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Abstract. We consider a generalization of the classical max-cut prob-
lem where two objective functions are simultaneously considered. We
derive some theorems on the existence and the non-existence of feasible
cuts that are at the same time near optimal for both criteria. Further-
more, two approximation algorithms with performance guarantee are
presented. The first one is deterministic while the second one is random-
ized.

1 Introduction

Given an undirected graph G(V, E) with non-negative edge weights wij , the
objective of the Maximum Cut problem (max-cut) is to find a partition of the
vertex set into two subsets S and S, such that the sum of the weights of the
edges having endpoints in different subsets is maximum. Formally, the weight of
the cut (S, S) to be maximized is given by

W (S, S) =
∑

i∈S,j∈S

wij .

This well known combinatorial problem was shown to be NP-complete by Karp [5].
It has applications in many fields including VLSI circuit design and statistical
Physics [1].

In this article, we study a bi-criteria version of the max-cut problem. For-
mally, we are given an undirected graph G(V, E) and two distinct weighting
functions. Each feasible cut is then evaluated with respect to these two criteria.

In general no feasible solution can meet optimality simultaneously for both
criteria. However, a set of solutions which dominates1 all the others (the so-
called Pareto curve) always exists. Because of the complexity of the classical
(mono-criterion) max-cut problem, determining this Pareto curve is computa-
tionnally problematic. Indeed, the bi-criteria max-cut problem generalizes max-

cut. Moreover, the size of the Pareto curve, i.e. the number of non-dominated
solutions, may be exponential.

1 A solution x dominates another solution y if x is at least as good as y for all criteria
and strictly better for at least one criterion.



Concerning multi-criteria optimization (see [2] for a recent book on the topic),
three different approaches are often followed: the budget approach, the Pareto

curve approach and the simultaneous approach. In this article we follow the
third one.

By taking as a reference an ideal solution, namely a (not necessarily feasible)
cut which simultaneously maximizes all objective functions, one tries to com-
pute a feasible cut which approximates this ideal solution with a performance
guarantee on each criterion.

In this direction, Stein and Wein [8] considered a scheduling problem with two
well studied criteria, namely the makespan and the average weighted completion

time. They derived existence and non-existence theorems on schedules that are
simultaneously near-optimal with respect to both objective functions. A series
of recent papers follow this approach [7, 9–12].

In this article, we follow the same approach for the bi-criteria max-cut prob-
lem. The paper is organized as follows: A formal presentation of the problem is
given in Section 2. Sections 3 and 4 are respectively devoted to a deterministic
and a randomized bi-criteria approximation algorithm with performance guar-
antee. Finally, some outlooks and concluding remarks are given in Section 5.

2 Formalization and notation

We are given an undirected graph G(V, E) where each edge e ∈ E has a non-
negative weight we and a non-negative length le. A solution (S, S) is feasible if
it constitutes a partition of V . An edge e belongs to a cut (S, S), denoted by
e ∈ (S, S), if e links a vertex in S and a vertex in S. The following objective
functions, namely the total weight and the total length, are considered:

W (S, S) =
∑

e∈(S,S)

we and L(S, S) =
∑

e∈(S,S)

le.

Let (O, O) (resp. (P, P )) be a feasible cut which maximizes the total weight
(resp. length). Let (I, I) be an ideal (not necessarily feasible) cut such that:

W (I, I) = W (O, O) = OPTW and L(I, I) = L(P, P ) = OPTL.

The bi-criteria weighted max-cut problem is then to find a feasible cut (A, A)
such that:

W (A, A) ≥ α OPTW and L(A, A) ≥ β OPTL

where 0 < α ≤ 1 and 0 < β ≤ 1. An (α, β)-approximation algorithm outputs a
solution which is simultaneously α-approximate on the first criterion (the total
weight) and β-approximate on the second criterion (the total length).

3 A deterministic approximation algorithm

Given a deterministic α-approximation algorithm Al for the mono-criterion
weighted max-cut problem, one can build an (α/2, α/2)-approximation algo-



rithm for the bi-criteria weighted max-cut problem. The algorithm called Bi-

Approx follows:

Bi-Approx

Input: G and Al

Step 1: Find (S1, S1) with Al s.t. W (S1, S1) ≥ α.OPTW

Step 2: Find (S2, S2) with Al s.t. L(S2, S2) ≥ α.OPTL
Step 3: Build (S3, S3) s.t. S3 = (S1 ∩ S2) ∪ (S1 ∩ S2)
Step 4: If L(S1, S1) ≥ 0.5 L(S2, S2)

Then Return (S1, S1)

Else If W (S2, S2) ≥ 0.5 W (S1, S1)
Then Return (S2, S2)
Else Return (S3, S3)

Theorem 1. Bi-Approx is a deterministic (α/2, α/2)-approximation algorithm

for the bi-criteria weighted max-cut problem if Al is a deterministic α-approxima-

tion algorithm for the mono-criterion weighted max-cut problem.

Proof. Clearly, if Bi-Approx returns (S1, S1) or (S2, S2) then the solution re-
turned is either (α, α/2) or (α/2, α)-approximate, and hence (α/2, α/2)-approximate.
In the following, we suppose that (S3, S3) is returned by Bi-Approx and we
prove that it is an (α/2, α/2)-approximate cut.

We partition V into four subsets X , Y , Z and T such that (S1, S1) = (X ∪
Y, Z ∪ T ) and (S2, S2) = (X ∪ Z, Y ∪ T ). Vertices of each subset are shrinked
into super-nodes denoted by vX , vY , vZ and vT . More precisely, all nodes v ∈ X
fall into vX , all nodes v ∈ Y fall into vY etc. Edges between two super-nodes are
also shrinked into one super-edge such that:

wvA vB
=

∑

v∈A,v′∈B

wv v′ and lvA vB
=

∑

v∈A,v′∈B

lv v′

where A ∈ {X, Y, Z, T}, B ∈ {X, Y, Z, T} and A 6= B. Finally, we get a new
graph K4 as depicted in Figure 2.

Now observe that if lvX vT
+ lvY vZ

≥ lvX vY
+ lvZ vT

is true then we get a
contradiction since instead of (S3, S3), (S1, S1) would have been returned:

lvX vT
+ lvY vZ

≥ lvX vY
+ lvZ vT

lvX vT
+ lvY vZ

≥ (lvX vY
+ lvZ vT

+ lvX vT
+ lvY vZ

)/2

L(S1, S1) ≥ L(S2, S2)/2

Symmetrically, if wvX vT ) + wvY vZ
≥ wvX vZ

+ wvY vT
is true then we get a

contradiction since instead of (S3, S3), (S2, S2) would have been returned:

wvX vT
+ wvY vZ

≥ wvX vZ
+ wvY vT

wvX vT
+ wvY vZ

≥ (wvX vZ
+ wvY vT

+ wvX vT
+ wvY vZ

)/2

W (S2, S2) ≥ W (S1, S1)/2
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Fig. 1. Vertices of G are partitioned into
four subsets X, Y , Z and T . This parti-
tion depends on (S1, S1) and (S2, S2).
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Fig. 2. Vertices and edges of G are
shrinked to get a complete graph with
four nodes.

Thus we have:

lvX vT
+ lvY vZ

< lvX vY
+ lvZ vT

and (1)

wvX vT
+ wvY vZ

< wvX vZ
+ wvY vT

. (2)

From inequality (1) we get:

(lvX vY
+ lvZ vT

)/2 > (lvX vT
+ lvY vZ

)/2

lvX vZ
+ lvY vT

+ (lvX vY
+ lvZ vT

)/2 > (lvX vT
+ lvY vZ

)/2

lvX vZ
+ lvY vT

+ lvX vY
+ lvZ vT

> (lvX vT
+ lvY vZ

+

+ lvX vY
+ lvZ vT

)/2

L(S3, S3) > 0.5L(S2, S2)

L(S3, S3) ≥
α

2
OPTL

From inequality (2) we get:

(wvX vZ
+ wvY vT

)/2 > (wvX vT
+ wvY vZ

)/2

wvX vY
+ wvZ vT

+ (wvX vZ
+ wvY vT

)/2 > (wvX vT
+ wvY vZ

)/2

wvX vY
+ wvZ vT

+ wvX vZ
+ wvY vT

> (wvX vT
+ wvY vZ

+

+ wvX vZ
+ wvY vT

)/2

W (S3, S3) > 0.5W (S1, S1)

W (S3, S3) >
α

2
OPTW

�



The analysis of Bi-Approx is tight. To see it, consider the instance given
in Figure 3 where K is a large integer. The ideal point has a total weight and a
total length equal to 1 while (S1, S1) achieves the values (α, αK−1

2K
) and (S2, S2)

achieves the values (αK−1
2K

, α). The algorithm returns a solution (S3, S3) such
that S3 = {v1, v3, v5} and its total weight and total length are both equal to
αK+1

2K
. When K tends to infinity, the solution returned tends to be (α/2, α/2)-

approximate.

S1

S2

v1

v2

v3

v4

v5
(1 − α, 1 − α)

(α K+1

2K
, 0)

(α K−1

2K
, α K−1

2K
)

(0, α K+1

2K
)

Fig. 3. Instance for which Bi-Approx returns an (α/2, α/2)-approximate solution.

Corollary 1. There exists a deterministic (0.43928, 0.43928)-approximate algo-

rithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al in Bi-Approx by the derandomized algorithm of Goemans
and Williamson [3] which is a 0.87856-approximate algorithm and the result
follows. �

Interestingly, an existence theorem can be derived from the algorithm Bi-

Approx.

Theorem 2. For all instances of the bi-criteria weighted max-cut problem,

there always exists a feasible solution which approximates the ideal point within

a ratio 1/2 on the two criteria.

Proof. Suppose that Al in Bi-Approx is an optimal (1-approximate) algorithm
for the mono-criterion weighted max-cut problem and the result follows. �

The question whether the above theorem can be improved arises but the
following theorem brings a negative answer.

Theorem 3. No (α, β)-approximation algorithm with α > 1/2 or β > 1/2 is

likely to exist for the bi-criteria max-cut problem.

Proof. Consider the complete graph K3 whose edges e, e′ and e′′ are such that
we = le′ = 0 and le = we′ = we′′ = le′′ = 1. The ideal solution (I, I) has a total
weight and a total length both equal to 2 while no feasible cut has a total weight
and a total length simultaneously strictly superior to 1. �



4 A randomized approximation algorithm

As usual, we consider that a randomized algorithm for a mono-criterion maxi-
mization problem is an α-expected approximate algorithm if the expected value
(denoted by E[X ]) of the solution returned is at least α times the value (denoted
by OPT ) of an optimal solution: E[X ] ≥ αOPT .

When randomization is considered, the bi-criteria weighted max-cut prob-
lem is then to find a feasible cut (A, A) such that E[W (A, A)] ≥ αOPTW and
E[L(A, A)] ≥ βOPTL where 0 < α ≤ 1 and 0 < β ≤ 1.

There is no hope to get an (α, β)-expected approximate algorithm for the
bi-criteria weighted max-cut problem with α = β and α > 2/3. To see it,
consider the example given in Figure 4 where the ideal cut (I, I) achieves the
values (1, 1). Four cuts (S1, S1), (S2, S2), (S3, S3) and (S4, S4) are feasible with
values respectively (0, 0), (2/3, 2/3), (1/3, 1), and (1, 1/3). Let Ran Al be a
randomized algorithm which outputs (Si, Si) with a probability pi. Obviously,
one has p1 + p2 + p3 + p4 = 1. The expected value of the cut (S, S) output by
Ran Al is:

E[W (S, S)] =
2p2

3
+

p3

3
+ p4 and E[L(S, S)] =

2p2

3
+ p3 +

p4

3
.

The problem is then to find p1, p2, p3 and p4 such that E[W (S, S)] ≥ α,
E[L(S, S)] ≥ α and α is maximized. When p1 = p3 = p4 = 0 and p2 = 1,
α reaches 2/3 which is the best possible value. As a consequence, no randomized
algorithm can be (α, α)-expected approximate with α > 2/3.

v1

v2v3

(0, 2/3) (2/3, 0)

(1/3, 1/3)

Fig. 4. The ideal cut (I, I) has a total weight and a total length both equal to 1.

This statement has a consequence in the approximability of the weighted
bi-criteria max-cut problem. Indeed, there is no hope to design a deterministic
(α, β)-approximate algorithm such that α + β > 4/3. To see it, suppose that we
have such an algorithm. One can build two solutions (S1, S1) and (S2, S2) such
that W (S1, S1) ≥ αOPTW , L(S1, S1) ≥ βOPTL, W (S2, S2) ≥ βOPTW and
L(S2, S2) ≥ αOPTL. Now consider the randomized algorithm which consists in
returning (S1, S1) with a probability 1/2 and (S2, S2) with a probability 1/2. We
would get an (α+β

2 , α+β
2 )-expected approximate solution (S, S) and α+β

2 > 2/3.

The algorithm (called Ransam in [4]) which consists in building a cut (S, S)
by puting equiprobably a vertex v ∈ V to either S or S is 1/2-expected approxi-
mate for the mono-criterion weighted max-cut problem. One can remark that it



achieves the same performance guarantee for a multi-criteria weighted max-cut

problem. However, a better randomized algorithm can be built for the bi-criteria
max-cut problem. We propose an algorithm called Ran Bi-Approx which uses
a mono-criterion α-approximation algorithm (called Al in the following).

Ran Bi-Approx

Input: G and Al

Step 1: Find (S1, S1) with Al s.t. W (S1, S1) ≥ α OPTW
Step 2: Find (S2, S2) with Al s.t. L(S2, S2) ≥ α OPTL
Step 3: Build (S3, S3) s.t. S3 = (S1 ∩ S2) ∪ (S1 ∩ S2)

Step 4: Let γ = (3 −
√

5)/2
Step 5: If W (S2, S2) ≥ γW (S1, S1)

Then If L(S1, S1) ≥ γL(S2, S2)
Then Return (S1, S1) with a probability 0.5

and (S2, S2) with a probability 0.5
Else Return (S1, S1) with a probability γ

and (S2, S2) with a probability 1 − γ
Else If L(S1, S1) ≥ γL(S2, S2)

Then Return (S1, S1) with a probability 1 − γ

and (S2, S2) with a probability γ
Else Return (S3, S3)

Theorem 4. Ran Bi-Approx is a randomized (
√

5−1
2 α,

√
5−1
2 α)-expected ap-

proximation algorithm for the bi-criteria weighted max-cut problem if Al is an

α-approximation algorithm.

Proof. The algorithm considers four cases. For the first case, we suppose that:

W (S2, S2) ≥ γW (S1, S1) and L(S1, S1) ≥ γL(S2, S2).

So, we have:

W (S2, S2) ≥ γαOPTW and L(S1, S1) ≥ γαOPTL.

Since the solution returned in this case is (S1, S1) with a probability 0.5 and
(S2, S2) with a probability 0.5, the expected value on each criterion of the solu-

tion returned is at least α(1+γ)
2 times the optimum.

For the second case, we suppose that:

W (S2, S2) ≥ γW (S1, S1) and L(S1, S1) ≥ 0.

So, we have W (S2, S2) ≥ γαOPTW. Since the solution returned in this case is
(S1, S1) with a probability γ = 1−γ

2−γ
and (S2, S2) with a probability 1−γ = 1

2−γ
,



the expected value on each criterion of the solution returned is at least α
2−γ

times
the optimum.

The third case is symmetric to the second case, the expected value on each
criterion of the solution returned is at least α

2−γ
times the optimum.

For the fourth case, we suppose that:

W (S2, S2) < γW (S1, S1) and L(S1, S1) < γL(S2, S2).

As it was done before, we consider that the set of vertices is partitioned into four
subsets (see Figure 1) and the proof is done on a simple K4 graph (see Figure 2).
So, we have:

wvX vY
+ wvZ vT

+ wvX vT
+ wvY vZ

< γ
(

wvX vZ
+ wvY vT

+

+ wvX vT
+ wvY vZ

)

(3)

lvX vZ
+ lvY vT

+ lvX vT
+ lvY vZ

< γ
(

lvX vY
+ lvZ vT

+

+ lvX vT
+ lvY vZ

)

. (4)

From inequality (3), we get:

wvX vT
+ wvY vZ

< γ
(

wvX vZ
+ wvY vT

+

+ wvX vT
+ wvY vZ

)

(1 − γ)
(

wvX vT
+ wvY vZ

)

< γ
(

wvX vZ
+ wvY vT

)

(1 − γ)

γ

(

wvX vT
+ wvY vZ

)

< wvX vZ
+ wvY vT

(1 − γ)

γ

(

wvX vT
+ wvY vZ

+ wvX vZ
+ wvY vT

)

<
1

γ

(

wvX vZ
+ wvY vT

)

(1 − γ)
(

wvX vT
+ wvY vZ

+ wvX vZ
+ wvY vT

)

< wvX vZ
+ wvY vT

+

+ wvX vY
+ wvZ vT

(1 − γ)W (S1, S1) < W (S3, S3)

Symmetrically, from inequality (4) we get:

(1 − γ)L(S2, S2) < L(S3, S3)

In this case, (S3, S3) is returned and its value on each criterion is at least (1−γ)α
times the optimum.

Let f(γ) = min{1 − γ, 1
2−γ

, 1+γ
2 } for 0 ≤ γ ≤ 1. This function finds its

maximum when γ = 3−
√

5
2 . As a consequence, the solution returned by Ran

Bi-Approx has an expected value on each criterion which is at least
√

5−1
2 α

times the optimum. �

Corollary 2. There exists a randomized (0.54297, 0.54297)-expected approxi-

mate algorithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al by the algorithm of Goemans and Williamson [3] in Ran

Bi-Approx and the result follows. �



5 Concluding remarks

Since we considered a bi-criteria max-cut problem and provided approximation
algorithms, the question whether it is possible to get similar results with more
than two criteria arises. Unfortunately, the example given in Figure 5 shows
that it is not possible to build a deterministic algorithm which approximates
the ideal point with a performance guarantee when tree criteria are considered.
As a consequence, there is no hope to find an approximation algorithm with
performance guarantee for the k-criteria weighted max-cut problem where k >
2. However, Ransam remains a 1/2-expected approximation algorithm for any
k-criteria weighted max-cut problem.

v1

v2v3

(0, 0, 1) (0, 1, 0)

(1, 0, 0)

Fig. 5. The ideal cut (I, I) achieves the values (1, 1, 1) while any feasible cut achieves
0 on at least one coordinate. Thus, no approximation factor can be guaranteed.

Remark that approximation results for the k-criteria weighted max-cut

problem can be found if another approach is considered. Indeed, if we restrict
ourselves to feasible solutions then rarely a solution will dominate all the oth-
ers (i.e. will be better than the others on each criterion) but a set of solutions
which dominates all the others always exists. This set of solutions is called the
Pareto curve and Papadimitriou and Yannakakis [6] proved that an approxima-
tion with performance guarantee of this curve (an ε-approximate Pareto curve)
always exists.

Acknowledgement: We thank Martin Skutella for giving us the example of
Figure 3.

References
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