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Abstract

Given a rectangular array where entries represent the pixels of a
digitalized image, we consider the problem of reconstructing an image
from the number of occurrences of each color in every column and in
every row. The complexity of this problem is still open when there are
just three colors in the image. We study some special cases where the
number of occurences of each color is limited to small values. Formula-
tions in terms of edge coloring in graphs and as timetabling problems
are used; complexity results are derived from the model.

Keywords : discrete tomography, complete bipartite graphs, per-
fect matchings, edge coloring, timetabling

1 Introduction

In discrete tomography (see [7] for an overview of theory and applications
of this field), the image reconstruction problem is important since its solu-
tion is required for developing efficient procedures in image processing, data
bases, crystallography, statistics, data compressing, . . . It can be formulated
as follows : an image of (m × n) pixels of p different colors has to be re-
constructed. For convenience we consider that there is in addition a color
p + 1 which is the ground color. We are given the number a(i, s) of pixels
of each color s in each row i and also the number α(j, s) of pixels of each
color s in each column j. Can one reconstruct an image from the a(i, s) and
α(j, s) ? First of all, we are concerned with the consistency problem : given
the a(i, s) and α(j, s), does there exists an image corresponding to the values
a(i, s) and α(j, s) ? In the case of positive answer, one has to reconstruct

∗CEDRIC CNAM, Paris (France)
†Ecole Polytechnique Fédérale de Lausanne (Switzerland)
‡CEDRIC CNAM, Paris (France)

1



efficiently such an image. The uniqueness of the solution is essential with
respect to tomography, however we shall not deal on this specific issue.

The consistency and reconstruction problems have been extensively stud-
ied (see for instance [2],[5],[7],[8]). The main fact resulting from these studies
is that the complexity of this reconstruction problem is still open for p = 2.
Actually, determining the complexity of this problem is a challenge in dis-
crete tomography.

The purpose of this note is to explore the boundary between easy and
difficult problems. Since difficult problems already arise in very simple sit-
uations, the solvable cases which we shall describe here are very special.

Here we shall concentrate on the special case where each color s occurs
at most once in each row and in each column (except of course the ground
color). In section 2, we show that this problem is strongly NP -complete
even with n = 3 columns by exploiting the analogy with some class-teacher
timetabling problems. In the following sections we are deliberately using
the language of graphs because many basic results of graph theory provide
simple solutions to some of the problems. We will essentially be dealing with
complete bipartite graphs. In section 3, we will in particular determine the
maximum number of matchings which can be removed in such a way that the
remaining graph still has a perfect matching. This will be exploited in the
construction process of a solution of our problems. In sections 4 and 5, we
will derive some special cases solvable in polynomial time from elementary
graph theoretical properties.

For basic definitions about complexity, the reader is referred to [6] and
for graph theoretical terms to [1].

2 Image reconstruction and timetabling

Let us first formulate the image reconstruction problem RP (m,n, p) as fol-
lows : we are given an (m×n) array A together with a set of p+1 colors. In
addition for each row i (resp. each column j of A) and each color s, a(i, s)
(resp. α(j, s)) will be the number of occurrences of color s in row i (resp.
column j). In RP (m,n, p) we want to know whether there exists or not an
assignment of one color to each entry of A which satisfies the requirements
for each row i, for each column j and each color s.

For a solution to exist we must necessarily have∑p+1
s=1 a(i, s) = n (i = 1, . . . ,m)∑p+1
s=1 α(j, s) = m (j = 1, . . . , n)∑m
i=1 a(i, s) =

∑n
j=1 α(j, s) (s = 1, . . . , p + 1)
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These conditions are necessary but not sufficient for the existence of a solu-
tion to RP (m,n, p).

RP (m,n, p) is polynomially solvable for p + 1 = 2 (see [8]) and the
associated consistency problem is strongly NP -complete for p + 1 = 4 (see
[2]). The complexity is unknown for p + 1 = 3.

In this paper we shall derive some complexity results for special cases of
RP (m,n, p) and we will exhibit some polynomially solvable cases. For this
purpose we will exploit the analogy of RP (m,n, p) with some special types
of class-teacher timetabling problems.

The problem TIMETABLE(m, p, n) is defined as follows ([4]): we are
given a collection of m classes c1, . . . , cm and a collection of p teachers
t1, . . . , tp together with the m × p requirement matrix R whose entry ris

is the number of one-hour lectures which teacher ts has to give to class ci.
In addition we have a set H = {1, . . . , n} of periods (hours) and for each
teacher ts a set Ts ⊆ H which represents the periods where ts is available.

Without loss of generality we also assume that the number |Ts| of periods
where teacher ts is available is equal to the number

∑m
i=1 ris of lectures which

ts has to give.
In addition, for all classes ci we assume that they are available at all

periods in H.
TIMETABLE(m, p, n) can be reformulated in the following way : we

associate an (m × n) array A and define for each teacher ts and each class
ci, a(i, s) = ris. Similarly for each teacher ts and each period j we define
α(j, s) = 1 if j ∈ Ts or 0 else. A feasible timetable is an assignment of each
lecture (ci, ts) to some period j ∈ Ts in such a way that no teacher (and no
class) is involved in two lectures simultaneously; assigning a lecture (ci, ts)
to some period j ∈ Ts consists in setting Aij = s; this amounts to giving
color s to entry (i, j) of array A. This will be possible only if α(j, s) = 1
(ts available at period j) and if a(i, s) = ris ≥ 1. Color s will occur exactly
once in column j (ts is involved in one lecture in period j ∈ Ts).

Furthermore since each class ci is involved in at most one lecture at a
time (with some teacher, say ts) we will assign at most one color s to each
entry of A. In addition the number of occurrences of ts in row i will be
a(i, s) = ris.

The ground color of RP (m, n, p) corresponds to idle periods for classes;
more precisely, a(i, p + 1) = n−

∑p
s=1 a(i, s), i = (1, ..,m), is the number of

periods where class i has no lecture and α(j, p + 1) = m−
∑p

s=1 α(j, s), j =
(1, .., n), is the number of classes having no lecture at period j.

Then we have a one-to-one correspondence between timetables and solu-
tions of RP (m,n, p) where the values α(j, s) are restricted to 0 or 1 (s ≤ p).
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Since timetabling problems have been rather extensively studied, we may
exploit the analogy with RP (m,n, p) to derive some complexity results.

A color s will be called unary if in RP (m, n, p) we have a(i, s) ∈ {0, 1}and
α(j, s) ∈ {0, 1} for each row i and for each column j.

RPU(m,n, p) will be the problem RP (m,n, p) where colors 1, . . . , p are
unary (while color p + 1 may not be unary).

Proposition 1 RPU(m,n, p) is strongly NP -complete even if n = 3

Proof : It is known that TIMETABLE(m, p, n) is NP -complete even
if n = |H| = 3 and ris ∈ {0, 1} for each class ci and each teacher ts (see [4]).
From the correspondence between timetables and solutions of RP (m,n, p)
we deduce that RP (m,n = 3, p) is strongly NP -complete. Since a(i, s) =
ris ∈ {0, 1} the result follows for RPU(m,n = 3, p).

So RPU(m,n = 3, p) is difficult even if array A has three columns.
Observe also that each color s occurs at most three times in A. Now, we
may examine the case where each one of the p unary colors occurs at most
twice: the number n(s) of occurrences of each color s satisfies n(s) ≤ 2. In
fact, we can consider a slightly more general case than the one where n = 3.

Proposition 2 RP (m,n, p) with

1.
∑m

i=1 a(i, s) ≤ 2 s = 1, .., p

2. 0 ≤ α(j, s) ≤ 1 j = 1, ..,m, s = 1, .., p

can be solved in polynomial time.

Proof : This situation corresponds to a timetable problem where each
teacher has to give at most two lectures. As before we assume that each
teacher ts is available during |Ts| =

∑
i ris =

∑
i a(i, s) periods. Here we

allow a(i, s) = ris to be 2, which means that teacher ts gives two lectures
at the same class ci. Such a teacher has thus a unique timetable. It is also
the case for teachers ts with

∑m
i=1 a(i, s) = 1. We start by constructing the

timetable of all such teachers ts with a(i, s) = 2 or with
∑m

i=1 a(i, s) = 1.
Then, if no conflict has occurred, we are facing a special timetable problem
with “binary teachers” which can be solved in polynomial time (see [4]) by
reduction to a 2− SAT problem.
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Remark

One may observe that in TIMETABLE when the requirement matrix R =
(ris) satisfies ris ∈ {0, 1}, we may interchange the role of the set H of periods
and the set C of classes.

It is easy to see that there is a feasible timetable for the first problem if
and only if there is one for the second one.

Hence we could observe (see [4]) :
TIMETABLE(m, p, n) is NP -complete even if m = 3 and ris ∈ {0, 1}

for each class ci and each teacher ts.
It is interesting to observe that this exchange is generally not possible

when ris 6∈ {0, 1}.
We shall next discuss some solvable cases of RPU by exploiting the

analogy with timetabling and by using an edge coloring formulation.

3 Graph theoretical formulation

From now on, we will use graph theoretical formulations in order to derive
other properties. We will have a complete bipartite graph G = Km,n based
on two sets of nodes R,S with sizes m and n. Each edge [i, j] of Km,n

corresponds to entry (i, j) in row i and column j of the (m × n) array A.
We will assume m ≤ n unless otherwise stated.

We can interpret the image reconstruction problem in array A as follows:
the entries of color s in A correspond to a subset Bs of edges (a partial
subgraph of Km,n) such that Bs has a(i, s) edges adjacent to node i of R
and α(j, s) edges adjacent to node j of S. We have to find a partition
B1, B2, .., Bp+1 of the edge set of Km,n where each Bs satisfies the above
degree requirements.

Clearly, having obtained such a partition of the edge set of Km,n we can
trivially derive the solution of the image reconstruction problem.

It is known that there exists an edge coloring of Km,n (no two adjacent
edges may have the same color) using n colors; n = ∆(G) is the maximum
degree of G. This is a consequence of the König theorem (see [1]).

Each color class is a matching (a set of nonadjacent edges) saturating
all m nodes in the first set of nodes. If m = n each color class is a perfect
matching (i.e. a matching saturating all nodes). So Kn,n contains n disjoint
perfect matchings; this property will be used later. One notices also that in
such a case these matchings can be constructed in polynomial time (see [1]).

We also recall the König-Hall theorem which states that in a bipartite
graph G = (R,S,E) built on two subsets R,S of nodes, there exists a
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matching saturating all nodes of R if and only if, for any q, every subset of
q nodes of R is linked to at least q nodes of S.

This result will be used for instance in designing a sequential edge-
coloring procedure.

In the case where all colors (except possibly the last one) are unary,
the entries of array A corresponding to a fixed color are represented by a
matching M in G = Km,n.

If we try to apply a sequential algorithm which constructs the color
classes one after other, we have at each step the following situation :

we are given a complete bipartite graph Ks built on the sets Rs, Ss

of nodes where color s must occur on exactly one edge at each node. In
the graph |Rs| = |Ss| (otherwise no solution exists) and there are s− 1 par-
tial matchings M1,M2, . . . ,Ms−1 corresponding to the edges already colored
with colors 1, 2, . . . , s− 1 respectively.

The following question arises naturally : when is it possible to find in
Ks a perfect matching Ms such that Ms ∩Mw = ∅ for w = 1, . . . , s− 1 ?

In case such an Ms can be found, the matchings M1, . . . ,Ms−1 can be
kept as such.

Before answering this question, we shall give a more general statement
which will suggest a sequential coloring procedure.

The number n(s) of occurrences of any color s in RPU(m,n, p) is n(s) =∑m
i=1 a(i, s) =

∑n
j=1 α(j, s). Clearly in Ks we must have |Rs| = |Ss| = n(s).

Proposition 3 Consider a problem RPU(m,n, p) and assume that a solu-
tion has been found for colors 1, 2, . . . , s− 1 with s− 1 < p. Then a solution
can be found for colors 1, 2, . . . , s (without modifying colors 1, 2, . . . , s − 1)
if n(s) ≥ 2s− 2.

Proof : Let Gs be the bipartite graph built on node sets Rs, Ss associ-
ated with rows i (resp. columns j) for which a(i, s) = 1 (resp. α(j, s) = 1).

Gs is obtained by removing the edges of matchings M1,M2, . . . ,Ms−1

corresponding to the first s− 1 colors. We have the following facts :
In Gs every node has at most s− 1 non neighbours in the other set; so

it has at least n(s) − (s − 1) ≥ s − 1 neighbours. Consider a subset B of
nodes in Rs. If |B| ≤ s− 1, then the set N(B) of neighbours of B satisfies
|N(B)| ≥ s− 1 ≥ |B|. If |B| ≥ s, then every node in Ss has a neighbour in
B so N(B) = |Ss| = n(s) ≥ |B|.

Since for any subset B of Rs, we have |N(B)| ≥ |B|, it follows from the
theorem of König-Hall that Gs has a perfect matching Ms. It defines the
assignment of color s.
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Proposition 4 The largest number of arbitrary disjoint matchings Mi whose
edges can be consecutively removed from a complete bipartite graph Kn,n

in such a way that the remaining graph G′ still has a perfect matching is
q = dn−1

2 e.

Proof : One verifies immediately that for t = dn−1
2 e+ 1 = dn+1

2 e there
exists disjoint matchings M1, . . . ,Mt such that G′ has no perfect matching.
Take for M1 ∪ . . . ∪Mt the complete subgraph Kt,t of Kn,n constructed on
the first t nodes of the left set and on the first t nodes of the right set.

Then in G′ the first t = dn+1
2 e nodes of the left set are linked only to

the last bn−1
2 c nodes of the right set. Since t > bn−1

2 c it follows from the
theorem of König-Hall that there is no perfect matching in G′.

On the other hand, it follows from Proposition 3 that we may remove
s − 1 ≤ dn−1

2 e matchings : this is possible since in G′ we have n = n(s) ≥
2s− 1 (n odd) or n = n(s) ≥ 2s− 2 (n even).

Remark

An ‘inverse’ problem consisting of finding in a bicolored complete bipartite
graph a perfect matching M containing a given number of edges of each
color has been handled in [9]; it can be solved in polynomial time.

We can also mention the following consequence:

Corollary 1 Assume that in RPU(m,n, p) we have n(1) ≥ 1, n(2) ≥ 2, . . . , n(s) ≥
2s− 2, . . . , n(p) ≥ 2p− 2. Then RPU(m, n, p) has a solution. It can be ob-
tained by constructing consecutively p perfect matchings of sizes n(1), . . . , n(p)
in the corresponding graphs.

We do not know whether for a fixed number of unary colors the problem
RPU(m,n, p = k) is solvable in polynomial time; as mentioned earlier
for p = 3 arbitrary colors (non unary), RP (m,n, p = 3) is however NP -
complete.

We shall examine the case of p ≤ 3 unary colors in section 4.
One should finally observe that Corollary 1 has an interpretation in terms

of timetabling which is apparently original.
Assume we have a class-teacher timetabling problem where each teacher

ts is available during a set Ts ⊆ H of periods and |Ts| =
∑

i ris = n(s)
with ris ∈ {0, 1}. If the number n(s) of lectures that teacher ts has to give
satisfies n(s) ≥ 2s− 2 for each teacher ts, then there always exists a feasible
timetable.
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4 Case of 2 or 3 unary colors

In this section, we deal with the case where there are at most 3 unary colors
(a(i, s) ≤ 1, α(i, s) ≤ 1) in addition to the ground color. Notice that a unary
color may occur up to min{m,n} = m times in the array.

Proposition 5 RPU(m,n, p = 2) is solvable if and only if we do not have
n(1) = n(2) = 1 and a pair (i, j) with a(i, 1) = a(i, 2) = α(j, 1) = α(j, 2) =
1.

Proof : Clearly if we are in the bad case there is no solution since entry
[i, j] should receive at the same time color 1 and color 2.

Let us see that in all other cases a solution can be found : if n(1) =
n(2) = 1 and a(i, 1) 6= a(i, 2) or α(j, 1) 6= α(j, 2) for some pair i, j, then
obviously colors 1, 2 will have to be assigned to different entries and this is
possible.

Assume now that 1 ≤ n(1) ≤ n(2) (with n(2) ≥ 2). Then there is a
solution from Corollary 1.

We consider now the problem RPU(m,n, p = 3) and assume n(1) ≤
n(2) ≤ n(3).

If n(2) ≥ 2 and n(3) ≥ 4, there is a solution from Corollary 1.
If n(2) ≤ 1, then M1 and M2 are uniquely determined and it is immediate

to verify whether a solution exists.
The only remaining case is 2 ≤ n(2) ≤ n(3) ≤ 3. When n(3) = 3, we

consider the graph K3 built on node sets R3, S3 (they are the nodes which
must be adjacent to one edge of color 3). Consider E∗ = (M1∪M2)∩E(K3);
if E∗ contains a square, then in the remaining graph K3 − (M1 ∪ M2) it
will not be possible to construct a perfect matching M3. But unless n(1) =
n(2) = 2 a square in E∗ can be removed by choosing a different matching M ′

2.
If there is no square in E∗, a perfect matching can always be constructed.

Finally when n(3) = 2, we also have n(2) = 2 and it is immediate to
determine whether a solution exists.

Hence we have shown :

Proposition 6 RPU(m,n, p = 3) can be solved in polynomial time.

5 Some non unary cases

We shall first examine here the case where each color s ≤ p satisfies a(i, s), α(j, s) ∈
{0, 2} for each row i and each column j. Such a color will be called binary.
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As before the number of occurrences of color s is n(s) =
∑m

i=1 a(i, s) =∑n
j=1 α(j, s). We shall assume in addition that n(1) ≤ n(2) ≤ · · · ≤ n(p).

The corresponding problem will be denoted by RPB(m, n, p).
Let us examine the case when there are p = 2 such colors.
Before stating the results on this case, we need the following lemma. We

recall the reader that a k−factor in a graph G is a subset F of edges such
that each node of G is adjacent to k edges of F . So a 1−factor is a perfect
matching and a 2−factor is a union of node disjoint cycles which meets all
nodes.

Lemma 1 Let C be a cycle in Kn,n (with n ≥ 3), then the smallest k for
which there is a k−factor containing C is k = 2 if |C| 6= 2(n− 1) or k = 3
else.

Proof : Here |C| is the number of edges (or equivalently of nodes) in
C; if |C| = 2(n − 1) it means that C visits all but two nodes of Kn,n. In
such a case clearly one cannot find a 2−factor containing C. Let us show
how to find a 3−factor F which contains all edges of C; let R = 1, 2, .., n
and S = 1̄, 2̄, .., n̄ be the left set and the right set of nodes of Kn,n; if n = 3,
we take all edges of K3,3 to get F . If n ≥ 4, we assume that C uses edges
[1, 1̄], [2, 2̄], . . . , [n − 1, n− 1], [1, n− 1], [2, 1̄], [3, 2̄], . . . , [n − 1, n− 2]. There
exists a perfect matching M = {[1, 2̄], [2, 3̄], . . . , [n−1, n̄], [n, 1̄]} disjoint from
C. We replace in M edge [1, 2̄] by edges [n, 2̄], [1, n̄] and [n, n̄]. These edges
form a 3−factor with the edges of C.

Assume now that |C| 6= 2(n− 1); clearly, if |C| = 2n, it is a 2−factor, so
F = C. If |C| = 2(n − q) with q ≥ 2, there are q nodes in R and q nodes
in S which are not visited by C; we construct a cycle C ′ on these 2q nodes.
Then, F = C ∪ C ′ is the required 2−factor.

We notice that, in order to have solutions of RPB(m,n, p = 2) we must
have n(1) ≥ 4. We will consider the complete bipartite graph Ks built on
the sets Rs (resp. Ss) of nodes corresponding to rows i with a(i, s) = 2
(resp. to columns j with α(j, s) = 2) for s = 1, 2. Clearly |Rs| = |Ss|. We
shall assume w.l.o.g.

∣∣R1 ∩R2
∣∣ ≥ ∣∣S1 ∩ S2

∣∣.
Proposition 7 If we are in one of the following cases:

1. n(1) = n(2) = 4 : R1 ∩R2 6= ∅, S1 ∩ S2 6= ∅

2. 4 ≤ n(1) ≤ n(2) = 6 : R1 ⊆ R2, S1 ∩ S2 6= ∅

3. n(1) = 6, n(2) = 8 : R1 ⊆ R2, S1 ⊆ S2
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then RPB(m,n, p = 2) has no solution.

Proof : For cases 1 and 2 one takes in K1 a 2−factor M1 and one
verifies immediately that there are not enough edges in K2 for constructing
a 2−factor corresponding to color 2.

In case 3, consider any 2−factor built in K1; it consists of a cycle C
of length 6. From the assumption, C is a cycle of K2 which meets all
but two nodes of the graph. From lemma 1, there is no 2−factor of K2

containing C. Since the assignment of color 2 will correspond to a 2−factor
in K2, a necessary and sufficient condition of existence of a solution for
RPB(m,n, p = 2) in this case is that the edge set of K2 be decomposable
into two disjoint 2−factors F , F ′ with F ⊇ C. Since no such pair F , F ′ can
be found, the problem has no solution.

Proposition 8 RPB(m,n, p = 2) has a solution if and only if we are not
in the cases of proposition 7. It can be found in polynomial time.

Proof : It is obvious that if R1∩R2 = ∅ or S1∩S2 = ∅ a solution exists
since the edge sets of K1 and K2 are disjoint. From now we assume that
R1 ∩R2 6= ∅ and S1 ∩ S2 6= ∅; we also suppose that n(2) ≥ 6 (if not we are
in the case 1 of Proposition 7).

We show that if it exists a solution for an instance I of RPB(m,n, p = 2)
for which |R1 ∩ R2| = k, then there is a solution for every instance Ī of
RPB(m,n, p = 2) defined as follows : R2 = R̄2, S2 = S̄2, S1 = S̄1 and
|R1| = |R̄1|, |R̄1 ∩ R2| = k − 1 and |R̄14R1| = 2. Let r be the node such
that r ∈ R̄1, r 6∈ R1 and let x be the node such that x 6∈ R̄1, x ∈ R1. Let
[x, a] and [x, b] the two edges colored with the first color in the solution of
I : replacing [x, a] and [x, b] with [r, a] and [r, b] we obtain a 2−factor which
gives a solution for Ī.

So it remains only to consider the cases where R1 ⊆ R2 and S1 ⊆ S2.
From Lemma 1 we have a solution when n(1) + 4 ≤ n(2). When n(1) + 2 =
n(2), n(1) ≥ 8, the 2−factor of K1 consists in a collection of C4 (cycle of
length four) and at most one C6 (cycle of length six). We have to distinguish
2 cases :

a) n(1) ≡ 0( mod 4), then the 2−factor of K1 is a collection of C4; the
construction of the 2−factor of K2 is given in Figure 1.

b) n(1) ≡ 2( mod 4), then the 2−factor of K1 is a collection of C4 with
an additional C6; the construction of the 2−factor of K2 is given in Figure
2.
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Figure 1 : the 2−factor of K1 is a collection of C4

Corollary 2 RPB(m, n, p = 2) has a solution if n(2) ≥ 10.

For RPB(m,n, p) we can derive sufficient condition for solutions to exist
from proposition 4.

Proposition 9 RPB(m,n, p) has a solution if the number of occurrences of
each color s satisfies n(s) ≥ 8s− 4, s = 1, . . . , p. Moreover, such a solution
can be constructed by sequentially assigning colors 1, . . . , p.

Proof : This follows from Proposition 3 by observing that RPB(m,n, p)
corresponds to a problem RPU(m,n, 2p) defined as follows; for every color
s we do the following : for every row i of RPB with a(i, s) = 2 we set
a′(i, s) = 1 = a′(i, p + s) in RPU and for every column j of RPB with
α(j, s) = 2 we set α′(j, s) = 1 = α′(j, p + s). Clearly every solution of
RPU will produce a solution of RPB by identifying colors s and s + p.
Since the condition of RPB implies that the RPB satisfies the condition of
Proposition 3, the result follows.

Remark

The above result is in some sense best possible. It is indeed worth ob-
serving that such a construction would not work for 3p colors, i.e., when
a(i, s), α(i, s) ∈ {0, 3} for all i, j, s. The reason is that in K2,2 if M1 is an
arbitrary perfect matching, any edge e 6∈ M1 can be extended to a perfect
matching M2 with M1∩M2 = ∅, while in K3,3 if we have a perfect matching
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Figure 2 : the 2−factor of K1 is a collection of C4 and one C6

M1, a pair e1, e2 of edges not in M1 may not always be extended to a perfect
M2 (with M1 ∩M2 = ∅).

Finally we shall deal with a case related to timetabling problems : a(i, s)
being the number of lectures that teacher ts has to give to class ci, it is
generally a nonnegative integer ris; α(j, s) represents however the availability
of teacher ts at period j. It is therefore either 1 or 0 for each teacher.

We shall say that a color s is semi-unary if α(j, s) is 0 or 1 for any
column j or a(i, s) is 0 or 1 for any row i.

RPSU(m, n, p) will be the problem RP (m,n, p) where all p colors (ex-
cept the ground color p + 1) are semi-unary. Then we can state :

Proposition 10 RPSU(m,n, p = 2) is solvable in polynomial time.

Proof : Consider the complete bipartite graph K̂ constructed on nodes
sets R̂ = {rows ri with a(i, 1) + a(i, 2) > 0} and Ŝ = {columns cj with
α(j, 1) + α(j, 2) > 0}; first we construct a subgraph Ĝ with degrees d(ri) =
a(i, 1) + a(i, 2) ∀ri ∈ R̂ and d(cj) = α(j, 1) + α(j, 2) ∀cj ∈ Ŝ.

If no such Ĝ can be found, then clearly RPSU(m,n, p = 2) has no
solution; such a construction is a maximum flow problem.
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If such a Ĝ can be found, then we show that in all cases a solution can
be derived. We have to assign a color 1 or 2 to each one of its edges. We
first construct an assignment of colors which satisfies the requirements in Ŝ,
i.e., we have α(j, s) edges of color s at node cj (s = 1, 2). This can be done
by coloring sequentially the edges of Ĝ.

If this assignment satisfies also the requirements in R̂, i.e., we have a(i, s)
edges of color s at node ri (s = 1, 2), then we are done.

Otherwise there is a node ri ∈ R̂ with d1(ri) > a(i, 1) edges of color
1 and a node rh ∈ R̂ with d2(rh) > a(h, 2) edges of color 2. Notice that
necessarily h 6= i.

If there exists, in K̂, an alternating chain C starting at ri with an edge
of color 1 and ending at rh with an edge of color 2, we can exchange the
colors in C and we have improved the coloring.

Assume there is no such chain. Then there exists an edge [ri, cj ] of color
1 and an edge [rh, ck] of color 2; cj 6= ck (otherwise [ri, cj ], [rh, ck] would be
an alternating chain from ri to rh).

Edge [rh, cj ] of K̂ cannot have color 2 (it would form an alternating
chain from ri to rh); it cannot have color 1 : since cj already has an edge
of color 1 we would have α(j, 1) ≥ 2. Since color 1 is semi-unary, we should
have a(h, 1) ≤ 1, but we have d2(rh) > a(h, 2); since d1(rh) + d2(rh) =
a(h, 1) + a(h, 2), we have d1(rh) < a(h, 1) ≤ 1, i.e. d1(rh) = 0, which is a
contradiction with the assumption that [rh, cj ] has color 1. Hence [rh, cj ]
has no color.

For similar reasons [ri, ck] can have neither color 1 nor color 2; so it is
uncolored.

Now removing the colors of [ri, cj ], [rh, ck] and giving colors 2 and 1 to
[ri, ck] and [rh, cj ] respectively, we get an improved coloring at ri and at rh

without deteriorating it at the other nodes.
Repeating this procedure as long as the requirements are not satisfied in

R̂ will give us the required coloring.

6 Final remarks

Our purpose was to explore the neighborhood of some open problems in
discrete tomography. After having observed that the problem with unary
colors and n=3 is NP-complete, we have exhibited several special cases which
are solvable in polynomial time.

To obtain these results, we have exploited analogies with some timetabling
and graph theoretical problems. As a byproduct we have derived some
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propoerties of complete bipartite graphs.
We have examined some solvable cases of the problems RPU(m,n, p),

RPB(m,n, p) and RPSU(m,n, p). With similar tools one could examine
also RPU(m,n, p = 4) and RPB(m,n, p = 3), but it would lead to tedious
case analyses. The question arises to know whether these problems can
be solved in polynomial time for a fixed number p = k of colors. Further
research is needed in this area; its results will be useful at the same time for
timetabling purposes.
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