
Perfect Sorting by Reversals!

Marie-France Sagot and Eric Tannier

INRIA Rhône-Alpes, Université de Lyon 1, France
{Eric.Tannier,Marie-France.Sagot}@inrialpes.fr

Abstract. In computational biology, gene order data is often modelled
as signed permutations. A classical problem in genome comparison is to
detect conserved segments in a permutation, that is, genes that are co-
localised in several species, indicating that they remained grouped during
evolution. A second largely studied problem related to gene order data
is to compute a minimum scenario of reversals that transforms a signed
permutation into another. Several studies began to mix the two prob-
lems, and it was observed that their results are not always compatible:
often parsimonious scenarios of reversals break conserved segments. In a
recent study, Bérard, Bergeron and Chauve stated as an open question
whether it was possible to design a polynomial time algorithm to decide
if there exists a minimum scenario of reversals that transforms a genome
into another while keeping the clusters of co-localised genes together. In
this paper, we give this polynomial algorithm, and thus generalise the
theoretical result of the aforementioned paper.

1 Introduction

In computational biology, it is commonly accepted, using a parsimony argument,
that if a group of homologous genes (that is genes having a common ancestry)
is co-localised in two different species, then these genes were probably together
in the common ancestor and were not later separated during evolution. The
detection of such conserved clusters of homologous genes, also called conserved
segments, has already been the subject of several algorithmic studies (see for
instance [1, 8]).

In the theory of rearrangements, applying the parsimony principle means
minimising the number of events in a reconstruction of possible evolutionary
events between species. The algorithmics related to the rearrangements theory
has also been intensively studied. The main results have been obtained on the
problem of sorting by reversals [4, 7], which is a common event in evolution. The
problem in this case concerns finding an optimal scenario of reversals, that is a
shortest sequence of reversals that transforms one genome into the other.

A drawback of the methods developed so far for finding such parsimonious
scenarios is that they do not respect the principle of conserved segments: despite
! This work is funded by the French program ACI “New interfaces of Mathematics:

Mathematical and algorithmical aspects of biochemical and evolutionary networks”,
and by the INRIA coordinated action ARC “Integrated Biological Networks”.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 42–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Perfect Sorting by Reversals 43

the promising title of a former paper, Common Intervals and Sorting by Rever-
sals: A Marriage of Necessity [3], it has indeed been noticed several times that
in the case of reversals, the two criteria are not always compatible. A minimum
rearrangement scenario may break conserved segments and then put them back
together later again. A few studies [2, 6] began to mix the two principles. We go
further in this direction, thus answering an open question mentioned in [2]. The
question concerned the possibility of designing a polynomial time algorithm to
decide whether there exists a minimum scenario of reversals that transforms a
genome into another while keeping the clusters of co-localised genes together. In
this paper, we give this polynomial algorithm, and thus generalise the theoretical
result of the aforementioned paper.

We describe the usual model for dealing with gene order and orientation in
the next section. In Section 3, we recall some basic facts about the structure of
conserved segments of a permutation, as well as a padding operation described
in [7] and adapted here to conserved segments. Finally, we give our main result
and algorithm in Section 4.

2 Chromosomes as Signed Permutations

2.1 Generalities

Genome rearrangements such as reversals may change the order of the genes in
a genome, and also the direction of transcription. We identify the genes with
the integers 1, . . . , n, with a plus or minus sign to indicate their orientation.
The order and orientation of genomic markers will be represented by a signed
permutation of {1, . . . , n}, that is, by a bijective function π over [−n, n] \ {0}
such that π−i = −πi, where πi = π(i).

To simplify exposition, we adopt the usual extension which consists in adding
π0 = 0, and πn+1 = n + 1 to the permutation. We therefore often define a
signed permutation by writing (0 π1 . . . πn n + 1). The identity permutation
(0 1 . . . n + 1) is denoted by Id.

For all i ∈ {0, . . . , n}, the pair πiπi+1 is called a point of π, and more precisely
an adjacency if πi+1 = πi+1 and a breakpoint otherwise. The number of points of
a permutation π is denoted by p(π), and the number of its breakpoints by b(π).

The reversal of the interval [i, j] ⊆ [1, n] (i ≤ j) is the signed permutation
ρi,j = (0 . . . i−1 −j . . . −i j+1 . . . n+1). Note that π ·ρi,j is the permutation
obtained from π by reversing the order and flipping the signs of the elements in
the interval [i, j]:

π · ρi,j = (π0 . . . πi−1 − πj . . . − πi πj+1 . . . πn+1)

If ρ1, . . . , ρk is a sequence of reversals, we say that it sorts a permutation π
if π · ρ1 · · · ρk = Id. The length of a shortest sequence of reversals that sorts π is
called the reversal distance of π, and is denoted by d(π). A shortest sequence of
reversals sorting π is called a parsimonious sequence.

A segment of a permutation π is a set {|πa|, . . . , |πb|}, with 1 ≤ a < b ≤ n.
The numbers πa and πb are the extremities of the segment. Two segments are

44 Marie-France Sagot and Eric Tannier

said to overlap if they intersect but one is not contained in the other. A reversal
ρi,j breaks {|πa|, . . . , |πb|} if [i, j] and [a, b] overlap. A sequence of reversals breaks
a segment S if at least one reversal of the sequence breaks S.

2.2 The Breakpoint Graph

The breakpoint graph is a usual tool for dealing with signed permutations. It is
present in almost every study on sorting by reversals. We use it intensively in
the proofs of correctness of our method.

The breakpoint graph BG(π) of a permutation π is a graph with vertex set V
defined as follows: for each integer i in {1, . . . , n}, let i− and i+ be two vertices
in V ; add to V the two vertices 0+ and (n + 1)−. Observe that all vertex labels
are non negative numbers, but for simplicity and to avoid having to use absolute
values, we may later refer to vertex (−i)+ (or (−i)−): this is the same as vertex
i+ (or i−).

The breakpoint graph of a signed permutation has sometimes been called the
diagram of desire and reality due to the edge set E of BG(π), which is the union
of two perfect matchings of V , denoted by R, the reality edges and D, the desire
edges:

– D contains the edges i+(i + 1)− for all i ∈ {0, . . . , n};
– R contains an edge for all i ∈ {0, . . . , n}, from π+

i if πi is non negative, and
from π−

i otherwise, to π−
i+1 if πi+1 is non negative, and to π+

i+1 otherwise.

Reality edges define the permutation π (what you have), and desire edges
define Id (what you want to have).

To avoid case checking, in the notation of an edge, the mention of the expo-
nent + or − may be omitted. For instance, πiπi+1 is a reality edge, indicating
nothing as concerns the signs of πi and πi+1.

It is easy to check that every vertex of BG(π) has degree two (it has one
incident edge in R and one in D), so the breakpoint graph is a set of disjoint
cycles. By the cycles of a permutation π, we mean the cycles of BG(π). The
number of cycles of π is denoted by c(π).

2.3 Conserved Segments

Let π be a signed permutation of {1, . . . , n}, and S = {|πa|, . . . , |πb|} a segment
of π, for [a, b] ⊆ [1, n]. Let m = mini∈[a,b] |πi| and M = maxi∈[a,b] |πi|.

The segment S is said to be oriented if there exist i, j ∈ [a, b], such that πi

and πj have different signs, and unoriented otherwise.
The segment S is said to be sorted if for all i ∈ [a, b − 1], the point πiπi+1

is an adjacency. A sorted segment is always unoriented. It is sorted positively if
πa > 0 and negatively if πa < 0. In π = (0 − 7 3 − 1 4 2 8 − 6 − 5 9), {6, 5}
is sorted negatively.

The segment S is said to be conserved if M −m = b− a. In π = (0 − 7 3 −
1 4 2 8 − 6 − 5 9), {3, 1, 4, 2} is conserved.

Perfect Sorting by Reversals 45

0 7 7 3 3 1 1 4 4 2 2 8 8 6 6 5 5 9+ + + + + ++ + +− − − − − − − − −
r

d

r’

d’

0 −7 3 −1 4 2 8 −6 −5 9

Fig. 1. The breakpoint graph of the permutation (0 − 7 3 − 1 4 2 8 − 6 − 5 9).
Reality edges are represented in bold, and desire edges are represented by thin lines.

The segment S is said to be isolated if it is conserved, either πa = m and
πb = M , or πa = −M and πb = −m, and it is minimal, in the sense that
the first and last point of the segment are breakpoints, and not adjacencies. In
π = (0 − 7 − 4 2 − 3 − 1 8 − 6 − 5 9), the segment {4, 2, 3, 1} is isolated.

The segment S is said to be highly conserved if there exists a parsimonious
sequence of reversals which does not break S.

A highly conserved segment is conserved, but the converse is not true. For
example, in (0 − 2 − 3 1 4), {2, 3} is conserved but any parsimonious scenario
breaks it.

An isolated segment is not always highly conserved. However, the permuta-
tions for which this is not the case are rare and irrelevant for our study, as we
shall see in Section 2.4.

According to [2], we say that a sorting sequence of reversals is perfect if
it breaks no conserved segment. If a permutation has a perfect parsimonious
scenario, then all its conserved segments are highly conserved. The converse is
however not true: for example, in (0 − 3 4 − 1 2 5), both {1, 2} and {3, 4}
are highly conserved, but any parsimonious sequence of reversals breaks one of
them.

Perfect sorting sequences of minimum size have been studied in [6]. It is
proved that given a permutation and a subset S of its conserved segments, it is
NP-hard to compute the minimum scenario that does not break the segments of
S. The problem of finding a perfect sequence of reversals of minimum length is
still open, to our knowledge. In [6], the following easy but fundamental lemma
is presented.

Lemma 1. If a sequence of reversals sorts a permutation and does not break
a segment S, then there exists a sorting sequence of same size (with the same
reversals), in which all the reversals contained in S (they sort S) are before all
the other reversals (they sort outside S).

The parsimonious scenario such that as few reversals as posible break some
conserved segments is evoked in [2], but not solved. The authors study a special
class of permutations for which there exists a perfect parsimonious scenario, and

46 Marie-France Sagot and Eric Tannier

the question is asked whether it is possible to decide in polynomial time, given a
permutation, if there is a perfect parsimonious scenario that sorts it. In Section
4, we give this algorithm. Before that, we still need some preliminaries.

2.4 Sorting by Reversals

The main result about sorting by reversals is a theorem of Hannenhalli and
Pevzner [7], which yielded the first polynomial algorithm to find a parsimonious
sequence of reversals sorting any signed permutation.

We mention here a weaker version of this theorem, to avoid introducing no-
tions which are useless for our purpose. One of the consequences of the general
version of Hannenhalli and Pevzer’s theorem is that it is possible to charac-
terise the permutations for which all parsimonious sequences of reversals have
to break some isolated segment. According to the standard vocabulary, they are
the permutations that need a “hurdle merging”. They can be characterised in
this way.

Lemma 2. [7] A permutation has an isolated segment which is not highly con-
served if and only if it has at least three unoriented isolated segments A, B, C,
such that either A ⊂ B ⊂ C, or A ⊂ B and C ∩ B = ∅.

We call such permutations fools. They will obviously never have a perfect
parsimonious scenario. We therefore start by assuming that the permutations
we treat are not fools. It is easy to decide in linear time if a permutation is a
fool or not (see for example [4]). We denote by u(π) the number of unoriented
isolated segments in a permutation π.

Theorem 1. [7] Let π be a permutation but not a fool. Then d(π) = p(π) −
c(π) + u(π).

This means that any reversal in a parsimonious scenario increases the num-
ber of cycles of the permutation (p(π) = n +1 does not change after a reversal),
except one (the first one) for each unoriented isolated segment. Each isolated seg-
ment is sorted separately (by definition, they do not overlap), and independently
from the rest of the permutation.

3 Isolating Conserved Segments

As mentioned in the previous section, two isolated segments cannot overlap, and
so each isolated segment is treated separately in any sorting algorithm. This
is not immediately the case in general for conserved segments, but conserved
segments of a permutation have a nested structure as well. This structure and a
padding operation first described in [7] will allow to “isolate” conserved segments,
and sort them independently from the rest of the permutation when it is possible.

Perfect Sorting by Reversals 47

3.1 The Structure of Conserved Segments

We recall basic facts about the structure of conserved segments, that are useful
for our purpose. The reader may refer to [5] for a general presentation on modular
structures.

A conserved segment is called strong if it does not overlap any other con-
served segments. By definition, the family of strong conserved segments is nested.
Strong segments can be of two types. Suppose all non trivial strong conserved
segments strictly contained in a strong segment S have been contracted into a
single representative number, and the result of these contractions is {a, . . . , b}.
If {a, . . . , b} is an increasing or decreasing sequence of consecutive numbers, S
is called linear. If no proper subset of {a, . . . , b} is conserved, S is called prime.

Lemma 3. If S is a strong segment, then it is either linear, or prime.

We sort each strong segment independentely, assuming that all the strong
segments strictly included in it are already sorted (we start by the inclusionwise
minimal ones).

3.2 Padding a Permutation

Isolating a conserved segment is done by an operation called padding that is
described in [7], where it is used to transform a permutation into a simpler
one, with equivalent properties. We show that it can be used to deal with con-
served segments as well. To begin with, we want to be able to add elements to
a permutation without changing the existing indices. To do so, we deal with
“generalised” signed permutations in the sense that the permutations will be
bijective functions from a set of indices to a set of values, both being ordered
sets of reals instead of integer numbers. For example, (0 3.5 − 3 1 2 4) is
a generalised permutation, where π0 = 0, π0.5 = 3.5, π1 = −3, π2 = 1, π3 = 2,
π4 = 4.

A padding of a permutation π consists in adding an index k such that i <
k < i + 1, for some existing index i, and its image through π, such that j <
|πk| < j + 1, for some existing value j (πk may be positive or negative). For
example, if π = (0 − 3 1 2 4) is a signed permutation over {0, 1, 2, 3, 4},
π′ = (0 3.5 − 3 1 2 4), is a padding of π with 0 < k < 1 and 3 < |πk| < 4.
The resulting generalised permutation π′ has the same breakpoint graph as π,
except that the two edges r = πiπi+1 and d = j(j + 1) are now each split into
two edges r1, r2 and d1, d2. Examples of padding are shown in Figures 2 and 3.

A padding is said to be safe if the resulting permutation π′ has one cycle
more than π, and no new unoriented isolated segment, that is, according to
Theorem 1, if d(π′) = d(π). Any sequence sorting π′ also sorts π (just ignore
the added element). If the transformation is safe, a parsimonious scenario for π′

will therefore provide a parsimonious scenario for π. By extension, a sequence of
paddings is safe if the resulting permutation π′ satisfies d(π′) = d(π).

Let S = {|πa|, . . . , |πb|} ([a, b] ⊆ [1, n]) be a conserved segment, M =
maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. We say that S has a positive padding if it

48 Marie-France Sagot and Eric Tannier

is safe to pad it with an index k1, such that a−1 < k1 < a, and m−1 < πk1 < m,
and then with an index k2, such that b < k2 < b+1, and M < πk2 < M +1. We
say that S has a negative padding if it is safe to pad it with an index k1, such
that a − 1 < k1 < a, and M < −πk1 < M + 1, and then with an index k2, such
that b < k2 < b + 1, and m − 1 < −πk2 < m.

For example, in Figure 2, there is a negative padding of the conserved segment
{3, 1, 4, 2} in the permutation (0 − 7 3 − 1 4 2 8 − 6 − 5 9). There is no
positive padding of the same segment, as shown later in Figure 3.

r1 r2

d1

d2

r’1r’2

d’1

d’2

b cde a fgh

0 −7 −4.5 3 −1 4 2 −0.5 8 −6 −5

Fig. 2. A negative padding of segment {3, 1, 4, 2} in the permutation (0 − 7 3 −
1 4 2 8 − 6 − 5 9). Note that there are four cycles in the breakpoint graph, and no
unoriented isolated segment. The segment {4.5, 3, 1, 4, 2, 0.5} is isolated, but oriented.
There was two cycles in (0 − 7 3 − 1 4 2 8 − 6 − 5 9), so the padding is safe.

After a padding of a segment S, positive or negative, S∪{πk1 ,πk2} is isolated.
The number of cycles of the breakpoint graph increases by two since the two
paddings are safe. The proof of the following lemma is not included here, it is
an easy verification.

Lemma 4. A segment is highly conserved if and only if it has a padding (positive
or negative).

We now have the possibility to identify strong conserved segments, and test
whether they are highly conserved or not. The remaining difficulty is to choose
between a positive and a negative padding when both are possible.

4 Perfect Parsimonious Sequences of Reversals

As noticed in [6], the main difficulty in finding perfect sequences of reversals of
minimum length (among all perfect sequences) is that it is sometimes impossible
to decide whether to sort a particular segment positively or negatively. We shall
see that in the case of parsimonious scenarios, this choice is constrained by the
data.

We denote by d+(S) the minimum number of reversals needed to sort a
conserved segment S positively, and d−(S) the minimum number of reversals

Perfect Sorting by Reversals 49

needed to sort it negatively. Of course, |d+(S) − d−(S)| ≤ 1, because if it is
sorted in one direction, then one reversal is sufficient to have it sorted in the
other. If d+(S) = d−(S), the segment S is called neutral.

If there is a perfect parsimonious scenario, any conserved segment is highly
conserved, so has a safe padding from Lemma 4. However, the converse is not
true. The possibility of designing a simple algorithm to decide the existence of
a perfect parsimonious scenario is given by the following lemma.

Lemma 5. If a segment is neutral, then it cannot have both a positive and a
negative padding.

Proof. Let [a, b] ⊆ [1, n], such that S = {|πa|, . . . , |πb|} is a neutral conserved
segment. Let M = maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. Suppose S has a
negative padding, call π− the resulting permutation. This means it is safe to
pad S with an index k1, such that a − 1 < k1 < a, and M < −π−

k1
< M + 1,

and an index k2, such that b < k2 < b + 1, and m− 1 < −π−
k2

< m. Let r and d
be the reality and desire edges deleted after the padding with the index k1, and
r′ and d′ the reality and desire edges deleted after the padding with the index
k2 (see Figures 1 and 2 for an example). Suppose S has also a positive padding,
and call π+ the resulting permutation. This means that it is safe to pad S with
the index k1, with m− 1 < π+

k1
< m, and the index k2, with M < π+

k2
< M + 1.

The deleted edges are the same ones, except that r and d′ are deleted after the
padding with k1, and r′ and d are deleted after the padding with k2.

As both paddings are safe, the number of cycles has to increase for each
padding operation. We therefore have that r and d belong to the same cycle of
π, as well as r′ and d′, r and d′, r′ and d. So r, d, r′ and d′ all belong to the
same cycle in the breakpoint graph of π. Observe that because S is conserved,
r, d, r′ and d′ are the only edges that have one extremity with a label inside S,
and the other outside S.

In π−, d and d′ are both replaced by two edges, say d1, d2, and d′1, d′2.
One edge among the two has its extremities with labels inside S, and the other
outside S. As in Figure 2, say d2 = ab, and d′2 = cd have their extremities with
labels inside S.

In π+, the edges which replace d and d′ and have their extremities with labels
inside S are ad and cb (see Figure 3 for an example).

Recall that d, d′, r, r′ are the only edges affected by the paddings, the re-
maining of the breakpoint graph is unchanged. So if ab and cd belong to different
cycles in π−, then ad and cb belong to the same cycle in π+, and vice-versa. In
this case however, the segment S would not be neutral as d−(S))= d+(S) from
Theorem 1. Since S is neutral, the edges ab and cd have to belong to the same
cycle both in π− and in π+. It is the case in the example of Figures 2 (for π−)
and 3 (for π+).

We now repeat the argument for the edges that have their extremities with
labels outside S, that is d1, d′1. In π−, let d1 = ef and d′1 = gh. Then in π+,
d1 = eh and d′1 = gf . If d1 and d′1 are in different cycles in π−, they are in the
same cycle in π+, and vice-versa. We therefore have that either c(π−) = c(π)+1,

50 Marie-France Sagot and Eric Tannier

b d

d2

d’2
d1

d’1

ae fh c g

0 −7 0.5 3 −1 4 2 4.5 8 −6 −5

Fig. 3. An attempt of a positive padding of the segment {3, 1, 4, 2} in the permutation
(0 − 7 3 −1 4 2 8 − 6 − 5 9). The graph is almost the same as for the negative
padding. However edges are changed from ab and cd to ad and bc, so in one case there
are two cycles outside the segment while in the other case there is only one such cycle.
This explains why both paddings are impossible.

or c(π+) = c(π) + 1, and one the paddings is not safe, because in this case,
either d(π+) > d(π), or d(π−) > d(π). This is what happens in Figure 3, where
d(π+) > d(π−) = d(π).

As a consequence, a neutral segment cannot have both a positive and negative
padding. *+

The principle of the algorithm follows immediately.

Theorem 2. Given a permutation π, it is possible to design in polynomial time
a perfect parsimonious sequence of reversals sorting π if one exists.

Proof. We apply the usual techniques to sort oriented isolated segments by re-
versals. We do not describe this in detail. One can see for instance [9] for a fast
method to do so.

Let π be an arbitrary permutation. We first check if it is not a fool (see
Lemma 2). If it is, there is no perfect parsimonious sorting sequence.

We now treat each isolated segment separately, starting with the inclusion-
wise minimal ones, up to the whole permutation, or stopping when a contradic-
tion is found.
- Sorting an oriented isolated segment

Suppose first that the considered isolated segment I (possibly {0, . . . , n+1})
is oriented. Let now S be any inclusion-wise minimal strong conserved segment
inside I. We try both paddings of S to see if it is highly conserved. If S is
not highly conserved, then there is no perfect parsimonious sequence. If both
paddings exist, then by Lemma 5, the segment S is not neutral. In this case, we
choose the positive padding if d+(S) < d−(S), and the negative one otherwise.
If d+(S) = d−(S), the choice of the padding is constrained. In every case, the
permutation is padded with two values πk1 and πk2 , and S ∪ {πk1 ,πk2} is now
isolated. By Lemma 3, either no proper subset of S is conserved, or all its proper
subsets are conserved. We examine the two cases separately.

In the first case, we sort S with, for example, the method of [9], for isolated
segments. This preserves all conserved segments because there is none inside S,
and the way S is sorted does not affect the remaining of the permutation.

Perfect Sorting by Reversals 51

In the second case, the only allowed reversals are the reversals of singletons
(the reversals of the whole interval is not an admitted operation, since otherwise
the opposite padding is chosen). The reversals of singletons never overlap, so they
may be applied in any order. If the padding is positive, we reverse all negative
numbers, and if the padding is negative, we reverse all the positive numbers. At
the end, the segment S is sorted.

We apply the same method to all the strong segments, starting with inclusion-
wise minimal ones, up to the segment I itself.
- Sorting an unoriented isolated segment

Let us suppose now that I is unoriented. The first reversal will make it
oriented, and then the aforementioned method (“Sorting an oriented isolated
segment”) is applied. To orient I, we choose a reversal that does not break
any conserved segment, nor decreases c(π). Every such reversal has to be tried.
There are at most |I|2 of them, and they are applied only at the first step, so
this operation yields a polynomial algorithm.
- Conclusion

We have seen how to sort an isolated segment. All are sorted the same way,
and separately. If there is a perfect parsimonious sequence sorting π, then the
algorithm produces it, because the way an isolated segment is sorted never affects
the permutation outside the segment.

This method therefore decides if there is a perfect parsimonious sequence
sorting π in polynomial time. *+

References

1. Beal M.-P., Bergeron A., Corteel S., Raffinot, M., “An Algorithmic View of Gene
Teams”, Theor. Comput. Sci. 320(2-3):395-418, 2004.

2. Bérard S., Bergeron A., Chauve C., “Conserved structures in evolution scenarios”,
2nd RECOMB Comparative Genomics Satellite Workshop, to appear in Lecture
Notes in BioInfomatics, 2004.

3. Bergeron A., Heber S., Stoye J., “Common Intervals and Sorting by Reversals: A
Marriage of Necessity”, Bioinformatics, 1:1-10, 2002.

4. Bergeron A., Mixtacki J., Stoye J., “The inversion distance problem”, in Mathe-
matics of evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

5. Bui Xuan B. M., Habib M., Paul C., “From permutations to Graph Algorithms”,
Research Report LIRMM RR-05021, 2005.

6. Figeac M., Varré J.-S., “Sorting by reversals with common intervals”, Proceedings
of WABI 2004, Lecture Notes in Computer Science, vol. 3240, 26-37, 2004.

7. Hannenhalli S., Pevzner P. , “Transforming cabbage into turnip (polynomial algo-
rithm for sorting signed permutations by reversals”, Proceedings of the 27th ACM
Symposium on Theory of Computing, 178-189, 1995.

8. Heber S., Stoye J., “Finding all Common Intervals of k Permutations”, Proceedings
of CPM 2001, Lecture Notes in Computer Science, vol. 2089, 207-218, 2001.

9. Tannier E., Bergeron A., Sagot M.-F., “Advances on Sorting by Reversals”, to
appear in Discrete Applied Mathematics, 2005.

