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Abstract

We study vehicle routing problems with constraints on the distance traveled by each vehicle or on the number of vehicles.
The objective is either to minimize the total distance traveled by vehicles or to minimize the number of vehicles used. We design
constant differential approximation algorithms f&RP. Note that, using the differential bound foleVRIC 3VRP, we obtain
the randomized standard raﬁé} + ¢, Ve > 0. This is an improvement of the best-known bound of 2 given by Haimovich et al.
(Vehicle Routing Methods and Studies, Golden, Assad, editors, Elsevier, Amsterdam, 1988). For natural generalizations of this
problem, called EGE COSTVRP, VERTEX COSTVRP, MIN VEHICLE andKTSP we obtain constant differential approximation
algorithms and we show that these problems have no differential approximation scheme, unlBs P
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Vehicle routing problems that involve the periodic collection and delivery of goods and services such as mail delivery or
trash collection are of great practical importance. Simple variants of these real problems can be modeled naturally with graphs.
Unfortunately even simple variants of vehicle routing problems are NP-hard. In this paper we consider approximation algorithms,
and measure their efficiencies in two ways. One isstiamdardmeasure giving the ratiepx /opt, whereoptandapxare the
values of an optimal and approximate solution, respectively. The other measuraiffdtential measure, that compares the
worst ratio of, on the one hand, the difference between the cost of the solution generated by the algorithm and the worst cost,
and on the other hand, the difference between the optimal cost and the worst cost. Formally, the differential measure gives the
ratio o = (wor — apx)/(wor — opt), wherewor is the value of the optimal solution for the complementary problenfiil 5,
the measure 1 « is considered and it is called ther@pproximation. Justification for this measure can be found for example
in[1,6,15,20,27]

The main subject of this paper is differential approximation of routing problems. In these prablemstomerhave to be
served byehiclesof limited capacity from a commodepot A solution consists of a set of routes, where each starts at the depot
and returns there after visiting a subset of customers, such that each customer is visited exactly once. We refer to a problem
as avEHICLE ROUTING PROBLEM(VRP) if there is a constraint on the (possibly weighted) number of customers visited by a
vehicle. This constraint reflects the assumption that the vehicle has a finite capacity anddhettisfrom the customers (or
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distributesamong them) a commodity. The goal is to find a solution such that the total length of the routes is as small as possible.
In other cases, the vehicle is just supposeuisd the customers, for example, in order to serve them. In such cases we refer

to the problem as aRAVELING SALESMAN PROBLEM (TSP) problem. We will assume in such cases that the limitation is on

the total distance traveled by a vehicle and not on the number of customers it visits, and in this case we search solution with a
minimum number of vehicles used.

The problems that are considered here generalize the (undirected) TSP. Differential approximation algorithms for the TSP are
given by Hassin and Khullgd5] and Monno{20]. We will sometimes use these algorithms to generate approximations for the
problems of this paper. However, we note an important difference. In the TSP, adding a cktsthof the edge lengths does
not affect the set of optimal solutions or the value of the differential ratio. The reason is that every solution contain;iexactly
edges and therefore every solution value increases by exactly the same value,niartrepyarticular, this means that for the
purpose of designing algorithms with bounded differential ratio, it does not matter wikthametric or not (it can be made
a metric by adding a suitable constant to the edge lengths). In contrast, in some of the problems dealt with here, the number of
edges used by a solution is not the same for every solution and therefore it may turn out, as we will see, that in some cases the
metric version is easier to approximate.

It is easy to see that 2VRP is polynomial time solvable. 213, METRIC KVRP was proved NP-hard by Haimovich and
Rinnooy Kan[11]. Haimovich et al[12] gave ag — 3/2k standard approximation for BTRIC KVRP. We study for the first time

the differential approximability oRVRP. More exactly we give % differential approximation for the non-metric case for any
k > 3. We improve this bound té for METRIC 4VRP and3 for METRICKVRP with 5< k < 8. We also improve the casks= 3

andk >9to 8—8 —¢,Ve>0 and 2%k — 1)/33k — ¢, Ve > 0, respectively, by using a randomized algorithm. An approximation

lower bound of%%g is given here for NETRIC nVRP with length 1 and 2 using a lower bound of TSP(1&)

We study a generalization of VRP, called&E COSTVRP, where the maximum length traversed by each vehicle is bounded.
We establish % differential approximation for this problem.

MIN-MAX KTSP is a generalization afSP where we search to cover the customers by at rkoghicles such that the
maximum length traversed by the vehicles is minimum. The metric case of the problem was studied by Fredrick$®h et al.
where they give % — 1/k standard approximation algorithm by constructing a reduction from this problenE®RM TSP

and using Christofides’ algorithfd]. We establish % differential approximation for MTRIC MIN—-MAX KTSP and prove that
it has no differential approximation scheme, unless RP. We also give a standard lower bound pf+ 1)/ p for MIN—-MAX
ln/p]TSP, forp >6.

MIN-SUM EKTSP is another generalization of TSP where we search to cover the custonexachy kvehicles such that
the total length is minimum. We show that8VRIC MIN-SUM EKTSP is% differential approximable and it has no differential
approximation scheme unless=FNP.

In MIN VEHICLE the goal is to minimize the number of vehicles subject to a constraint on the maximum length traversed by
any single vehicle. Li et a[19], proved that NN VEHICLE is not standard 2 approximable, unless RIP and it is H-a/(a — 2)
standard approximable with= 4/d;, andd,, = max{dg.1, ..., dg,,}, wherei is the maximum distance that each vehicle could
cover. We first presentédiﬁerential approximation algorithm and show how to improve the bour%gdor the metric version
of MIN VEHICLE. We also show that even whéris constant and the lengths are 1 and 2\MEHICLE has no standard and
differential approximation scheme, unless-RP.

The paper is organized as follows: In Section 2, we give the necessary definitions. In Section 3, we give a constant differential
approximation algorithm for ENERALKVRP, and a better constant differential approximation for the metric case. In Section 4, the
main result is a constant differential approximation fodE COSTVRP. In the last three sections we show thaliMMAX KTSP,
MIN-SUM EKTSP and METRIC MIN VEHICLE are constant differential approximable and have no differential approximation
scheme, if P£ NP.

2. Terminology

Given an instance of an optimization problem and a feasible solutjoof x, we denote byal(x, y) the value of the solution
y, byopt (x) the value of an optimal solution &f and bywor (x) the value of a worst solution af Thedifferential approximation
ratio of yis defined as(x, y) = |val(x, y) — wor (x)|/|opt(x) — wor(x)|. This ratio measures how the value of an approximate
solutionval (x, y) is located in the interval betweep: (x) andwor (x). In particular, it is equivalent for a minimization problem
to proved(x, y) = ¢ andval (x, y) <eopt(x) + (1 — e)wor(x).

For a functionf, f(n) < 1, an algorithm is & (n) differential approximation algorithrfor a problemQ if, for any instancex
of Q, it returns a solutioly such thav (x, y) > f (|x]). We say that an optimization problemdsnstant differential approximable
if, for some constani < 1, there exists a polynomial tindedifferential approximation algorithm for it. An optimization problem
has adifferential polynomial time approximation scheifi¢ has a polynomial timg1 — ¢) differential approximation, for every
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constant > 0. We say that two optimization problems are standard (differerggujvalentif a o differential approximation
algorithm for one of them implies @standard (differential) approximation algorithm for the other one.
We consider in this paper several routing problems. The problems are defined on a complete undirected graph denoted
G =(V, E). The vertex se¥ consists of alepot verteX, andcustomer verticefl, . .., n}, and each edg@, j) € E is endowed
with a weightd; ; >0. We call a such graph @mplete valued graptWe refer to the version of the problem in whidtis
assumed to satisfy the triangle inequality asretric case The output to the problems consists gb-#our, that is, a set of
simple cyclesC1, ..., Cp, suchthat/ (C;) N V(C;)={0}, Vi # j, ande:lV(C,-) = V. The sequencé, i, 0) withi # 0 is
accepted as a cycle. We now describe the problems. For each one we specify the input, the problem’s constraints, and the output

KVRP
Input A complete valued graph.
Constraint |C;|<k+1,j=1,..., p.
Output A p-tour minimizing the total weight of the cycles.

EDGE COSTVRP
Input A complete valued graph and a metfi¢ : ¢ € E}, and/1 > 0.
Constraint ZeeE(Cj)et’ <A4Lj=1...,p.
Output A p-tour minimizing the total weight of the cycles.

VERTEX COSTVRP
Input A complete valued graph and a functign >0 : i € V}, wherec; denotes the cost of the verteand/ > 0.
Constraint ZieV(Cj)Ci <4 j=1...,p.
Output A p-tour minimizing the total weight of the cycles.

MIN-MAX KTSP
Input A complete valued graph.
Constraint p <k.
Output A p-tour minimizing the maximum weight of the cycles.

MIN-SUM EKTSP
Input A complete valued graph.
Constraint p = k.
Output A p-tour minimizing the total weight of the cycles.

MIN VEHICLE
Input A complete valued graph anid> 0.
Constraint 3 _,cp(cyde</Aj=1,....p.
Output A p-tour minimizingp.

MIN DISTANCE
Input A complete valued graph and> 0.
Constraint ZeeE(C,-)de <4Lj=1...,p.
Output A p-tour minimizing the total weight of the cycles.

For an optimization problem Q with edge lengths, we denote @y & the version of Q where weights are betweeamdb
and more specifically @], for ¢ > 1, the variant wheré <ra for anya > 0. We will use the following problem:

MIN TSP RATH(1,2) is the variant of M\ TSP(1,2) problem where instead of a tour we ask for a Hamiltonian path of minimum
weight. MIN TSP RATH(1,2) has no differential approximation schefi¢] even ifopt = n — 1 andwor = 2(n — 1) where
n is the number of vertices since it is proved[#] that MIN TSP(1,2), when the subgraph restricted to edges of length 1 is
Hamiltonian and cubic, has no standard approximation scheme. We will also use the following problems:

PARTITIONING INTO PATHS OF LENGTHK (KPP): Given a grapliy = (V, E) with |V| = (k + 1)g, is there a partition of/
into g pathsPy, ..., Py, each path withk 4 1 vertices? 2PP has been proved NP-compleféGhwhereas, more generally,
the NP-completeness &PP is proved if18] as a special case of tli&PARTITION PROBLEM Thus(n — 1)PP is the decision
version of FAMILTONIAN PATH.
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MAXWEIGHTED PARTITIONING INTO PATHS WITHAT MOSTKVERTICES(MAX WEIGHTED ATMOSTKPP): Given aweighted
complete grapl where each edgg, j) € E is endowed with aveightd; ; >0, we want to find a partition of vertices into
pathsPy, ..., Py, each path with at mostvertices (or indifferentlyc — 1 edges) such th@?zld(Pi) is maximum. There is an
easy reduction proving the NP-hardness of this problem betkieBrand M\X WEIGHTED ATMOST(k + 1)PP that consist to
complete the grap® instance okPP by edges of weight 0.

A binary 2-matchindalso calle@®-factoror cycle coveyis a subgraph in which each verteXdinas a degree 2. Since the graph
is simple, each cycle has at least three verticasifimum binary 2-matchinig one with minimum total edge weight. Hartvigsen
[14] has shown how to compute a minimum binary 2-matchingdm3®time (sed25] for another @n?|E)) algorithm). More
generally, abinary f-matchingwheref is a vector of size: + 1, is a subgraph in which each verteaf V has a degreg;. A
minimum binary f-matching one with minimum total edge weight and is computable in polynomial [fhe

3. kVRP

nVRP is standard equivalent to TSP. So, using the result of Sahni and Gof2&iler deduce thatVRP is not 2 standard
approximable for any polynomigl, unless P= NP. In fact for anyk > 5 the problem is as hard to approximatens(&P.

Theorem 1. For all k=5 (even if k is a function of)lnkVRP, is not2P™ standard approximable for any polynomialymless
P=NP.

Proof. We use a reduction froPARTITIONING INTO PATHS OF LENGTHk (kPP). Given the graps = (V, E) onn’ = (k+ 1)q
vertices we construct a gragh’ on n vertices, instance af + 3)VRP. We add a vertex 0 (the depot)@and a sef of 2¢q
vertices. We define the functiahas follows:d; ; = 1,if i € VU {0} andj € A orif (i, j) € E andi, j € V. Finally, the
remaining edges have weigh2? .

If G contains a decomposition into disjoint pathscef 1 vertices thewpt (G') = ¢ (k + 4), otherwiseopt (G') > n2P™ . So,
a 2™ standard approximation fok (- 3)VRP could decid&PP in polynomial time. The conclusion followsO

3.1. GENERAL kVRP

Whend is a metric, the reduction of TSP t&/RP is straightforward, and it easily follows that computioyf is NP-hard.
On the other hand, this reduction between the corresponding maximization problenE3/P and MX nVRP leading to the
conclusion that computingror is also NP-hard, does not work. We can easily prove this result by applying a reduction from
kPP with weight 1 and 3. The idea of this reduction is to construct from a graph(V, E) with |V | = (k + 1)g an instance of
KVRP by adding the depot vertex 0 and settihg= 3 if ¢ € E andd, = 1 otherwise. It is easy to verify that the answekRP
is positive if and only ifwor > g (3k + 2).

In the following we give a% differential approximation for non-metrkd/RP. We first compute a lower bouthd. Then we
generate a feasible solution Bwith valuegood = L B+ §1. Next, we generate another feasible solution of value=L B + 6>
whered, > d1. This proves that the approximate solution with vadwedis ano differential approximation where

O(=wor—good2bad—good> 0o — 01 252‘—(5121_@7 (1)
wor — opt bad —opt = bad — LB 02 02

since for a minimization problemor > bad > good > opt > L B. To generaté.B we replace 0 by a complete graph with a set
Vo of 2n vertices and zero length edges. The distance between a verigxaofl a vertex of V\ Vj is the same as the distance
between 0 and Denote the resulting graph lgy/. Compute inG’ a minimum weight binary 2-matchingy’.

Lemma 2. Let LB denote the weight @', and denote by opt the value of an optine&P solution. Themwpt > LB.

Proof. Itis sufficient to show that for any VRP solution@there exists a binary 2-matchingdH with the same value. Consider

an optimal VRP solution i and letC be a cycle in it. Generate i@’ a cycleC’ which is asC except that 0 is replaced by two

new adjacent vertices froivly. Repeat this process for every cycle in the VRP solution, taking care that the subsets of vertices
selected fron are disjoint (an optimal solution may only contain cya@si, 0) fori =1, ..., n and in such a case, we need

to use all vertices ofp). In the last cycle insert all the remaining verticesipf The result is a binary 2-matching since every
cycle has at least three vertices and the cycles are disjoint and\tdSice the value of cycl€’ is the same as the value Gf

the optimum of VRP is greater than or equal to the minimum binary 2-matching.
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Fig. 1.m = 6.

Lemma 3. A binary 2-matching¥?’ of G’ can be transformed in polynomial time into a set M of cycles covering vertices of G
with the same weight

Proof. If a cycle of M” does not contain a vertex &f then this cycle is considered M. If a cycle of M’ contains more than
one consecutive vertices frolfy then replace these vertices by one verte¥gf Consider in the following a cycl€”’ of M’
containing at least one vertex froWiy and one from (G’)\ V. Suppose that’ = (vé, n, v(%, U, ..., v6, U v(l)) where paths
W, - - -» i contain only vertices fron (G”)\ Vp. ThenM will containt cycles(0, uq, 0), (0, up, 0), ..., (0, i, 0) that have the
same weight a€’. [

We suggest the following algorithm. W.l.0.g., we suppose that the current cy€@elis. . ., m, 0).
Algo _Differential VRP

[

. ComputeLB the weight of a minimum weight binary 2-matching in G’;
. TransformM’ into M = {C1, ..., Cp}, using Lemma 3;
3. Foreverycycle; = (1,...,m;,1) of Mdo
3.1. Ifm; = 0mod 2 then
3.1.1.50l;1:={(0,1,2,0),(0,3,4,0),...,(0,m; —1,m;, 0)};
3.1.2.50l; 2 : ={(0, m;, 1,0), (0,2,3,0), ..., (0,m; —2,m; —1,0)};
3.2. Ifm; = 1mod 2 then
3.2.1.s0l;1:={(0,1,2,0,(0,3,4,0),...,0,m; —4,m; — 3,0} U {0, m; —2,m; —1,m;,0)};
3.2.2.50l; 2 : ={(0, m;, 1,0), (0,2,3,0), ..., (0,m; — 3, m; —2,0)} U{(0,m; —1,0)};
4. Forevery cycle; = (0,1, ..., m;,0) of M with m; >k do
4.1. If m; = 0mod 2 then
4.1.1. Constructol; 1 ={(0,2,3,0),...,(0,m; —2,m; —1,0}U{(0,1,0), (0, m;,0)};
4.1.2. Constructol; » ={(0,1,2,0),...,(0,m; —1,m;, 0)};
4.2. Ifm; = 1 mod 2 then
4.2.1. Constructol; 1 = {(0,2,3,0),...,(0,m; —1,m;,0)} U{(O, 1, 0)};
4.2.2. Constructol; »=1{(0,1,2,0),...,(0,m; —2,m; — 1,0} U{(0,m;,0)};
5. Forevery cycle; = (0, 1, ..., m;, 0) of Mwith m; <k dosol; 1 = sol; o = C;;
. OutputAPX = |J!_; arg min{d(sol; 1), d(sol; ,)};

N

(o2}

Theorem 4. Algo _Differential VRP is a% differential approximation algorithm fonNkRP, with £ > 3.

Proof. Consider an arbitrary cycl€; of M and letadd; ; denote the added weight oé/; ; for j = 1, 2 with respect to the
length ofC;. Note that sincé/ was computed to have a minimum weightd; ; >0 and we havé(sol; ;) = d(C;) + add; ;
forj=1,2.

On the other hand, ldiad; be the weight of the feasible solutien/; 3 defined byC; if 0 € C; and|C;| <k + 1 and by
{(0,1,0),...,(0,m;, 0)} otherwise; in any case, we haked; = d(C;) + add; 1 + add; ».

Figs. 1land2 give an illustration of these solutions whép= (1, ..., m;, 1) andm; =6 and, respectivelyy; = 3. Sum these
inequality overi and letoq = Zf’:l minfadd; 1, add; 7} anddp = Zle(addiyl +add; 7). We havedp > 2061, LB =d(M) =
P 1d(C;) andwor > YP_ bad;. So, the theorem is proved by (1)0
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When we usebounded metricgi.e., when the maximum weighimax is not very far from the minimum weightyn),
we are able to give some relations between differential and standard ratios. Bounded metric variants of TSP were studied by
Papadimitriou and Yannakakji24] and more recently by Papadimitriou and Vemgal3], and Engebretsen and Karpin§g].
In the following, we denote biVRP[¢] the version okVRP satisfyingdmax/dmin < ¢ for somer > 1.

Theorem 5. A ¢ differential approximation algorithm fdvVRP[¢] is also & + (1 — 5),{%"1 standard approximation algorithm
for KVRP[z].
Proof. LetG = (V, E) be a graph wher& = {0, ..., n} anddmax/dmin <t for somer > 1. An optimal solution foiG contains

at leastz + [n/k] edges since it has at ledst/ k] cycles, and then we have:

ndmin(1+ k)
a— @

opt >

On the other hand, any solution @fcontains at most/2edges and then, we deduce the following upper bound for the worst
solution:

wor < 2dmaxit. (3)

Finally, regrouping inequalities (2) and (3) and since we hi&yg«< rdmin, We obtain the inequalitywor <2tk /(k + 1)opt.
Letapxbe a¢ differential approximation fokVRP[¢]. Using the previous inequality we deduce:

k
apx < dopt + (1 — d)wor <dopt + (1 — 5)2tmopt. a (4)

Using the previous theorems we deduce some new standard restéBjr]. More exactly, we obtain % —-3/(k+1)
standard approximation f&&/RP [3] and a% — 4/(k + 1) standard approximation fé&&/RP [4].

3.2. METRICKVRP

The first part of this section starts with some positive differential approximation results and ends with a negative result. In the
second part, we present an improvement of the best known approximation algorithm for 3VRP.

3.2.1. Differential approximation results
Whend is a metric, computing a worst solution becomes easy as shown by the next lemma:

Lemma 6. wor =2)7 4do;.
Proof. Letsolbe afeasible solution and denote®y1, ..., m;, 0) one of these cycles. We replace ittly 1, 0), .. ., (0, m;, 0)
and by the triangle inequality, this change does not increase the value of the solution. So, we can repeat it on each cycle and

finally obtain the solutiort0, 1, 0), ..., (0,n,0). O

In Theorem 4 we have shown tHMRP is% differential approximable. We now show that in the metric case, the same bound
can be achieved by a simpler algorithm.
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We compute a minimum weight perfect matchiMgon the subgraph induced Y, ..., n}, if nis even, or by{0, 1, ..., n}
if nis odd. We link each endpoint different of 0 lffto the depot. We claim that

opt =>2d(M). (5)

Indeed, consider an optimum solution #&/RP. Walk around it and shortcut in order to obtain a Hamiltonian cgcln
{0,1,...,n}if nis odd and a Hamiltonian cycleon{1, ..., n} if nis even. We havepr >d(C) by the triangle inequality and
this cycle is the sum of two perfect matchings which are greater than or eqdal to

Using (5), Lemma 6 and the construction of the approximate solution, we obtain:

n
1 1
apx:d(M)—}-Z do‘iééopt—{— Swor, (6)
i=1

proving that the result is é differential approximation.

Theorem 7. METRICKVRPIis o- (k— 1)/ k differential approximablgwhered is the differential approximation ratio faIETRIC
TSP.

Proof. Our algorithm modifies th®ptimal Tour Partitioningheuristic of Haimovich et a[12]: first construct a touf of value
val(T) onV using thed differential approximation algorithm for TSP. W.l.0.g., assume that this tour is described by the sequence
(0,1,...,n,0). We produce solutionssol; fori =1, ..., k and we select the best solution. The first cycledf is formed by
the sequencé), 1, . .., i, 0) and then each other cycle (except possibly the lastphfhas exactlyk consecutive vertices (for
instance, the second cycle(@® i + 1, ..., i + k, 0)) and finally, the last cycle is formed by the unvisited vertices (conneating
to the depot 0). Denote hypx; fori =1, ..., k the values of the solutiosvl; and byapxthe value of the best one.

In the union of solutionsoly, . . ., sol; each edge of \{(0, 1), (0, n)} appear exactlyk — 1) times and each edd®, j) for
Jj # 1, n appears exactly twice. Finally, edge 1) and (0, n) appear exactlyk + 1) times. Sincavoryrp = 2)_/_4do ; by
Lemma 6, we deduce:

k

1 (k
apx < z g . apx; <
I=

—1

1
val(T) + Ewor\/Rp. )

SinceT is ao differential approximation then
val(T) < (1 — d)wortsp+ doptTsp. (8)

Since it is possible to construct from an optimum solution of VRP a solution of TSP with a smaller value (using the triangle
inequality), it follows that

optTSp< OpIyRP- 9)

Also, by connecting the depot twice with each customer, we can construct from a solution of TSP a solution of VRP with a
greater value, and therefore

WOrTSP< WOryRp- (10)

Using (7)—(10) we obtain that

apx <o

k=1
optyrp + (1 -0 T) WOryRP- O

Since the best known differential approximation algorithm for TSI% if15,20] then the algorithm of Theorem 7 is an
% - (k — 1)/ k differential approximation algorithm for KITRIC KVRP. Fork > 4 this is an improvement over the bound%)f
given by Theorem 4 for the BNERAL (NON-METRIC) KVRP.

We will proceed now to improve the bound given in Theorem 7 by using a generic algorithm. When we deal with a cycle of
sizemwe consider the vertices moduia
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Algo _Differential Metric kVRP

1. Find a partition o\ {0} by cyclesM = {C4, ..., Cp} using aPreprocessing  algorithm;
2. Foreverycycle; = (1,...,m;,1) of Mwith m; =kq + r, 0<r <k do
2.1. Forj =1tom; do
2.1.1. Let(uy, ..oy gy k) = CAHGL J+DYULG +r + ek, j+r+14Lk): 0<E < gl
2.1.2. Constructol; j = U™/ 140, ug, 0));
2.2. Letsol; =arg mind(sol; 1), ..., d(sol; m,)}
3. OutputAPX = J!_;s0l;;

By using the construction of solutions!; 3. ..., sol; ,,;, we easily deduce the following lemma:
Lemma 8. Consider acycles; = (1, ..., m;, 1) of Mwithm; = kq + r, 0<r < k. We have

() X7Lyd(sol; j) = (m; — @)d(Ci) +2437,d(0, j) if r = 0.
(i) Y7 qd(soli ;) = (mj —q — Dd(C;) +2(q +DYTL1d(O, ) if r #0.

Proof. (i) sol; ; contains[m;/k] = q cycles for everyj = 1, ..., m;. Thus, inU’}ilsol,-,j, each edge of; appears exactly

m; — g times and each edd®, j) appears exactlygtimes.
(i) sol; j contains{m; /k1=gq + 1 cycles forevery =1, ..., m;. So, the same argument as previously shows that each edge

of C; appears exactly;; — (¢ + 1) times and each edd®, j) appears exactly(z + 1) times inu;zlsol,-, i g

Theorem 9. METRIC4VRPis % differential approximable anMETRICKVRP is % differential approximable witth <k < 8.
Proof. Our preprocessing algorithm works as follows: we compute a minimum weight binary 2-matdhingCs, ..., Cp)

on the subgraph induced A {0}. Consider a cycl€; = (1, ..., m;, 1) of M with m; = kg + r and letwor; = 22'}1;140,1‘-
Assumeg = 0. Since the best solution (i.eql;) is better than the average one, we obtain using Lemma 8:

r—1 1 1
d(sol;) < Td(Ci) + Jwor; = ;(wori —d(Cy)) +d(Cy). (11)
Sincewor; >d(C;) by the triangle inequality and> 3 (C; contains at least 3 vertices), we deduce:
2 1
d(sol,-)géd(C,-)—i— éwori. (12)
Now, assume > 1. If r = 0, then we deduce:
k—1 1 2 1
d(sol;) < ——d(Cj) + zwor; <Zd(Ci) + Zwor; (13)

sincek > 3. Otherwise, we have> 1 and we obtain:

qg+1

d(sol;) <
(sol;) kg +r

(wor; —d(Cy)) +d(Cy)
and we deduce singeg >1:

d(soli)ék;ld(ci)—l— iwori. (14)
k+1 k+1
On the one hand, it is possible to construct from an optimum solutionEfRYC VRP a feasible solution of TSP on the
subgraph induced by \{0} (by shortcutting) with a smaller value and we dedd¢af) = Zled(ci) <opttgp<optyrp. On
the other handvor = Zlewori. Finally, by summing over inequalities (12), (13) and (14) and by distinguishing the case
k = 4 andk > 4 we obtain the expected result]



C. Bazgan et al. / Discrete Applied Mathematics 146 (2005) 27-42 35

The algorithm of Theorem 9 works for aky> 3 and it gives the rati% for METRIC 3VRP and% for k >9. We now improve
the previous bound fot = 3 andk >9 using another preprocessing algorithm. But surprisingly, this algorithm computes an
approximate TSP with maximum weight.

Remark 10. The differential and standard approximation ratios foaxXMVEIGHTED ATMOSTKPP coincide. Indeed, we have
wor = 0 since{ P;};cy WhereP; = {i} is a feasible solution.

This problem is very close to ETRIC KVRP when we deal with differential ratio:
Theorem 11. For anyk >3, MAX WEIGHTED ATMOSTkPPand METRIC KVRP are differential equivalent

Proof. In order to reduce MTRIC KVRP to MAX WEIGHTED ATMOSTKPP, consider an instan€zof METRIC KVRP with n
customers. We construct an instadi¢ef MAX WEIGHTED ATMOSTKPP as follows: we delete the depot 0 and consider the graph
K, and setl;, y=do.x +doy —dxy for any verticest, y € V\{0}. By the triangle inequality/;, .y =20. d;, oy denotes the saving
gained with respect to the worst solution, by joiningndy in a cycle rather then reaching each of them from the depot. We have
aone to one correspondence between a path(1, . .., j) using at mosk vertices in/’ and the cycleC = (0, 1, ... ., j, 0) with

at mostk customers irG. Moreover,d’(P) = 22,-]:1d0,i — d(C). Finally, we also have a one to one correspondence between
feasible solutions of these two problems, and simoe = 2" ;dp ;, for any solution ofG of valueval we have

val’ = woryrp — val. (15)

Conversely we reduce AKX WEIGHTED ATMOSTKPP to METRIC KVRP. LetG andd be an instance of MX WEIGHTED
ATMOSTKPP. We add a depot 0 and we s§f; = max.cg de, Vi € V andd] i= 2maxep d. —d; ;. Vi, j € V. Therest of the
proof is similar. O

Let p be the standard approximation ratio foAK TSP. The current best value fp)rs 2 obtained by a randomized algorithm
in [17].

Theorem 12. METRICKVRPis ( (k 1)/ k — ¢) differential randomized approximable for=3 and anye > 0.

Proof. Let G be an instance of HITRIC KVRP with n customers and let> 0. In order to obtain a good solution f@&, we
apply algorithmAlgo _Differential Metric kVRPwhere the preprocessing is a tdlie= C1. This tour is produced by
the algorithm fron{17] applied on the instancE = (K}, d’) with n = kq + r obtained fromG as in Theorem 11, that is%
randomized approximation. Using the definition of weighand the Lemma 8, we obtain:

dYhqd'(soly ) (k-1
worVRp—apx—lmaX d'(soly ) > =t ! 2( ? —8>d/(cl),

\\ n

wheng > (k — 1)/¢k? — 1/ k. Otherwise, we exhaustively solve the problem.
On the other hand, an optimal solution ofAMI WEIGHTED ATMOSTKPP on!’ can be used to construct a feasible solu-
tion of MAX TSP on/’ by joining the endpoints of the paths. Hengerpax Tsp= 0Pt Max weighted atmogpp. Finally, by

using the standard approximation algorithm fora TSP for obtaining the touf, we haved’(C1) > SrgoptMaX Tspand
optMax weighted atmosPP = WorvrRp — optyrp since (15). [

In particular, we obtain z{g—g — ¢) differential randomized approximation for BRIC 3VRP, that is better than thé
differential approximation given in Theorem 4. It also improves the result of Theorenk2f0rsince we obtain the differential
ratio 6 = 25(k — 1)/33 — ¢ > % for METRIC KVRP. For instance, this ratio 839 ~ 0.67 fork = 9.

We summarize in the following the differential results that we obtain fe&TRIC KVRP:

METRIC 3VRP is(gg — ¢) differential randomized approximable for any 0.

e METRIC4VRP is% differential approximable.

e METRICKVRP is 2 3 differential approximable for 5 k£ < 8.

METRICKVRP |s( 2k — 1)/ k — ¢) differential randomized approximable for akhg: 9 and for any > 0.

Finally, note the similarity between the results given in Theorem 7 and the one given in Theorem 12. They both deal with the
reduction in approximation from EITRIC KVRP to MAX TSP (MAX TSP and MN METRIC TSP are equivalent with respect
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to the differential ratid20]) and the expansion is very similatk — 1)/k for Theorem 7 angh(k — 1)/ k — ¢ for Theorem 12.

The only difference is on the measure used: the first reduction considers the differential ratio for the two problems whereas the
second one considers the standard ratio faixM SP. Actually, the standard ratio= %—g is better than differential ratié = %

for MAX TSP and more generally the best standard yagi;for MAX TSP will be always better than the best differential ratio

Opest (i-€., Ppest= Opest) Since we have a trivial reduction from any maximization problem to itself transforming a differential
resultinto a standard result (see Lemma 1.3 in Mof2@}), leading to the conclusion that the reduction of Theorem 12 is better.
Nevertheless, if the optimal resultggesi= dpestthen the reduction of Theorem 7 will be better.

SincenVRP and TSP are standard equivalent, from the result of Papadimitriou and Yanrn2kaki® deduce immediately
thatnVRP(1,2) has no standard approximation scheme unlesdNP. Also TSP(1,2) has no differential approximation scheme
[22] but we cannot deduce immediately timRP(1,2) has no differential approximation scheme sinee,,yrp andwortsp
may be very far. However, we prove in the following a lower bound for the differential approximatidriRi?(1,2).

Theorem 13. nVRP(1, 2) is not(%% + ¢) differential approximablgfor any constant > 0, unlessP = NP.

Proof. Sincewor,yrp <4n <4opt,yrp, ad differential approximation fonVRP(1, 2) gives ad + 4(1 — 9) standard approx-
imation fornVRP(1, 2). Using the negative result given 8] that TSP(1,2) is no% — ¢ standard approximable, we obtain
the expected result.(]

3.2.2. Some standard approximation results
Despite these observations, by using Theorem 9 flerRICKVRP and Theorem 5 we establish better standard approximation
ratio than Haimovich, Rinnooy Kan and Stougie (i(% — 3/2k) standard approximation) when we deal with bounded metrics,

i.e., dmax<tdmin. More exactly, METRIC 4VRP [2] is ‘2‘% standard approximable andeVIRIC KVRP [2] is (2 — 4/3(k + 1))
standard approximable far> 5.

We now describe some results concerning the standard approximabilitgoRid KVRP. In[12], a(% — 3/2k) standard
approximation for METRIC KVRP is obtained by reduction to ®RIC TSP and using Christofides’ algorithm.

The following theorem gives a reduction transforming a standard polynomial time approximation scheme into a differential
one, even if we deal with unbounded metri@g4x/dmin is not upper bounded).

Theorem 14. A ¢ differential approximation algorithm foMETRIC KVRP is also ak — d6(k — 1) standard approximation
algorithm

Proof. Consider an optimal solution for an instanGeof METRIC KVRP and w.l.0.g. denote b§0, 1, . .., m;, 0) one of its
cycles. Using the triangle inequality, the length of this cycle is at least Zdpax i =1,...,m;}> %Z;":"ldo,,-. Summing
over each cycle, we obtain using Lemma 6:

wor

2 n

Let apxbe a¢ differential approximation fo6. Using inequality (16) we deduce:
apx <oopt + (L — o)wor <dopt + k(1 — d)opt. a a7
Using Theorem 14, Remark 10 and Theorem 12 we obtain:

Corollary 15. METRIC3VRPis (3— %’p + &) standard approximable for all > 0 where¢ is the standard approximation ratio
for MAX TSP.

More exactly, since = %—g [17] we obtain the boun(:}ggg7 =~ 1.99 that is an improvement of the 2 standard approximation of
Haimovich et al[12].
4. EDGE COSTVRP

We assume now that a cassatisfying the triangle inequality is associated with any edge, and the solution must satisfy that
the total cost on each cycle does not excéed
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Note that if we do not assume théis a metric then even deciding whether the problem has any feasible solution is NP-
complete. For a proof see Theorem 27 below. Therefore, we assunisttsties the triangle inequality, and to ensure feasibility
we also assume that@; <Afori=1,...,n.

Theorem 16. EDGE COSTVRP is% differential approximable

Proof. We start with a binary 2-matching as described in Lemma 2 except that the initial graph is not a complete undirected
graphG but a partial grapi@’ of it built by deleting the edgeg, ;) fori # 0and; # 0 such thatg ; +¢; j +¢j0> 4 Observe
thatM is still a lower bound of an optimal solution obEGE COSTVRP. Then, we apply the algorithAlgo _Differential
VRPexcept that we change step.34, 5 and 6. The stepBbecomes the following: we produee solutionssol; 1, ..., sol; 1,
wheresol; ; ={(0,j+1,j+20),...,(0,j -2, —=1,0}U{(QO,j0}forj=1,....m;.

The steps 4 and 5 become, respectively: “forevery aggte(0, 1, ..., m;, 0) of MWith 3~ ;) Ce > A(r€SPY_ e ;) be < A)
do ...”, whereas the step 6 becomes: the soluiBiXis the solution obtained by concatenating the shortesbif; for each
cycleC;.

Observe that in step.3, each edge of; appears exactlym; /2] times in(UjgmiSOZi,j) and each edgéD, j) appears
exactlym; + 1 times. Thus, since; > 2, the same arguments as in Theorem 4 provedRXis a% differential approximation.
O

In [12], the authors consider two versiondd®RP with additional constraint on the length of each cycle. In the first problem
that we will call here \ERTEX COSTVRP, each customer has a cost and we want to find a solution such that the total customer
cost on each cycle does not exceed a given bourd the second, called if19] MIN METRIC DISTANCE, we want to find
a solution such that the total cost on each cycle does not exceed a givenhdtorceach of these two problems, we give a
reduction preserving differential approximation scheme franeECOSTVRP.

Lemma 17. A ¢ differential approximation solution fOEDGE COST VRP (respectivelymetric casgis also ao differential
approximation foMERTEX COSTVRP (respectivelymetric casg

Proof. LetG = (V, E) withd, candA > 0 be an instance of ®RTEX COSTVRP. We construct an instance ab&E COSTVRP

as follows. The graph and the functidrare the same whereas the functios defined by?; ; = (c; + ¢;)/2 where we assume
thatcg = 0. This function satisfies the triangle inequality. Moreover(dte a cycle linking the depot to a subset of customers.
We haveziev(c)cl‘ ii |ff ZeeE(C)Eeé/l. O

Corollary 18. VERTEXCOSTVRPIis % differential approximable

MIN METRIC DISTANCE is a particular case of BGE COSTVRP where the functioid is exactly the functionl. Thus, from
Theorem 16 we deduce the corollary:

Corollary 19. MIN METRIC DISTANCE is % differential approximable

EDGE COSTVRP and \ERTEX COSTVRP have neither standard nor differential approximation scheme untegsfPsince
these two problems contanVRP.

5. MIN-MAX KTSP

The metric case of the problem was studied by Fredrickson §lalvhere they give ag — 1/k standard approximation
algorithm by constructing a reduction from this problem taT®IC TSP and using Christofides’ algorithid].

Theorem 20. MIN—MAX rTSPis not2?" standard approximable for any polynomial p angt 1, unlessP = NP.

Proof. We reduce HMMILTONIAN PATH problem to MN—-MAX rTSP. We start with the reduction described in Theorem 1 with
k=n—1andg =1 and the weight2”™ is replaced byn + 3)27" (recall that then — 1)PP problem is the BMILTONIAN
PATH problem) and we apply times this reduction (so, the final graph consists of depotracmpies ofG and setA of 2r
vertices). Thus, a#" standard approximation for M—MAX rTSP could decide BMILTONIAN PATH, that is proved NP-hard
in[10]. O
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We now turn to the metric case. We give}adifferential approximation algorithm for EITRIC MIN-MAX KTSP,k >2 and
we show that the problem has neither standard nor differential approximation scheme ualsi§s P

Theorem 21. METRIC MIN-MAX 2TSPis % differential approximable

Proof. Consider atouf” = (0, ..., n, 0) of G. Leti be the smallest index such th@j-zodj,Hl)d(T)/Z. We consider the
solutionC1=(0,1,...,i,0)andC2=(0,i + 1, ...,n,0).

Note that
i—1
d(T)
d —do,; = i1 ——
(C1) —do, Z d/,/+l 2
j=0
and
1
d(r) d(T)
d(C2) —do,i+1=d(T) — Z djj+1<d(T) — — =5
j=0

So, maxd(C1),d(C2)}<d(T)/2 + max{do i, do j+1} <worTsp/2+ optaTsp/2. Since a worst tour ol with the value
worTspis a feasible solution for 2TSP thewrytsp> wortsp. Thus, maxd(C1), d(C2)} <worpTsp/2+ optorsp/2. O

Corollary 22. METRIC MIN-MAX KTSP is% differential approximable.

Proof. The previous algorithm is é differential approximation for general> 3 since we have als@or;tsp> wortsp and
maxdo,;, do,i+1} <optpTsp/2. U

Theorem 23. MIN-MAX KTSP(1,2)k > 2, has neither standard nor differential polynomial time approximation schamess
P=NP.

Proof. Assume that MN—MAX KTSP(1,2) has a standard polynomial time approximation scheme cgll&de prove that NN
TSP(1,2) on instances when the subgraph restricted to the edges of length 1 is Hamiltonian, has a standard polynomial time
approximation scheme. This is a contradiction with the result of Bajygn 99]

Let 0< ¢ <1 and letG be a complete graph on=gq - k + r, 0 <r <k vertices, with edges of length 1 and 2, an instance of
MIN TSP(1,2) such that the subgraph restricted to the edges of length 1 is Hamiltonian. W.l.0.g., wegasdidfig otherwise,
an exhaustive search solves the problem); thdg 4¢/3. We construct an instane® of MIN—-MAX KTSP adding t&5 a depot,
the vertex 0, and we set the distance between 0 and a veofe® to 2. It is easy to see thapr(G) = opt1gp(G) = n and
opt(G") = optmin—max kTsp(G') = g + 4 since the optimum of’ is obtained when the Hamiltonian cycle is dividedipaths
where the difference of sizes is at most 1.

In order to obtain a1+ ¢) approximation foG, we apply algorithm ;3 which finds a solution ofs’ with valueval’ < (1+
%)opt’. From this solution, we construct a solutionGrputting together the paths induced by the solutio@imnd linking these
paths by edges of length at most 2. This solution has the valus k(val’ — 4) + 2k <k - val’. So,

val<k<1+%>(q+4):k-q+4k+%~4k+%~k-q<k~q+£~k~q<(1+s)opt.

In order to see that Mi—MAX KTSP has no differential approximation scheme, we show that if it was the case teVIX
KTSP on the particular instances that we consider above would have a standard approximation scheme. Supposiigrat M
KTSP has a differential approximation scheigVvd, 0 < 6 < 1. So,4 5 gives a solution fo6G’ with a valueval < dopt (G')+(1—
S)wor(G’). For the above instancés of MIN-MAX KTSP,opt(G') = (n —r)/k +4 andwor (G') <2(n — 1) + 4 < 2kopt (G').
Thus,val <[ + 2k(1 — 8)]opt(G’), and for an(1 + ¢) standard approximation solution for an instance oRMVIAX KTSP,
Ve>0, we applyAswithd=1—-¢/(2k —1). O

For certain cases we can give inapproximability gaps, for examples, when we hy#jevehicles we can prove that the
problem is not(z5 approximable and more generally we obtain:

Theorem 24. MIN-MAX |n/k]TSP(1,2)k>6is not(k + 1)/ k — ¢ standard approximable for any=> 0, unlessP = NP.
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sol

Fig. 3.M andsol.

Proof. We use a reduction frontk — 4)PP withk >6. We use the reduction described in Theorem 1 except that we replace
the distances2”(™ by distances 2. Then, & contains a decomposition in paths of length 4 thenopt(G’) = k, otherwise
opt(G') >k+1.So, ak+1)/k — e standard approximation for M—MAX |n/k]TSP(1,2) could decidg — 4)PP in polynomial

time. O

6. MIN—SUM EKTSP

Bellmore and Hon¢B] showed that when the constrapntk is replaced by < k, then MN—-SUM KTSP is standard equivalent
to TSP on an extended graph. This is true even for the directed version of the problem and when there is a cost associated with
activating a salesman. For our case the transformation simply involves replacing the depot vekeefibgs of zero distance.
Also, the metric case of the <k version is not of interest since the solution is just a single cycle (thus, we deal with the case
p =k and MN-SUM EKTSP denote this problem).
MIN-SUM EKTSP is differential equivalent to ETRIC MIN-SUM EKT SP. This observation follows since the number of edges
in every solution is the same (like in the TSP case). Hence, we add a constant to all the edge lengths and achieve the triangle
inequality without affecting the best and worst solutions.
Similarly, MIN—SUM EKTSP is differential equivalent to MNKk—SUM EKTSP.
Theorem 20 can be adapted in order to prove that-*UM EKTSP is not 2() standard approximable, for any polynomial
p, unless P= NP.
We now give the main results of this section.

Theorem 25. METRIC MIN-SUM EKTSPis 323 differential approximablgvk > 1.

Proof. Let G andd be an instance of FITRIC MIN—SUM EKTSP. Add to every edge incident with the depot a parallel copy.
Compute a minimum binarftmatchingM = {Cy, ..., Cp} (Cy, ..., Ci denote the cycles d¥l containing the depot 0) 06
where f(0) = 2k and f (v) = 2 for v € V\{0}. Compute by using % differential approximation algorithm dfL5] or [20]

a solutionC’ for TSP on the subgrap&’ of G induced byV’ = V\(Uf;ll V(C;)) U {0}. The approximate solutiosol for
METRICMIN-SUM EKTSP is composed @’ and the cycle€q, . .., Cy_1. SeeFig. 3. SinceM is a minimum binary-matching

M on G thenM’ = M\(Uf;llc,-) is an optimum binary 2-matching ai’. Letr = Zf;lld(C,-). It is proved in[15] or [20]

that the TSP algorithm gives a solution satisfying< %d(M’) + %worTsp(G/). Sincewor  Tsp(G) > wortsp(G') + r and
opt;Tsp(G) =d (M) + r, we deduce that the value 86l satisfies:

2 1 2 1
apx =val +r< éld(M/) +r]+ élworTSp(G/) +r]< éoplkTsp(G) + éworkTSp(G). O
Theorem 26. UnlessP = NP, MIN-SUM EKTSP(1,2)has no standard and differential approximation scheme foriany.

Proof. We reduce NN TSP RATH (1,2) on instances where the subgraphwith edges of length 1 is cubic and Hamiltonian to
MIN-SUM E2TSP(1,2). From a gragh = (V, E) onn vertices, we construct a gragH instance of MN—SUM E2TSP(1,2)G’
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consists of two copies @ and a vertex O (the depot). Within a copy, the edges have the same distanG; dg jr= 1, for each
vertexi in one of the two copies/; ; =2 if i andj are vertices in different copies. Using the equalitie§G) =n — 1=wor (G)/2

(we know by the Dirac’s theorem that the subgraphwith edges of length 2 is Hamiltonian singe € V, dg, (v) >n/2) and
opt(G')=2n+2,wor(G’) =4n, we haveopt (G') = 20pt (G) + 4 andwor (G’) = 2wor (G) + 4. Given a solutiorSof G’ with

two cycles, we can transform it in another offehat contains exactly two cycl&®, Py, 0), (0, Py, 0), each of these two paths
are contained in a copy @& and with a better value. The idea for doing this is to remove the edges between the two copies in the
solutionSand in each copy, we arbitrarily connect the resulting paths. We consider as solut@thipath with the smallest
value among the two. Seal = min{val(Py), val(P2)} < (val(P1) + val(P2))/2 = (val(S') — 4)/2< (val(S) — 4)/2. Since
opt(G) = opt(G') /2 — 2 andwor (G) = wor(G’) /2 — 2 then & differential approximation of MN—SUM E2TSP(1,2) gives a

o differentialapproximation for M\ TSP RATH (1,2) on Hamiltonian and cubic graphs. The conclusion follows fox-MUM
E2TSP(1,2) since Ml TSP RATH (1,2) on Hamiltonian and cubic graphs has no differential approximation scH2raa]). It

is easy to see that Bis a (1 + ¢/2) standard approximation of M—SUM E2TSP(1,2) then the same solution as above with
valuevalis a(1 + ¢) standard approximation of M TSP RATH (1,2). The proof fok >3 is similar. O

7. MIN VEHICLE

In this problem, the goal is to visit the customers by a minimum number of vehicles, under a constraint on the total distance
traveled by a vehicle.

In[19], itis proved that METRIC MIN VEHICLE is not standard 2 approximable, unless RIP. Indeed even deciding whether
the problem has a feasible solution is NP-complete:

Theorem 27. Deciding the feasibility oMIN VEHICLE is NP-complete

Proof. In order to prove the NP-hardness, we redugeMHTONIAN PATH problem to MN VEHICLE. We again apply the
reduction described in Theorem 1 with= n — 1 andg = 1, except that the distance&” are replaced by the distancés
Trivially there is a feasible solution fag’ only if 1>n + 3. It is easy to see that M VEHICLE has a feasible solution if6
contains a Hamiltonian path.O

In the opposite, deciding the feasibility of B fRIC MIN VEHICLE is trivial, and the condition simply amountsd0, i) <//2
fori =1, ..., n. The following theorem gives a positive result for this problem:

Theorem 28. METRIC MIN VEHICLE is % differential approximable

Proof. Consider the collectioff’ of sets of vertices of feasible cycles (cycles that include the depot and whose length is at most
). Since we assume thdtis a metric,# is amonotone collectiorthat is, ifC’ ¢ C andC € % then alsoC’ € 4. This means
that if G’ is a subgraph of that includes the depot, then the optimal solutior®ris at most that o6G. This allows us to apply
the following “greedy” approach:

Construct feasible cycles with the depot and three vertices, as long as this is possiblen& e grapli except the vertices
of these cycles (the depot is preservedsi). For an edgei, ), if do; + do,j +d; j > 7 then we remove this edge fro6y .
Denote the resulting graph also Ig/. Find a maximum size matching &’. We will show below that a such maximum size
matching inG’ is an optimum solution o6’. We now show that the union of these cycles %djfferential approximation.

Denote bykz the number of cycles on three vertices and the depot, constructed in the first step of the algorithm. Der{atecby
k1) the number of edges (and isolated vertices) obtain&dwhen we search a maximum size matchinga8&(G)=k1 +k+k3.
The value of the solution obtained & in this way isval’ = k1 + ko = |V (G’)| — ko sinceky + 2ko = |V (G')|. Since we want
to minimizeval’ a maximum size matching gives an optimum solution. Sine€G) > opt(G') andwor = n = |V (G)|, we
obtain thawal(G) = ky + kp + kg = k1 + kp + (n — k1 — 2k2)/3< $0pt(G) + Zwor(G). O

The algorithm of Theorem 28 is similar to the approadi B for obtaining differential approximation forlf®PH COLORING.
By applying approximation algorithms for 3% COVER and following the ideas of Halldérssda3] for obtaining better
differential approximation for @APH COLORING (see alsq15]), the bound can be improved.

Theorem 29. METRIC MIN VEHICLE is % differential approximable

Proof. Consider the following algorithm: construct feasible cycles with four vertices as long as this is possiltié Heethe
graphG except the vertices of these cycles. List all the feasible cycle® ilNote that such cycles include the depot and at
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most three other vertices, and therefore their number is polynomial. Apply an approximation algorithimi f8f3&T EXACT
COVER OF AMONOTONECOLLECTION, such as the algorithm of Halldorssfi8] or Duh and Firef7]. This former result is
a %-differential approximation (see Theorem 5.7113]), and the latter gives a bound ég% (see Theorem 4.2 ify]). O

Note that the mentioned results were developed to give differential approximationRA®RHGECOLORING, but they apply as
well to any problem of exact covering by sets that correspond to a monotone collection (see SecfiBi}¥ of

In[19], itis proved that unless£ NP, MIN VEHICLE is nhot standard 2 approximable and thus without standard approximation
scheme wheri — oo. In the following we establish the same result faronstant and for the differential case.

Theorem 30. MIN VEHICLE(1,2) has no standard and differential approximation scheme evéisitonstantunlessP = NP.

Proof. We prove firstly that NN VEHICLE(1,2) has no standard approximation scheme,5# RP by reducing NN TSP(1,2)
problem on on instances where the subgr&phwith edges of length 1 is cubic and Hamiltonian toNWEHICLE(1,2). MIN
TSP(1,2) problem on cubic Hamiltonian graphs has no standard approximation §2heimes there is a constasy, 0 < g < 1,
such that it is not } ¢ standard approximable fex g, if P # NP.

Given a graplG = (V, E) onn vertices, we construct a grapH instance of MN VEHICLE. G’ consists of one copy & and
a vertex 0 (the depot) and we define the functibas follows:d(’)’l. =1,fori e {1,...,n} anddl.’ﬁl. =d;;ifi,je{l,....n}lt
is easy to see thaprq = opt(G) = n andopts = opt (G') = [n/A — 11 <n/(A—1) + 1<n/(Z — 2) whenn > (4 — 1)(1 — 2).
Given a solutiors’ of G” with val, vehicles,S’ = Cq, ..., Cyqa1,, We consider as solutidifor G the restriction of this solution
to the vertices o6. The value ofSis val1 < Z;’ilfd(ci) < Avaly by the triangle inequality.

Suppose that M VEHICLE(1,2) would have a standard approximation schetyeWe prove that this assumption implies
that MIN TSP(1,2) has an approximation scheme, contradiction. In order to obtd&ih-am) approximation forG, we apply
AgzonG’' with 2 =3+ 3/e. Thus

valy <2 (1+ %) 7 i 5= 1+ e)n.

Using this last result we prove that this problem has no differential approximation scheme NPP Suppose that M
VEHICLE(1,2) when the graph restricted to edges of weight 1 is Hamiltonian would have a diffedespipfoximation scheme
Ags,V0,0< 0 < 1. Therefore, for each instanGeof the problem om vertices, withi.=3+3/¢g, this algorithm gives a solution for
Gwith avalueval (G) < dopt(G) 4+ (1— d)wor(G). Since on these instancesr (G) =n andopt (G)=[n/(A—1)1>n/(A—1)
thenwor (G) < (2 + 3/eg)opt (G) and soval (G) <[ + (2 + 3/¢g) (1L — §)]opt(G). Thus, in order to obtain a standattl+ ¢)
approximation algorithm, & ¢ < 1, we have to take the solution given Ry with 6 =1 — eeg/(3+ &p). The result follows since
as we prove above M VEHICLE(1,2) on these instances has no standard approximation scheme, uglé§3 P
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