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Abstract

We study some structural and topological properties of the frontiers of objects in
a certain class of discrete spaces, in the framework of simplicial complexes and
partial orders. In a previous work, we introduced the notion of frontier order, which
allows to define the frontier of any object in an n-dimensional space. The main goal
of this paper is to exhibit the links which exist between frontier orders and the
notion of derived neighborhood as introduced in the framework of piecewise linear
topology. In particular, we prove that the derived subdivision of the frontier order
of an object X in a “regular” n-dimensional space is equal to the frontier of the
derived neighborhood of X, and that this frontier is a union of (n− 1)-dimensional
surfaces, for any dimension n.
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Introduction

In many applications stemming from digital image processing, geometrical
modeling and computer graphics, the notion of frontier of discrete objects
plays a central role.

We are interested in certain topological and structural properties of frontiers.
In the continuous space Rn, we remark that the boundaries of certain “well
behaved” subsets of Rn, such as convex n-polytopes, are topological (n− 1)-
manifolds. In the framework of piecewise linear topology, we may define an n-
dimensional space as a simplicial complex which is a combinatorial n-manifold,
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and we call object any subcomplex of this space. Then, it is possible to prove
that the boundary of a derived neighborhood of any object is a combinatorial
(n− 1)-manifold [1].

Several purely discrete frameworks have been used in order to study topolog-
ical properties of objects in discrete spaces (see e.g. [2–7]) Here, we follow an
approach based on the notions of (abstract) simplicial complex and partial
order [8–11]. Instead of combinatorial manifolds, we consider the notion of
n-dimensional surfaces (or n-surfaces for short) which has been introduced by
Evako et al. [3,12,13]. The notion of combinatorial manifold is complicated,
in particular, the problem of recognizing a combinatorial manifold is difficult.
On the opposite, the recognition of an n-surface is straightforward.

In previous works [14,15], we introduced the notion of frontier order, which
allows to define the frontier of any object in an n-dimensional space. The main
goal of this paper is to exhibit the links which exist between frontier orders and
the notion of derived neighborhood. In particular, we prove that the derived
subdivision of the frontier order of any object X is equal to the frontier of
the derived neighborhood of X. Our second main result is a theorem which
may be stated informally as follows: the frontier of the derived neighborhood
of any object in an n-surface is a union of disjoint (n− 1)-surfaces, for any n.

1 Partially ordered sets and simplicial complexes

Partially ordered sets

Let us first introduce the notations that we will use in this article. If X is a
set and S a subset of X, when no confusion may occur we denote by S the
complement of S in X. We write S ⊂ X if S is a subset of X and S 6= X,
we write S ⊆ X if S ⊂ X or S = X. If λ is a binary relation on X, i.e., a
subset of the cartesian product X ×X, the inverse of λ is the binary relation
{(x, y) ∈ X ×X, (y, x) ∈ λ}. For any binary relation λ, λ2 is defined by λ2 =
λ \ {(x, x), x ∈ X}. For each x of X, λ(x) denotes the set {y ∈ X, (x, y) ∈ λ}
and for any subset S of X, λ(S) denotes the set {y ∈ λ(s), s ∈ S}.
An order [10,16–18], also called partially ordered set or poset, is a pair |X| =
(X,αX) where X is a set and αX is a reflexive, antisymmetric and transitive
binary relation on X. For example, the simplicial complex depicted in Fig. 1-1
may be interpreted as an order: the elements of this order are the triangles,
the edges and the vertices, and the relation αX is the inclusion relation. Let x
be an element of X, the set αX(x) is called the αX-adherence of x. We denote
by βX the inverse of αX and by θX the union of αX and βX . The set θX(x)
is called the θX-neighborhood of x, or simply the neighborhood of x when no
confusion may arise. We say that two elements x, y of X are neighbors, or
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comparable, if y ∈ θX(x). If y ∈ αX(x) then we say that y is under x and that
x is above y.
Let x0 and xn be two elements of X, a path from x0 to xn in |X| is a sequence
x0, . . . , xn of elements of X such that for all i ∈ [1 . . . n], xi ∈ θX(xi−1).
A connected component of |X| is a subset C of X such that for all x, y ∈ C,
there exists a path from x to y in C, and which is maximal for this property.
Let x be an element of the order |X|, the rank of x in |X| is the number
ρ(x, |X|) such that ρ(x, |X|) = 0 if α2

X(x) = ∅ and ρ(x, |X|) = Max{ρ(y, |X|)+
1, y ∈ α2

X(x)} otherwise. The rank of |X| is the number ρ(|X|) such that
ρ(|X|) = Max{ρ(x, |X|), x ∈ X}. Any element of an order is called a point or
an n-element, n being the rank of this point.
An order |X| is countable if X is countable, it is locally finite if, for each
x ∈ X, θX(x) is a finite set. A CF-order is a countable locally finite order. In
the following, we consider only CF-orders.
Let |X| = (X,αX) and |Y | = (Y, αY ) be two orders, |X| and |Y | are order
isomorphic if there exists a bijection f : X → Y such that, for all x1, x2 ∈ X,
x1 ∈ αX(x2)⇔ f(x1) ∈ αY (f(x2)).
If |X| = (X,αX) is an order and S is a subset of X, the sub-order of |X|
relative to S is the order (S, αS), with αS = αX ∩ (S×S). When no confusion
may arise, we also denote by |S| the order (S, αS).

Simplicial complexes

Let Λ be a finite set, any non-empty subset of Λ is called a simplex. A simplex s
constituted of (n + 1) elements of Λ is called an n-simplex. Any non-empty
subset of a simplex s is called a face of s. A proper face of s is a face of s
which is not equal to s. Let X be a family of simplexes of Λ, we say that X is
a simplicial complex if it is closed by inclusion, which means that, if s belongs
to X, then any face of s also belongs to X. Let X be a non-empty simplicial
complex, we say that X is a (simplicial) n-complex if all the simplexes of X
are m-simplexes with m ≤ n, and if at least one simplex of X is an n-simplex.
The subset of Λ which is the union of all the simplexes of X is called the
support of X. The simplicial complexes we just defined are often known as
abstract simplicial complexes, as opposed to other notions of complexes based
upon an underlying Euclidean space.

To any simplicial complex X, we can associate a canonical order |X| = (X,αX)
where αX is the inclusion relation: t ∈ αX(s) means that t ⊆ s. In this paper,
we will often refer to the canonical order associated to a simplicial complex,
especially when it allows simpler formulations or proofs. Let X be a simplicial
complex and let s ∈ X. We observe that αX(s) does not depend on X since any
simplicial complex is closed by inclusion. Thus, we will often write α instead
of αX when discussing about simplicial complexes. We say that the simplicial
complex X is connected if the order |X| is connected. We can easily see that
for any n-simplex s of X, for any n ≥ 0, we have ρ(s, |X|) = n.
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Fig. 1. Fundamental notions for simplicial complexes.
1) A simplicial complex X, in which s is a 2-simplex, t a 1-simplex and u a 0-simplex.
2) Depicts ŝ, t̂ and û, which are equal to αX(s), αX(t) and αX(u) respectively.
3) Depicts star(s,X), star(t,X) and star(u,X), which are equal to βX(s), βX(t)
and βX(u) respectively.
4) Depicts ŝtar(s,X), ŝtar(t,X) and ŝtar(u,X), which are equal to αX(βX(s)),
αX(βX(t)) and αX(βX(u)) respectively.
5) Depicts s and link(s,X) (which is empty), t and link(t,X) (two isolated
0− simplexes) and u and link(u,X).
6) Depicts θX(s), θX(t) and θX(u).
7) Depicts a 1-complex Y and two 0-complexes X and Z.
8) Depicts the 2-complex X ◦ Y and the 1-complex X ◦ Z.
9) Depicts the 3-complex (X ◦ Y ) ◦ Z, which is equal (X ◦ Z) ◦ Y .
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The notions of boundary, open star, closed star, join and link are fundamental
in the framework of simplicial complexes. We give below their definitions and
their interpretations in terms of order. We show some illustrations in Fig. 1.

• Let s be a simplex, the closure of s, denoted by ŝ, is the simplicial complex
consisting of s and all its faces. In other words, ŝ = α(s).
By extension, if S is a set of simplexes, the closure of S denoted by Ŝ is the
union of the closures of its simplexes. In other words, Ŝ = α(S).
• Let s be a simplex, the boundary of s is constituted by all the proper faces

of s, it is equal to α2(s).
• Let s be a simplex of a simplicial complex X; the (open) star of s in X is

defined as star(s,X) = {t ∈ X, s ⊆ t}. Thus star(s,X) is equal to βX(s).
The closed star of s in X is defined as the closure of the star of s in X.
In terms of order, we have ŝtar(s,X) = αX(βX(s)). Notice that the closed
star is always a simplicial complex while the open star is not.
• Two simplexes are joinable if their intersection is empty. If s and t are

joinable simplexes, the simplicial join of s and t is defined as s ◦ t = s ∪ t.
Two simplicial complexes X and Y are said to be joinable if every simplex
of X is joinable with every simplex of Y ; thus X and Y are joinable if and
only if the intersection of their supports is empty. If X and Y are joinable,
the (simplicial) join of X and Y is defined as X ◦ Y = X ∪ Y ∪ {s ◦ t, s ∈
X, t ∈ Y }. It can easily be seen that the join of two simplicial complexes is
always a simplicial complex, and that the join operation is associative and
commutative.
• Let s be a simplex of a simplicial complex X; the link of s in X is defined

as the set of all simplexes t in X such that the join of t and s belongs to X,
that is, link(s,X) = {t ∈ X, s◦t ∈ X}. It can be easily seen that the link of
a simplex in a simplicial complex is always a (sometimes empty) simplicial
complex. In terms of order relation, the link of s in X is order isomorphic
to β2

X(s), as proved in [19].

2 Discrete surfaces

Definition of n-surfaces in the framework of orders

The main results of this article are based on a notion of n-dimensional dis-
crete surface proposed by Evako, Kopperman and Mukhin [3,12,13]. Such n-
dimensional surfaces have been proved to verify discrete analogs of the Jordan-
Brouwer theorem in Z2 [20] and Z3 [21] equipped with the Khalimsky topol-
ogy [16].

Let |X| = (X,αX) be a non-empty CF-order.
• The order |X| is a 0-surface if X is composed of exactly two points x and y
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such that y /∈ αX(x) and x /∈ αX(y).
• The order |X| is an n-surface, n > 0, if |X| is connected and if, for each x
in X, the order |θ2

X(x)| is an (n− 1)-surface.
For technical reasons, we will say that |X| is a (−1)-surface if X = ∅.

Definition of n-surfaces in the framework of simplicial complexes

We say that a simplicial complex C is an n-surface, for any n ∈ N, if the order
(C,⊆) is an n-surface. The following property shows that, in the framework of
simplicial complexes, n-surfaces may be characterized by a simpler condition
based on the link operator.

Property 1 A non-empty simplicial complex C is an n-surface, n > 0, if
and only if C is connected and, for each 0-simplex s in C, link(s, C) is an
(n− 1)-surface.

The proof of this property is based on the two following properties, which we
also use later in this article:

Property 2 Let |X| = (X,αX) be an order. Then, |X| is an n-surface if
and only if, for any x in X, |α2

X(x)| is a (k − 1)-surface and |β2
X(x)| is an

(n− k − 1)-surface, with k = ρ(x, |X|).

Property 3 Let S be an n-simplex, then α2(S) is an (n− 1)-surface.

Prop. 1, Prop. 2 and Prop. 3 are proved in [19].

Theorems related to n-surfaces and simplicial complexes

The following theorem is an important tool for demonstrating properties re-
lated to n-surfaces in the framework of simplicial complexes. Results similar
to Th. 4 have been obtained by Evako et al. [12] in a framework based on
graphs, and by ourselves in the framework of orders [19].

Theorem 4 Let the simplicial complexes C1 and C2 be, respectively, an n-
surface and an m-surface (n,m ≥ 0). Then the simplicial complex C = C1◦C2

is an (n+m+ 1)-surface.

Proof: Let us first consider the case where C1 and C2 are both 0-surfaces,
then any point of C has a link composed of two isolated points, thus C is a
1-surface (the connectedness is obvious).
Assume now that the property is true for every n and m such that n+m ≤ d,
d ≥ 0, and let us prove it for (n + 1) and m (which, by symmetry, will also
prove it for n and (m+ 1), and, by induction, for any n,m ≥ 0):
• Let x be a 0-simplex of C, according to the definition of the join operator,
x is either a 0-simplex of C1 or a 0-simplex of C2.
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• If x is a simplex of C1, then link(x,C) = link(x,C1) ◦ C2 (see lemma 14 in
the annex). Since link(x,C1) is an n-surface (by Prop. 1, C1 being an (n+ 1)-
surface) and C2 is an m-surface (by hypothesis), link(x,C) is an (n+m+ 1)-
surface (by induction hypothesis).
• If x is a simplex of C2, then link(x,C) = link(x,C2) ◦C1 (still according to
lemma 14). Thus, either C2 is a 0-surface, in which case link(x,C) = C1 is an
(n + 1) = (n + m + 1)-surface, or link(x,C2) is an (m − 1) surface, in which
case link(x,C) is an (n+m+ 1)-surface (by induction hypothesis).
• Moreover, the connectedness of C is guaranteed by the definition of the
simplicial join, thus, by Prop. 1, C is an (n+ m + 2)-surface: the property is
true for (n+ 1) and m. 2

3 Subcomplex, border and frontier

Let X be a simplicial complex, and let Y be a subset of X. If Y is a simplicial
complex then it is called a subcomplex of X.

LetX be a simplicial complex with support Λ, and let Y be a subcomplex ofX,
with support Λ′ ⊆ Λ. We say that Y is a full subcomplex of X if every simplex
of X which is a subset of Λ′ also belongs to Y . The notions of subcomplex
and full subcomplex are illustrated in Fig. 2.

One can easily verify the following property, which states that there is a unique
full subcomplex associated to each subset of the support of a simplicial com-
plex.

Property 5 Let X be a simplicial complex of support Λ. Let Λ′ be a subset
of Λ. The subcomplex Y of X defined by Y = {y ∈ X, y ⊆ Λ′} is the unique
full subcomplex of X with support Λ′.

Let X be a simplicial complex with support Λ, and let Y be a subcomplex
of X, with support Λ′ ⊆ Λ. The simplicial complement of Y in X, denoted by
compl(Y,X) or simply by Ỹ when no confusion may occur, is the simplicial
complex composed of all the simplexes of X which are subsets of Λ\Λ′, that is,
Ỹ = compl(Y,X) = {s ∈ X, s ⊆ Λ \ Λ′}. We can easily see that the previous
expression indeed defines a simplicial complex, the support of which is Λ \Λ′.
The simplicial complement of Y can also be expressed as Ỹ = {s ∈ X, Y does
not contain any face of s}. The notion of simplicial complement is illustrated
in Fig. 2-d,e.

We can deduce from Prop. 5 that the simplicial complement of any subcomplex

of X is a full subcomplex of X. Furthermore, since ˜̃Y = {s ∈ X, s ⊆ Λ′}, the
following property also follows easily from Prop. 5 (see also Fig. 2-d,e).
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a) b) c)

d) e) f)

Fig. 2. Subcomplex, full subcomplex, simplicial complement and border.
a) A simplicial complex X.
b) A subcomplex Y1 of X (black dots, bold edges and dark triangles), which is not
a full subcomplex of X.
c) A full subcomplex Y2 of X (black dots, bold edges and dark triangles).
d) The simplicial complement Ỹ1 of Y1 (white dots, dotted edges and light triangles).
e) The simplicial complement Ỹ2 of Y2 (white dots, dotted edges and light triangles),

which is equal to Ỹ1 since Y1 and Y2 have the same support. Notice that ˜̃Y2 = Y2

(see Prop. 6).
f) The border δ(Y2) (black dots, bold edges).

Property 6 Let X be a simplicial complex, and let Y be a subcomplex of X.

We have ˜̃Y = Y if and only if Y is a full subcomplex of X.

Let X be a simplicial complex, and let Y be a subcomplex of X. The border
of Y in X is the set of elements of Y which are neighbors of some element
of X \ Y , in other words, the set δ(Y,X) = {y ∈ Y, θX(y) ∩ (X \ Y ) 6= ∅}.
It may be easily seen that
δ(Y,X) = {y ∈ Y, βX(y) ∩ (X \ Y ) 6= ∅} = Y \ {y ∈ Y, βX(y) ⊆ Y }.
When no confusion may occur, we omit the reference to X and we write
δ(Y ) = δ(Y,X). It can easily be seen that the border of any subcomplex
of X is a simplicial complex. In Fig. 2-f, we see the border of the subcomplex
of Fig. 2-c.

We can see that any subcomplex Y of a subcomplex X gives birth to five
remarkable sets of simplexes: Y , δ(Y ), Ỹ , δ(Ỹ ) which are subcomplexes of X,
and the reminder X \ (Y ∪ Ỹ ) (in Fig. 2-d,e, this reminder is depicted by
medium gray triangles and thin edges). We denote by ∆(Y,X), or simply by
∆(Y ) when no confusion may occur, the set X \ (Y ∪ Ỹ ). Obviously, ∆(Y )
is not a simplicial complex, thus it is not a subcomplex of X. The order
|∆(Y )| = (∆(Y ),⊆) is named the frontier order relative to Y in X. By abuse
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a) b) c)

d)

Fig. 3. Simplicial neighborhood and its border.
a) A simplicial complex X (all the triangles, edges and vertices) and a full subcom-
plex Y of X (one bold edge and two black vertices).
b) In dark grey and bold black, N(Y ).
c) In bold black, δ(N(Y )). We can see that δ(N(Y )) = αX(βX(Y )) \ βX(Y ).
d) A complex X composed of the proper faces of a 3-simplex (tetraedron), and a
subcomplex Y of S (in dark grey and bold black). We can see that δ(N(Y )) is
empty, while αX(βX(Y )) \ βX(Y ) is composed of one 0-simplex (in white).

of terminology, we also call frontier order the set ∆(Y ). It should be noted
that the notion of frontier order may be extended to any CF-order, and that
this definition is equivalent, up to an order isomorphism, to the definition
proposed in [15].

We can easily deduce from Prop. 6 that, if Y is a full subcomplex of X,
then the frontier order ∆(Y ) is “symmetrical” between Y and Ỹ , that is,
∆(Y ) = ∆(Ỹ ).

Let Y be a subcomplex of the simplicial complex X, the simplicial neighbor-
hood of Y in X is defined as the union of the closed stars of the simplexes of Y
in X, that is, N(Y,X) =

⋃
s∈Y ŝtar(s,X). When no confusion may occur, we

write N(Y ) = N(Y,X). In terms of order relation, N(Y,X) = αX(βX(Y )).
The notion of simplicial neighborhood is illustrated in Fig. 3-a,b.
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Fig. 4. Graphical illustration of the notion of derived subdivision. Left: the initial
complex X composed of the closure of the simplex {a, b, c}. Right: the subdivision
X1 constituted by the chains of X.

4 Subdivision, derived neighborhoods and derived frontiers

In the previous section, we defined the border δ(Y ) of a subcomplex Y of a
complex X. We saw that δ(Y ) is always a simplicial complex, but this border
is not symmetrical between Y and Ỹ , more precisely, δ(Y ) 6= δ(Ỹ ). On the
other hand, we introduced the frontier order of Y , which is symmetrical but
which is not a simplicial complex. The subdivision operation will allow us to
define the derived frontier, which is both a simplicial complex and symmetrical
between Y and Ỹ .

The notion of derived subdivision, that we present now, is especially interest-
ing for us since it can be applied not only to simplicial complexes, but more
generally to any partially ordered set.
Let |X| be an order, a chain of |X| is a fully ordered non-empty subset of X,
i.e., a non-empty subset Y of X such that any two elements of Y are compa-
rable. An n-chain is a chain composed of n+ 1 elements.
The derived subdivision of |X| if the set, denoted by X1, constituted by all the
chains of |X|. The notion of derived subdivision is illustrated in Fig. 4. Notice
that for any order (X,αX), the derived subdivision X1 is always a simplicial
complex, the support of which is X. We also call X1 the chain complex of X.
Let X be a simplicial complex, the derived subdivision of X is the derived
subdivision X1 of the order (X,⊆).

It can be easily verified that for any two orders |Y |, |Z| we have [Y ∩ Z]1 =
Y 1∩Z1, but in general [Y ∪Z]1 6= Y 1∪Z1 and [Y \Z]1 6= Y 1\Z1. Furthermore,
if Y and Z are simplicial complexes, then we have [Y ∩ Z]1 = Y 1 ∩ Z1 and
[Y ∪ Z]1 = Y 1 ∪ Z1, but in general Y \ Z is not a simplicial complex.

Let X be a simplicial complex, and let Y be a subcomplex of X. The derived
neighborhood of Y in X is defined as the simplicial neighborhood of Y 1 in X1,
that is: N(Y 1, X1) =

⋃
y1∈Y 1 ŝtar(y1, X1) = αX1(βX1(Y 1)) (see Fig. 5). When
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no confusion may occur, we simply write N(Y 1) = N(Y 1, X1).

Observe that βX1(Y 1) is composed of the chains of X which contain at least
one simplex of Y , that is,

βX1(Y 1) = {c ∈ X1,∃y ∈ c, y ∈ Y } (1)

The following lemma gives us an expression of N(Y 1) which will be useful in
the sequel.

Lemma 7 Let X be a simplicial complex, let Y be a subcomplex of X and let
Λ′ be the support of Y . Then, we have N(Y 1) = {c ∈ X1,∀x ∈ c, x ∩ Λ′ 6= ∅}.

Proof: Observe that N(Y 1) = αX1(βX1(Y 1)) =
{c ∈ X1,∃c′ ∈ βX1(Y 1), c ⊆ c′} =
{c ∈ X1,∃c′ ∈ X1,∃y ∈ Y, y ∈ c′, c ⊆ c′} (from (1)).
If c′ is a chain of X1 which contains y and includes c, then we see easily
that c ∪ {y} is also a chain of X1 which contains y and includes c, thus
N(Y 1) = {c ∈ X1,∃y ∈ Y, c ∪ {y} ∈ X1} = {c ∈ X1,∀x ∈ c, x ∩ Λ′ 6= ∅} (any
x of c either is included in y or includes y, in both cases x ∩ Λ′ 6= ∅). 2

Let us now focus on the border of the neighborhood of a full subcomplex.
We can see in Fig. 3-a,b,c a simple case, where δ(N(Y )) can be expressed as
αX(βX(Y ))\βX(Y ). It can easily be proved that for any full subcomplex Y of
a simplicial complex, we have δ(N(Y )) ⊆ αX(βX(Y ))\βX(Y ). The converse is
false in general, see a counter-example in Fig. 3-d. The following lemma shows
that the equality holds for the border of the derived neighborhood.

Lemma 8 Let X be a simplicial complex and let Y be a full subcomplex of X.
We have δ(N(Y 1)) = αX1(βX1(Y 1)) \ βX1(Y 1).

Proof: From the very definitions of the border and the simplicial neighbor-
hood, we see that δ(N(Y 1)) = αX1(βX1(Y 1)) \ A, where
A = {c ∈ αX1(βX1(Y 1)), βX1(c) ⊆ αX1(βX1(Y 1))}.
We have to prove that A = βX1(Y 1). Let c ∈ βX1(Y 1), thus βX1(c) ⊆ βX1(Y 1)
and obviously βX1(c) ⊆ αX1(βX1(Y 1)), thus βX1(Y 1) ⊆ A.
Conversely, let c ∈ A, and suppose that c does not belong to βX1(Y 1). Let
x be the lowest element of c. Let Λ′ be the support of Y . From lemma 7 we
know that x ∩ Λ′ 6= ∅. Moreover, since c /∈ βX1(Y 1), we can see (from (1))
that x ∈ X \ Y . Thus, x is not a 0-simplex of X and some 0-simplex y0 ∈ Y
must exist such that y0 ⊂ x. However, if every 0-simplex x0 of X such that
x0 ⊂ x were to belong to Y , since Y is a full subcomplex we would have x ∈ Y .
Thus, some 0-simplex x0 ∈ X \ Y exists such that x0 ⊂ x. Then, {x0} ∪ c
belongs to βX1(c) (it obviously contains c, and since x is the lowest element
of c, it is indeed a chain) but not to αX1(βX1(Y 1)) (according to lemma 7,
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since x0 ∩ Λ′ = ∅), a contradiction. 2

Notice that the latter property does not hold if Y is not a full subcomplex. A
counter-example is given in Fig. 6.

From the previous lemma, we derive a property which highlights the symmetry
of the border of N(Y 1) between Y and Ỹ (see Fig. 5-d,e,f).

Property 9 Let X be a simplicial complex and let Y be a full subcomplex
of X. We have δ(N(Y 1)) = N(Y 1) ∩N(Ỹ 1).

Proof: Let Λ be the support of X, let Λ′ be the support of Y , and let Λ′′ =
Λ \ Λ′. From lemma 8, we have δ(N(Y 1)) = αX1(βX1(Y 1)) \ βX1(Y 1), thus
δ(N(Y 1)) = N(Y 1) ∩ [X1 \ βX1(Y 1)]. We see that:
X1 \ βX1(Y 1) = {c ∈ X1,∀x ∈ c, x 6⊆ Λ′} (from (1)), thus
X1 \ βX1(Y 1) = {c ∈ X1,∀x ∈ c, x ∩ Λ′′ 6= ∅} = N(Ỹ 1) (by lemma 7);
and thus δ(N(Y 1)) = N(Y 1) ∩N(Ỹ 1). 2

Let X be a simplicial complex, and let Y be a full subcomplex of X. Recall
that the frontier order of Y in X has been defined as ∆(Y ) = X \ (Y ∪ Ỹ ).
The derived frontier of Y in X is defined as the derived subdivision of the
frontier order of Y in X, that is: [∆(Y )]1.

The following result shows a strong link between the notion of derived neigh-
borhood and the notions of frontier order and derived frontier.

Theorem 10 Let X be a simplicial complex and let Y be a full subcomplex
of X. The border of the derived neighbohood of Y is equal to the derived frontier
of Y , that is: δ(N(Y 1)) = [∆(Y )]1.

Proof:
Let Λ be the support of X, let Λ′ be the support of Y , and let Λ′′ = Λ \ Λ′.
Using Prop. 9 and lemma 7 we see that δ(N(Y 1)) = N(Y 1) ∩N(Ỹ 1) =
{c ∈ X1,∀x ∈ c, x ∩ Λ′ 6= ∅} ∩ {c ∈ X1,∀x ∈ c, x ∩ Λ′′ 6= ∅} =
{c ∈ X1,∀x ∈ c, x ∩ Λ′ 6= ∅ and x ∩ Λ′′ 6= ∅} =
{c ∈ X1,∀x ∈ c, x /∈ Y and x /∈ Ỹ } =
[X \ (Y ∪ Ỹ )]1 = [∆(Y )]1. 2

5 Derived neighborhoods and n-surfaces

In this section we present the second main result of this paper, which states
that the border of the derived neighborhood of any full subcomplex of an
n-surface is composed of disjoint (n− 1)-surfaces.
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The following theorem, which reveals a strong link between the structure of
an order and the structure of its chain complex, will be used to obtain this
result.

Property 11 Let |X| be an order. If |X| is an n-surface then the simplicial
complex X1 is an n-surface.

Proof: Let |X| be a 0-surface, then X is of the form {a, b}, thus X 1 =
{{a}, {b}} is a 0-surface. Let us now suppose that the property is true for
all k such that 0 ≤ k < n, and let us prove it for n. Since X 1 is a connected
simplicial complex (the connectedness of X1 is a direct consequence of the
connectedness of X), it is sufficient (by Prop. 1) to prove that the link of any
0-simplex s = {x} of X1 is an (n − 1)-surface. By the definition of the link,
we have link(s,X1) = {c ∈ X1, c ◦ s ∈ X1}. Since c ◦ s is a chain, any element
y of c is comparable to x. Note also that, if y is under x, then any z above
x is also above y. So any chain of link(s,X1) can be expressed either as a
chain of elements stricly under x, a chain of elements stricly above x, or as the
join (union) of a chain of elements strictly under x and a chain of elements
strictly above x (and any such chain obviously belongs to link(s,X 1)); thus:
link(s,X1) = [α2

X(x)]1 ◦ [β2
X(x)]1. By property 2, we know that α2

X(x) is a
(k − 1)-surface and that β2

X(x) is an (n − k − 1)-surface, with k = ρ(x, |X|).
Then, by induction hypothesis, [α2

X(x)]1 is a (k − 1)-surface and [β2
X(x)]1 is

an (n− k − 1)-surface, and by Th. 4, link(s,X1) is an (n− 1)-surface. 2

Before proving our main result, let us first consider the case where the complex
X is the boundary of an n-simplex.

Property 12 Let S be an n-simplex with n > 1, let X be the boundary of S,
and let Y be a full subcomplex of X. Then, δ(N(Y 1, X1)) is an (n−2)-surface.

Proof:
Let Λ be the support of X, let Λ′ be the support of Y , and let Λ′′ = Λ \ Λ′.
Let us first consider the case where S is a 2-simplex {a, b, c}. We can assume
that Λ′ = {a} (the case Λ′ = {b, c} is similar) and then δ(N(Y 1, X1)) =
{{{a, b}}, {{a, c}}}, which is a 0-surface.
Let us now suppose that the property is true for any i-simplex, with 2 ≤ i < n,
and let us prove it for an n-simplex.
• We first need to prove that the link of any 0-simplex in δ(N(Y 1, X1)) is an
(n− 3)-surface. Let s = {x} be such a 0-simplex. Remind that, according to
Th. 10:

δ(N(Y 1, X1)) = {c ∈ X1,∀z ∈ c, z ∩ Λ′ 6= ∅ and z ∩ Λ′′ 6= ∅} (2)

Thus x is a k-simplex of X such that Λ′∩x 6= ∅ and Λ′′∩x 6= ∅ (and obviously,
0 < k < n).

13



By definition:
link(s, δ(N(Y 1, X1))) = {c ∈ δ(N(Y 1, X1)), c ◦ s ∈ δ(N(Y 1, X1))}.
In other terms, link(s, δ(N(Y 1, X1))) is composed by all the elements c of X1

such that for all z ∈ c, we have z ∈ θ2
X(x), Λ′∩z 6= ∅ and Λ′′∩z 6= ∅. It should be

noted that any element w of X above x verifies both Λ′∩w 6= ∅ and Λ′′∩w 6= ∅.
So, since [β2

X(x)]1 ⊆ δ(N(Y 1, X1)), any element of link(s, δ(N(Y 1, X1))) can
be expressed either as an element of [β2

X(x)]1, an element of δ(N(Y 1, X1)) ∩
[α2(x)]1, or as the simplicial join of an element of [β2

X(x)]1 and an element of
δ(N(Y 1, X1)) ∩ [α2(x)]1. Thus,

link(s, δ(N(Y 1, X1))) = [β2
X(x)]1 ◦ (δ(N(Y 1, X1)) ∩ [α2(x)]1) (3)

Then (from (2)):

δ(N(Y 1, X1)) ∩ [α2(x)]1 = {c ∈ X1,∀z ∈ c, z ∩ Λ′ 6= ∅, z ∩ Λ′′ 6= ∅} ∩ [α2(x)]1

= {c ∈ [α2(x)]1,∀z ∈ c, z ∩ Λ′ 6= ∅, z ∩ Λ′′ 6= ∅}
= δ(N([Y ∩ α2(x)]1, [α2(x)]1)) (4)

Since X is an (n− 1)-surface (Prop. 3), we deduce from Prop. 2 and Prop. 11
that β2

X(x) and [β2
X(x)]1 are (n− k− 2)-surfaces. It can be easily verified that

Y ∩ α2(x) is a full subcomplex of α2(x), furthermore α2(x) is the boundary
of a k-simplex with k < n. Thus, by induction hypothesis at rank k < n,
δ(N([Y ∩ α2(x)]1, [α2(x)]1)) is a (k − 2)-surface. Consequently, by (3), (4)
and Th. 4, we deduce that the link of any 0-simplex of δ(N(Y 1, X1)) is an
(n− 3)-surface.
• We must now prove that δ(N(Y 1, X1)) is connected. Let si and sj be two
elements of δ(N(Y 1, X1)), let xi be a simplex of si and let xj be a simplex of sj.
Then, there exist four elements of Λ (not necessarily distinct) a, b, c and d
such that a ∈ xi ∩ Λ′, b ∈ xi ∩ Λ′′, c ∈ xj ∩ Λ′ and d ∈ xj ∩ Λ′′. Then, it can
be verified that {si, {xi}, {{a, b}, xi}, {{a, b}}, {{a, b}, {a, b, c}}, {{a, b, c}},
{{b, c}, {a, b, c}}, {{b, c}}, {{b, c}, {b, c, d}}, {{b, c, d}}, {{c, d}, {b, c, d}},
{{c, d}}, {{c, d}, xj}, {xj}, sj} is a path from si to sj in δ(N(Y 1, X1)).
Since δ(N(Y 1, X1)) is connected and the link of each of its 0-simplexes is an
(n− 3)-surface, δ(N(Y 1, X1)) is an (n− 2)-surface (by Prop. 1). 2

We can now prove the main result of this section.

Theorem 13 Let X be a simplicial complex which is an n-surface, with n > 0,
and let Y be a full subcomplex of X. Then, each connected component of
δ(N(Y 1, X1)) is an (n− 1)-surface.

Proof:
Let Λ be the support of X, let Λ′ be the support of Y , and let Λ′′ = Λ\Λ′. Let
s be a 0-simplex of δ(N(Y 1, X1)), s = {x} where x is a k-simplex of X, with
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0 < k ≤ n. The link of s in δ(N(Y 1, X1)) is constituted by all the elements c
of X1 such that for all z ∈ c, we have z ∈ θ2

X(x), Λ′ ∩ z 6= ∅ and Λ′′ ∩ z 6= ∅
(see the proof of Prop. 12). Each of those chains c can be expressed either as
an element of [β2

X(x)]1, an element of δ(N([Y ∩ α2(x)]1, [α2(x)]1)), or as the
join of an element of [β2

X(x)]1 and an element of δ(N([Y ∩ α2(x)]1, [α2(x)]1))
(see again the proof of Prop. 12).
• Since X is an n-surface, β2

X(x) is an (n− k − 1)-surface, and so is [β2
X(x)]1.

• By Prop. 12, δ(N([Y ∩ α2(x)]1, [α2(x)]1)) is a (k − 2)-surface.
• Thus, link(s, δ(N(Y 1, X1))) = [β2

X(x)]1 ◦ δ(N([Y ∩ α2(x)]1, [α2(x)]1)) is an
(n− 2)-surface by Th. 4.
Consequently, each connected component of δ(N(Y 1, X1)) is an (n−1)-surface.
2

6 Conclusion

The results presented in this paper clarify the links between the notion of
frontier order that we introduced in anterior articles and the notion of derived
neighborhood as introduced in the framework of piecewise linear topology.
Furthermore, they also constitute new results about derived neighborhoods,
since the notion of n-surface had not been studied in this framework until now.
In a forthcoming article, we deepen the discussion about different frameworks
for discrete surfaces, in particular combinatorial manifolds, n-surfaces and
pseudo-manifolds, and prove a theorem which establishes inclusion relations
between these three classes of discrete n-dimensional surfaces (for any n).

Annex

Lemma 14 Let C1 and C2 be simplicial complexes. Let x be an element of
C1◦C2. If x ∈ C1 (resp. x ∈ C2), then link(x,C1◦C2) is equal to link(x,C1)◦C2

(resp. C1 ◦ link(x,C2)). If x = x1 ◦ x2, with x1 ∈ C1 and x2 ∈ C2, then
link(x,C1 ◦ C2) = link(x1, C1) ◦ link(x2, C2).

Proof: From the definitions of the link and the join, we have:

link(x,C1 ◦ C2) = {t ∈ C1 ◦ C2, x ◦ t ∈ C1 ◦ C2}
= {t ∈ C1, x ◦ t ∈ C1 ◦ C2} ∪ {t ∈ C2, x ◦ t ∈ C1 ◦ C2}
∪{t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, x ◦ t1 ◦ t2 ∈ C1 ◦ C2}

Then, if x ∈ C1, we obtain:
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link(x,C1 ◦ C2) = {t ∈ C1, x ◦ t ∈ C1} ∪ {t ∈ C2}
∪{t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, x ◦ t1 ∈ C1}

= link(x,C1) ∪ C2 ∪ {t = t1 ◦ t2, t1 ∈ link(x,C1), t2 ∈ C2}
= link(x,C1) ◦ C2

Similarly, with x ∈ C2 we would obtain link(x,C1 ◦ C2) = C1 ◦ link(x,C2).
Now, if x = x1 ◦ x2, with x1 ∈ C1 and x2 ∈ C2, we have:

link(x,C1 ◦ C2) = {t ∈ C1, x1 ◦ t ∈ C1} ∪ {t ∈ C2, x2 ◦ t ∈ C2}
∪{t = t1 ◦ t2, t1 ∈ C1, t2 ∈ C2, (x1 ◦ x2) ◦ (t1 ◦ t2) ∈ C1 ◦ C2}

= {t ∈ C1, x1 ◦ t ∈ C1} ∪ {t ∈ C2, x2 ◦ t ∈ C2}
∪{t = t1 ◦ t2, t1 ∈ C1, (x1 ◦ t1) ∈ C1, t2 ∈ C2, (x2 ◦ t2) ∈ C2}

= link(x1, C1) ∪ link(x2, C2)

∪{t = t1 ◦ t2, t1 ∈ link(x1, C1), t2 ∈ link(x2, C2)}
= link(x1, C1) ◦ link(x2, C2)2
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[20] E. D. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and
connected topologies on finite ordered sets, Topology Appl. 36 (1990) 1–17.

[21] R. Kopperman, P. R. Meyer, R. G. Wilson, A Jordan surface theorem for three-
dimensional digital spaces, Discrete Computational Geometry 6 (1991) 155–161.

17



Y ⊂ X Y , ∆(Y ), Ỹ partition of X1

(a) (b) (c)

N(Y 1) N(Ỹ 1) [∆(Y )]1

(d) (e) (f)

Fig. 5. Example based upon a full subcomplex.
a) A simplicial complex X and a full subcomplex Y of X.
b) Partition of X between Y (light gray, white edges), its simplicial complement Ỹ
(dark gray, black lines) and the set ∆(Y ) (average gray, dashed lines), which is not
a simplicial complex).
c) The derived subdivision X1 of X. In light gray and white: Y 1, in dark gray and
black (with solid edges): Ỹ 1.
d) The derived neighborhood N(Y 1).
e) The derived neighborhood N(Ỹ 1).
f) The derived frontier of Y , since Y is a full subcomplex of X we have:
[∆(Y )]1 = δ(N(Y 1)) = N(Y 1) ∩N(Ỹ 1) = αX1(βX1(Y 1)) \ βX1(Y 1).
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Z ⊂ X partition of X1 δ(N(Z1)

(a) (b) (c)

αX1(βX1(Z1)) \ βX1(Z1) ˜̃Z ⊂ X δ(N([ ˜̃Z]1))

(d) (e) (f)

Fig. 6. The case of a non-full subcomplex.
a) The simplicial complex X, and a subcomplex Z of X which is not full.
b) The derived subdivision X1 of X. In light gray and white: Z1, in dark gray and
black (with solid edges): Z̃1.
c) The border δ(N(Z1)).
d) αX1(βX1(Z1)) \ βX1(Z1), which differs from δ(N(Z1)).

e) The simplicial complex and the full subcomplex ˜̃Z of X, which is the unique full
subcomplex of X having the same support as Z.

f) The border δ(N([ ˜̃Z]1)), which is equal to αX1(βX1([ ˜̃Z]1)) \ βX1([ ˜̃Z]1) since ˜̃Z is

a full subcomplex of X. We notice also that δ(N([ ˜̃Z]1)) = δ(N(Z1))
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