research teams. In manual analysis, these biases are implicit and not 

always possible to remedy (let alone identify consistently). 

Another example of how consistency in definitions can improve archaeology comes from 

the identification of mounds. Mounds are perhaps one of the most frequently studied 

archaeological structures globally (e.g., Bini et al. 2018; Freeland et al. 2016; Larsen et al. 2017; 

Menze et al. 2006; Trier et al. 2015) and provide key information about political organization, 

spirituality, and social structures (e.g., Anderson 2004; Arnold 2002; Boivin 2004; Gamble 2017; 

Sherratt 1990). To identify a mound, we must begin with its defining characteristics: it is a three-

dimensional topographic anomaly in a landscape. There are many types of mounds, however, some 

of which are not related to archaeological or historical contexts. If we use an example of burial 

mounds from the American Southeast, we can get more specific: a mound is a topographic anomaly 

which primarily contains rectangular, triangular, and trapezoidal elevation profiles. Burial mounds 

also display an elevation change of generally no more than 5 meters in height (and this changes by 

subregion) (Davis et al. 2019a, 2019b). In addition to 3-D profiles (including slope) and elevation 

thresholds, mounds are also distinguishable by their asymmetry (Kvamme 2013), overall size, 

compactness, and 2-D shape (see Table 1). Each value of these characteristics will be regionally 

distinct to a certain degree – making the adoption of an overarching definition difficult (if not 
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impossible) – but the characteristics themselves can be applied to identify mounded features in 

other regions. As shown in Table 1, attempts to automate the detection of “mounds” in different 

parts of the world have been increasing in accuracy in recent years, employing a range of specific 

characteristics and thresholds.  

Table 1: Different parameters used in automated detection of mound features in published literature. Other 

studies exist but were excluded if parameters were not explicitly defined. While there are many different 

combinations of variables used to define “mounds”, the accuracy achieved is quite high and consistent (as 

verified by ground-testing). Accuracies have also significantly improved in recent years. 

Study Parameter Threshold Method Accuracy 

Kvamme 

2013 

Size 14.6 m ± 

2.2m 

Template Matching 62% 

Trier et al. 

2015 

Height (average, 

minimum) 

0.2m < ; 

0.001m < 

Template Matching 53% 

Freeland et 

al. 2016 

Circularity 

Area 

Elevation 

0.82 

60m 

Higher than 

surrounding 

area 

Object-based image 

analysis; inversed 

depression analysis 

71% 

Cerrillo-

Cuenca 

(2017) 

Length/Width Relation 

Area 

Surface Curvature 

0.5 – 1.5 

200-1200 m2 

0.7 – 1.3 

Object-based image 

analysis; Hough 

Circle function 

54% 

Davis et al. 

2019b 

Asymmetry 

Compactness 

Area 

Circularity 

Elevation 

0.0 – 0.3  

1.0 < 

150 m2 

0.6 < 

0.5 – 5 m 

Object-based image 

analysis; inversed 

depression analysis; 

template matching 

50% – 100%, 

sample sizes 

varied and 

different 

methods 

assessed 

Guyot et al. 

2018 

Elevation contrast 10m, 100m, 

1000m 

Multiscalar object-

based image analysis 

98% 

Caspari and 

Crespo 2019 

Height 

Diameter 

Ditch Diameter 

> 6.5m 

> 53.5m 

> 91.5m 

Convolutional neural 

network 

98% 

Establishing semantically consistent definitions is difficult to capture by simple 

thresholding alone, however. For example, the issue of taphonomic and post-depositional 

processes means that the very nature of a mound’s size or shape may change over time. The 

solution to this lies in what Magnini and Bettineschi (2019) term “Diachronic Semantic Models.” 
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In this framework, transformation of materials through time are incorporated into our formalized 

definitions which are then able to be disseminated throughout the archaeological community to 

provide “a common ground” in interpreting the archaeological record (Magnini and Bettineschi 

(2019:13-14). 

Using such approaches to define “mounds” permit researchers to detect features 

automatically with reasonably high accuracy and precision around the world (see Table 1). 

Furthermore, Magnini and Bettineschi’s (2019) work demonstrates a solution to the problem of 

applying automation methods to contextually diverse components of the archaeological record. 

Yet, the purpose of this article is not to emphasize the many successes of automated techniques, 

nor is it to highlight the many limitations that still face these methods (for more information see 

Davis 2019; Lambers 2018; Luo et al. 2019; Opitz & Herrmann 2018). Rather, this paper’s 

emphasis is the role of these methods in the development of unambiguous, semantically consistent 

archaeological definitions. 

Automated approaches have resulted in dozens of new definitions that can be used by 

researchers around the world, and which can produce replicable results (Figure 1). The common 

argument made by opponents of automated archaeology is that manual analysis is more accurate. 

While this may be the case in some instances (although recent developments challenge this claim 

[e.g., Freeland et al. 2016; Guyot et al. 2018; Witharana et al. 2018]), manual evaluations are not 

precise (i.e., they are not always reproducible and may result in different conclusions based on 

who is manually evaluating a given dataset). This results in a “correct”, but otherwise patchy 

analysis of archaeological features. Manual analysis nonetheless remains a necessary step for 

validating acquired results. 
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 In contrast, because of their semantic consistency, computer algorithms can be 

implemented on different machines by a variety of researchers and result in the same output values. 

This presents an extraordinary achievement for archaeologists, and regardless of one’s stance on 

automation, itself, this should be perceived as a positive development. This stems from the fact 

that flaws in a researcher’s definition of a particular feature are recognizable by others and can 

thus be remedied by additional work. In manual evaluations – especially of image data – the 

specifics of how a researcher (or team of researchers) generated their data is usually quite 

ambiguous. As such, different analysts cannot fully replicate the procedures.  

 

Figure 1: Diagram showing the relationship between automated and manual analysis and expert knowledge 

in the creation of semantic consistency and subsequently reliable conclusions. The greatest semantic 

consistency (signified by black portion of arrow) requires expert knowledge to be automated in some 

capacity, in addition to manual verification of that process. In practice, this does not require actual 

automation, but rather the creation of an algorithm (or codified definition) of some object being studied. 

For expert knowledge to be broadly disseminated, analysis must engage with both automated (i.e., 

standardized, unambiguous, and logical procedures) and manual methods. 
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The issue of semantic consistency in manual archaeological analysis can be solved by 

looking at the ways such definitions are methodically defined in machine learning literature 

(Figure 2). In machine learning research, analysts must quantify and explicate different variables 

and threshold values chosen for their particular algorithm, and this permits for other researchers to 

replicate the experiment using the same or different datasets. Manual analysts should do the same, 

being sure to elucidate the exact steps and reasoning for how objects and ideas are defined. It is 

not enough to say that features were detected by experts, but rather the variables used by the experts 

to arrive at that identification are needed. 

  

Figure 2: Illustration of how expert knowledge informs manual and automated analyses. The process of 

defining objects for automated procedures requires expert knowledge to be codified systematically, 

combined with quantified characteristics and thresholds. Manual analysis, in contrast, often relies on 

implicit thresholds, unsystematic incorporation of expert knowledge, and characteristics are sometimes 

unclearly defined. 

3.1 The Importance of Semantic Consistency Beyond Computer Automation 

The necessity of clear, agreed-upon terminology demanded by automated archaeological 

methods is a significant and important contribution to current archaeological practice. Regardless 
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of whether a researcher agrees with automation or machine learning in archaeology, it is not 

debatable, in the author’s mind, that the ability to lucidly define archaeological terms and 

objectives in a manner that can be reproduced by others (machine or human) is extremely 

important. In fact, has been argued for over 30 years that the establishment of clear and explicit 

language to guide scientific discovery is needed in archaeological practice (e.g., Binding et al. 

2008; Dallas 2016; Gardin 1980). 

For example, the issue of semantic consistency has been persistent in the creation of 

archaeological databases in the form of metadata (Binding et al. 2008; Huggett 2014, 2020; 

Schlader 2002; Wise and Miller 2007; also see Dallas 2016). Much akin to the development of 

definitions and algorithms for computerized analysis, metadata effectively comprises information 

pertaining to attributes, descriptions, and common context between different datasets (Schlader 

2002; Huggett 2020). For databases to be compatible, metadata must be thorough (and codified) 

to enable different information to be discoverable based on search-terms. As such, the development 

of ontologies – or shared concepts – within both database creation and different computer analysis 

techniques, have permitted for better sharing of information and improved performance of data 

analysis (Arvor et al. 2013, 2019; Binding et al. 2008; Rajbhandari et al. 2019; also see Magnini 

and Bettineschi 2019). 

Thus, for opponents of machine learning in archaeology, it should be noted that the 

argument here does not advocate such approaches as a panacea for archaeological practice. Rather, 

expert knowledge is crucial, as most proponents of manual analysis emphasize (e.g., Casana 2014, 

2020; Quintus et al. 2017). As Gardin (1989:19) wrote: “the study of knowledge structures in any 

given field… is a matter for experts in that field alone…” (Gardin 1989:19). My argument is 

simply that the rigorous manner with which computer automation methods define objects of study 
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should be extended into manual analyses. This will help to enhance the dissemination of expert 

knowledge in reproducible ways between researchers.  

Especially in the age of “big data”, wherein datasets become larger and more complicated, 

it is essential not just to devise efficient means to analyze this information, but also to do so 

systematically. Manual analyses result in implicit, interobserver biases and errors by analysts 

(Davis 2019; Gnaden & Holdaway 2000; Hawkins et al. 2003; Luo et al. 2019), and thus make 

evaluating datasets across research teams difficult, and replication of results almost impossible in 

some instances. With computer learning, biases in analysis methods are clear, allowing for 

replication of results and modification by future researchers when definitions are viewed as 

insufficient. In other words, definitions are demarcated by code and thus permit for others to build 

on those definitions (or change them completely) in ways that are readable and explicit. 

4.1 Conclusion 

Here, I have argued that archaeologists can move closer to semantic consistency by 

engaging more closely with literature on machine learning and computer automation. Future 

scholars should begin explicitly defining the materials that they study in a manner consistent with 

computer automation (i.e., definitions with reproducible characteristics via quantified parameters 

and/or specific identifiable parameters). This does not mean that all work should become 

automated, as this is oftentimes unnecessary or inappropriate. Rather, by establishing semantic 

consistency outside of purely automated archaeological research, analysis of archaeological 

materials in general will greatly improve.  

If we treat the collection of archaeological data as an algorithm – i.e., a methodical and 

replicable process – then we can formulate a code, or formal set of definitions, to study the 
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archaeological record. While computer automation and machine learning still have a way to go 

before being easily accessible for researchers and consistent in their analytical power, the utility 

of generating consistent definitions for archaeological research is an undeniable benefit offered by 

this methodological school for archaeological practice in general. As such, non-computerized 

archaeological practice can improve considerably by actively engaging with computer automation 

literature. 
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