
DECOMPOSITIONS OF GRAPHS OF FUNCTIONS
AND FAST ITERATIONS OF LOOKUP TABLES

BOAZ TSABAN

Abstract. We show that every function f implemented as a
lookup table can be implemented such that the computational
complexity of evaluating fm(x) is small, independently of m and
x. The implementation only increases the storage space by a small
constant factor.

1. Introduction and Motivation

According to Naor and Reingold [2], a function f : {0, . . . , N − 1} →
{0, . . . , N − 1} is fast forward if for each natural number m which
is polynomial in N , and each x = 0, . . . , N − 1, the computational
complexity of evaluating fm(x)—the mth iterate of f at x—is small
(polynomial in logN). This is useful in simulations and cryptographic
applications, and for the study of dynamic-theoretic properties of the
function f .

Originally this notion was studied in the context of pseudorandom-
ness, where N is very large – see [2, 3, 1]. Here we consider the re-
mainder of the scale, where N is not too large, so that the function
f : {0, . . . , N − 1} → {0, . . . , N − 1} is or can be implemented by a
lookup table of size N . Implementations as lookup tables are standard
for several reasons, e.g., in the case where the evaluation f(x) is re-
quired to be efficient, or in the case that f is a random function, so
that f has no shorter definition than just specifying its values for all
possible inputs. We describe a simple way to implement a given func-
tion f such that it becomes fast forward. The implementation only
increases the storage space by a small constant factor.

The case that f is a permutation is of special importance and is
easier to treat. This is done in Section 2. In Section 3 we treat the
general case.

Key words and phrases. fast forward functions, fast forward permutations, cycle
decomposition.

Supported by the Koshland Center for Basic Research.
1

ar
X

iv
:c

s/
05

08
13

3v
4

 [
cs

.C
C

]
 3

1
O

ct
 2

01
0

2 BOAZ TSABAN

2. Making a permutation fast forward

We recall two definitions from [3].

Definition 1. Assume that f is a permutation on {0, . . . , N − 1}. The
ordered cycle decomposition of f is the sequence (C0, . . . , C`−1) consist-
ing of all (distinct) cycles of f , such that for each i, j ∈ {0, . . . , `− 1}
with i < j, minCi < minCj. The ordered cycle structure of f is the
sequence (|C0|, . . . , |C`−1|).

The ordered cycle decomposition of f can be computed in time N :
Find C0, the cycle of 0. Then find C1, the cycle of the first element
not in C0, etc. In particular, the ordered cycle structure of f can be
computed in time N .

Definition 2. Assume that (m0,m1, . . . ,m`−1) is the ordered cycle
structure of a permutation f on {0, . . . , N − 1}. For each i = 0, . . . , `−
1, let si = m0 + · · · + mi. The fast forward permutation coded by
(m0,m1, . . . ,m`−1) is the permutation π on {0, . . . , N − 1} such that
for each x ∈ {0, . . . , N − 1},

π(x) = si + (x− si + 1 mod mi+1) where si ≤ x < si+1.

In other words, π is the permutation whose ordered cycle decomposition
is

π = (0 . . . s0 − 1︸ ︷︷ ︸
m0

)(s0 . . . s1 − 1︸ ︷︷ ︸
m1

)(s1 . . . s2 − 1︸ ︷︷ ︸
m2

) · · · (s`−2 . . . N − 1︸ ︷︷ ︸
m`−1

).

The assignment x 7→ i(x) such that si(x) ≤ x < si(x)+1 can be imple-
mented (in time N) as a lookup table of size N . As

πm(x) = si(x) + (x− si(x) +m mod (si(x)+1 − si(x))),
π is fast forward.

Coding 3. To code a given permutation f on {0, . . . , N − 1} as a fast
forward permutation, do the following.

(1) Compute the ordered cycle decomposition of f :

f = (b0 . . . bs0−1︸ ︷︷ ︸
m0

)(bs0 . . . bs1−1︸ ︷︷ ︸
m1

)(bs1 . . . bs2−1︸ ︷︷ ︸
m2

) · · · (bs`−2
. . . bN−1︸ ︷︷ ︸
m`−1

).

(2) Define a permutation σ on {0, . . . , N − 1} by σ(x) = bx for each
x = 0, . . . , N − 1.

(3) Store in memory the following tables: σ, σ−1, the list s0, . . . , s`−1

(where sk = m0 + · · · + mk for each k), and the assignment
x 7→ i(x).

DECOMPOSING AND ITERATING LOOKUP TABLES 3

Let π be the fast forward permutation coded by (m0,m1, . . . ,m`−1).
Then

f = σ ◦ π ◦ σ−1.

For each m and x, fm(x) is equal to σ(πm(σ−1(x))), which is computed
by 5 invocations of the stored lookup tables and 5 elementary arith-
metic operations (addition, subtraction, or modular reduction). We
therefore have the following.

Theorem 4. Every permutation f on {0, . . . , N − 1} can be coded by
4 lookup tables of size N each, such that each evaluation fm(x) can be
carried using 5 invocations of lookup tables and 5 elementary arithmetic
operations, independently of the size of m. �
Remark 5.

(1) For random permutations, ` ≈ logN and therefore the total
amount of memory is about 3N + logN .

(2) Instead of storing the assignment x 7→ i(x), we can compute it
online. This is a search in an ordered list and takes log2(`) in the
worst case. For a typical permutation this is about log2(log(N))
additional operations in the worst case (e.g., for N = 232, this
is about 4 additional operations per evaluation). This reduces
the memory to 2N + logN .

3. Making an arbitrary function fast forward

We begin with a simple method, and then describe a twist of this
method which gives better results.1

3.1. The basic approach. The language of graphs will be convenient.
For shortness, a (partial) function f : {0, . . . , N − 1} → {0, . . . , N − 1}
will be called a (partial) function on {0, . . . , N − 1}.

Definition 6. Let f be a partial function on {0, . . . , N − 1}. The
graph of f is the directed graph G = 〈V,E〉, where

V = {0, . . . , N − 1},
E = {(x, f(x)) : x ∈ dom(f)}.

The orbit of an element v ∈ V is the maximal simple tour (v, v1, v2, . . . , vk)
inG. Note that either f(vk) is undefined, or else f(vk) ∈ {v, v1, v2, . . . , vk}.
In the latter case, we say that the orbit is a ρ-orbit.

Any subgraph of a partial function f on {0, . . . , N − 1} is the graph
of some restriction of f , and in particular is the graph of some partial
function g on {0, . . . , N − 1}.

1See new footnote 2 on page 11.

4 BOAZ TSABAN

Definition 7. Assume that f is a function on {0, . . . , N − 1}. The
ordered orbit decomposition of f is the sequence (C0, . . . , C`−1) defined
by:

(1) C0 is the orbit of 0.
(2) For k > 0, if V 6= C0 ∪ C1 ∪ · · · ∪ Ck−1, then Ck is the orbit

of the least element of V \ (C0 ∪ · · · ∪ Ck−1) in the subgraph
induced by G on the vertices in V \ (C0 ∪ · · · ∪ Ck−1).

(3) ` is the least k such that V = C0 ∪ · · · ∪ Ck−1.

The ordered orbit structure of f is the sequence (|C0|, . . . , |C`−1|).

Note that the ordered orbit decomposition of a permutation is just
its ordered cycle decomposition. Assume that (C0, . . . , C`−1) is the
ordered orbit decomposition of f . Clearly, (C0, . . . , C`−1) can be recon-
structed from the concatenated sequence C0C1 · · ·C`−1 together with
the ordered orbit structure (|C0|, . . . , |C`−1|) of f . To reconstruct f
from (C0, . . . , C`−1), we need in addition the following information.

Definition 8. The auxiliary sequence for an ordered orbit decompo-
sition (C0, . . . , C`−1) of a function f is (p0, . . . , p`−1), where for each
i = 0, . . . , `−1, pi is the position of f(vi) in the concatenated sequence
C0C1 . . . C`−1, vi being the last element in the sequence Ci.

Example 9. Consider the function f on {0, . . . , 6} whose graph is

0 // 5
##
2

xx

4oo 6

		
3

SS

1

II

The ordered orbit decomposition of f is

(C0, C1, C2) = ((0, 5, 2, 3), (1, 6), (4)),

and the ordered orbit structure is (|C0|, |C1|, |C2|) = (4, 2, 1). C0 and
C1 are ρ-orbits, whereas C2 is not. The concatenated orbits C0C1C2

give (0, 5, 2, 3, 1, 6, 4). Now, 3 is the last element in C0, and the position
of f(3) = 5 in the concatenated sequence is 1. 6 is the last element
in C1, and the position of f(6) = 1 in the concatenated sequence is
4. Similarly, the position of f(4) = 2 is 2, so the auxiliary sequence is
(1, 4, 2).

Definition 10. Assume that (m0,m1, . . . ,m`−1) is the ordered or-
bit structure of a function f on {0, . . . , N − 1}, and that the auxil-
iary sequence is (p0, . . . , p`−1). For each i = 0, . . . , ` − 1, let si =
m0 + · · · + mi. The fast forward function coded by (m0,m1, . . . ,m`−1)

DECOMPOSING AND ITERATING LOOKUP TABLES 5

and (p0, . . . , p`−1) is the function π : {0, . . . , N − 1} → {0, . . . , N − 1}
whose ordered orbit decomposition is

((0 . . . s0 − 1︸ ︷︷ ︸
m0

), (s0 . . . s1 − 1︸ ︷︷ ︸
m1

), (s1 . . . s2 − 1︸ ︷︷ ︸
m2

), . . . , (s`−2 . . . N − 1︸ ︷︷ ︸
m`−1

)),

and whose auxiliary sequence is (p0, . . . , p`−1).

Example 11. The ordered orbit structure of f in Example 9 is (4, 2, 1),
and the auxiliary sequence is (1, 4, 2). The fast forward function π
corresponding to f is that with the same auxiliary sequence and whose
ordered orbit decomposition is ((0, 1, 2, 3), (4, 5), (6)). The graph of π
is

0 // 1
##
2

xx

6oo 4

		
3

SS

5

II

Using the auxiliary sequence we have, e.g., that

π10(6) = π9(2) = π7(1) = 1 + (7 mod 3) = 2,

as can be verified directly.

Example 11 hints to the following recursive procedure to compute
πm(x). Again, let i(x) be such that si(x) ≤ x < si(x)+1 for each x =
0, . . . , N − 1.

(1) Let r = m− (si(x)+1 − x). (Note that r < m.)
(2) If r < 0, then πm(x) = x+m.
(3) Else:

(a) If si(x) ≤ pi(x) then Ci(x) is a ρ-orbit, and therefore

πm(x) = pi(x) + (r mod (si(x)+1 − pi(x))).
(b) Otherwise, πm(x) = πr(pi(x)).

Case (b) is the only case where a recursion is made. Note that in
this case, pi(x) < si(x), i.e. we descend to a previous component. We
therefore call this case a descent.

For simplicity, use the term basic operation for either a basic arith-
metic operation, a comparison, or a lookup access. It follows that each
descent requires less than 10 basic operations.

Corollary 12. The complexity of evaluating πm(x) is a constant c ≤ 10
times the number of descents needed until a ρ-orbit is reached.

Remark 13. In the sequel, we will measure the complexity by the num-
ber of descents. The constant c by which this should be multiplied
(Corollary 12) can be made smaller by pre-computing lookup tables
for si(x), pi(x), and si(x)+1 − pi(x).

6 BOAZ TSABAN

We now describe the basic method for coding f as a fast forward
function. The running time of this transformation is a small constant
multiple of N .

Coding 14. Assume that f is a function on {0, . . . , N − 1}. Code f
as follows.

(1) Compute the ordered orbit decomposition of f :

((b0 . . . bs0−1︸ ︷︷ ︸
m0

), (bs0 . . . bs1−1︸ ︷︷ ︸
m1

), (bs1 . . . bs2−1︸ ︷︷ ︸
m2

), . . . , (bs`−2
. . . bN−1︸ ︷︷ ︸
m`−1

)).

(2) Define a permutation σ on {0, . . . , N − 1} by σ(x) = bx for each
x = 0, . . . , N − 1.

(3) Use σ−1 to compute the auxiliary sequence (p0, . . . , p`−1).
(4) Store in memory the following tables: σ, σ−1, the list s0, . . . , s`−1

(where sk = m0 + · · · + mk for each k), the auxiliary sequence
(p0, . . . , p`−1), and the assignment x 7→ i(x) (such that each
x ∈ Ci(x)).

Note that the code of f defines the fast forward function π coded by
(m0, . . . ,m`−1) and (p0, . . . , p`−1), and that f = σ ◦ π ◦ σ−1. Thus,

fm(x) = σ(πm(σ−1(x))

for each x and m. Consequently, if the maximal number of descents in
π is small, fm(x) can be evaluated efficiently for all m and x.

Simulations show that for random functions f , the maximal number
of descents in the evaluations fm(x) is around log2N . We will give
concrete results for a better approach in the sequel.

3.2. An improved approach. There are pathological cases where the
number of descents can be N . We exhibit the extreme case, with a hint
concerning how it can be avoided.

Example 15. Consider the function f(k) = max{0, k − 1}:

088 1oo 2oo . . .oo (N − 2)oo (N − 1)oo

The ordered orbit decomposition of f is ((0), (1), (2), . . . , (N −1)), and
the auxiliary sequence is (0, 0, 1, 2, . . . , N−2). The ordered orbit struc-
ture is (1, 1, . . . , 1), and the corresponding fast forward function π is
equal to f . Computing πm(N − 1) for m ≥ N − 1 requires N − 1
descents.

Now consider the function g(k) = min{k + 1, N − 1}:

(N − 1)77 (N − 2)oo . . .oo 2oo 1oo 0oo

DECOMPOSING AND ITERATING LOOKUP TABLES 7

The ordered orbit decomposition of g is ((0, 1, 2, . . . , N − 1)), and the
auxiliary sequence is (0). The ordered orbit structure is (N), and the
corresponding fast forward function π is equal to g. No descents at all
are required to compute values πm(x).

The following definition captures the improvement made in the sec-
ond part of the last example.

Definition 16. Assume that f is a function on {0, . . . , N − 1}. The
greedy orbit decomposition of f is the sequence (C0, . . . , C`−1) defined
as follows, where a maximal orbit is an orbit of maximal length, and
when there is more than one maximal orbit, we choose the one starting
with the least point:

(1) C0 is the maximal orbit in G.
(2) For k > 0, if V 6= C0 ∪C1 ∪ · · · ∪Ck−1, then Ck is the maximal

orbit in the subgraph induced by G on the vertices in V \ (C0∪
· · · ∪ Ck−1).

(3) ` is the least k such that V = C0 ∪ · · · ∪ Ck−1.

The greedy orbit structure of f is the sequence (|C0|, . . . , |C`−1|).

Remark 17. Given a graph of a function on {0, . . . , N − 1}, one can
attach to each vertex the length of its orbit. This can be done in ≤ 2N
steps. After removing an orbit from the graph, only the points which
eventually enter the orbit need to be modified. Even if we recompute
all lengths after each removal of an orbit, the overall complexity is not
more (and usually much less) than

2N + 2(N − 1) + · · ·+ 2 ≈ N2.

Since the procedure is done only once and offline, we do not try to
optimize further.

Having defined the greedy orbit decomposition of f , we can pro-
ceed to define, with respect to it, the auxiliary sequence and the other
definitions, as well as the coding, exactly as in Section 3.1.

Example 18. Notation as in Example 15, we have that the greedy
orbit decomposition of f is ((N − 1, N − 2, . . . , 1, 0)), the auxiliary
sequence is (N − 1), and the ordered orbit structure is (N). The fast
forward function π is equal to g, and no descents at all are required to
compute values πm(x).

The following theorem shows that, using the greedy orbit structure,
the maximal possible number of descents cannot be greater than about√

2N .

8 BOAZ TSABAN

Theorem 19. Assume that f is a function on {0, . . . , N − 1}. Then
the maximal number of descents in the greedy orbit structure of f is
not greater than b(

√
1 + 8N − 3)/2c.

Proof. Consider the greedy orbit structure (C0, . . . , C`−1) and auxiliary
sequence (p0, . . . , p`−1) for f . Let d be the maximal number of descents
in this structure. Then there is a sequence i0 < i1 < · · · < id such that
for each j = 1, . . . , d, the last member in Cij is mapped by f to some
member of Cij−1

. Since (C0, . . . , C`−1) is a greedy orbit structure, we
have that

|Ci0| > |Ci1| > · · · > |Cid |.

Indeed, for each j = 1, . . . , d, as Cij is not a ρ-orbit, the orbit in
〈V \ (C0 ∪ · · · ∪ Cij−1−1), E〉 starting with the first element of Cij is of
size at least |Cij | + 1, and by the maximality of |Cij−1

|, we have that
|Cij |+ 1 ≤ |Cij−1

|.
Consequently, for each j = 0, . . . , d, |Cij | ≥ d− j + 1, and therefore

N = |V | ≥

∣∣∣∣∣
d⋃

j=0

Cij

∣∣∣∣∣ =
d∑

j=0

|Cij | ≥
d∑

j=0

(j + 1) =
(d+ 1)(d+ 2)

2
.

Thus, d2 + 3d+ (2− 2N) ≤ 0, that is,

d ≤
−3 +

√
9− 4(2− 2N)

2
=

√
1 + 8N − 3

2
. �

The bound in Theorem 19 cannot be improved.

Example 20. Fix N . Let d = b(
√

1 + 8N − 3)/2c. Then M = (d +
1)(d + 2)/2 ≤ N . We will define a function on {0, . . . ,M − 1} whose
greedy orbit decomposition has d descents starting at M − 1. Clearly,
such a function can be extended to a function on {0, . . . , N − 1} with
d descents in its greedy orbit decomposition by extending the first
component.

Consider the function f whose greedy orbit decomposition is

((0, 1, . . . , d), . . . , (M − 6,M − 5,M − 4), (M − 3,M − 2), (M − 1))

with auxiliary sequence (d, d, . . . ,M−4,M−2). There are d+1 compo-
nents, and each component is descended into the previous component,
so starting at the value M − 1 we have d many descents.

DECOMPOSING AND ITERATING LOOKUP TABLES 9

E.g., for d = 3, M = 10 and the function is

0

��8888 4

��8888 7

��8888 9

������

1

��8888 5

��8888 8

������

2

��8888 6

������

3

its greedy orbit decomposition is ((0, 1, 2, 3), (4, 5, 6), (7, 8), (9)) and the
auxiliary sequence is (3, 3, 6, 8). Computing f 3(9) requires 3 descents.

Note that Example 20 has an orbit decomposition with at most one
descent. E.g., in the case d = 3 we can take ((9, 8, 6, 3), (0, 1, 2), (4, 5), (7))
with auxiliary sequence (3, 3, 2, 1).

This suggests that in Definition 16, when we have more than one
maximal orbit, we should try all possibilities. This way, the algorithm
becomes exponential. We have tried a randomized approach which
broke ties using coin flips. It did not give significantly better results.
We would be glad but surprised if the answer to the following would
turn out positive.

Problem 21. Does there exist an efficient algorithm to find, for a
given function f on {0, . . . , N − 1}, an orbit decomposition for which
the maximal number of descents is as small as it can be for f?

3.3. The random case. The random case, and presumably most of
the cases encountered in practice, behaves much better than is provable
for the worst case. For each N = 22, 23, . . . , 220, we have sampled 100
random functions on {0, . . . , N − 1}. For these, we have computed
the maximum and average number of descents. The results appear
in Figure 1. Figure 1 contains three increasing and one decreasing
graphs. Among the increasing graphs, the uppermost is just log2N , the
intermediate graph is the maximum number of descents encountered
for each N , and the lowest is the average number of descents. The
decreasing graph is log2N divided by the average number of descents.

An interesting observation is that none of the samples contained a
point with more than log2N many descents. This should be contrasted
with Example 20, and suggests that the cases in which the complex-
ity of evaluating fm(x) can be larger than about log2N are indeed
pathological.

Another observation, which is of great practical interest, is supplied
by the decreasing graph: It shows that for the checked values of N ,

10 BOAZ TSABAN

Figure 1. Number of descents in the random case.

and presumably for all practical values of N , the average number of
descents is about (log2N)/5 or less. Recall from Corollary 12 and the
remark after it, that the overall complexity is a small multiple of this
number.

We conclude the paper by demonstrating that the mere consideration
of average complexity rather than maximal complexity does not suffice
to obtain the logarithmic phenomenon which we encountered in the
random case.

Example 22. Consider the function f described in Example 20, and
assume that (

√
1 + 8N − 3)/2 is an integer (otherwise the following

is only approximate). In this case, d is equal to this number, and
(d+ 1)(d+ 2) = 2N .

DECOMPOSING AND ITERATING LOOKUP TABLES 11

The average number of descents for f is 1/N times

1 · d+ 2 · (d− 1) + · · ·+ d · 1 =

=
d∑

i=1

i(d+ 1− i) =
d∑

i=1

i(d+ 1)−
d∑

i=1

i2 =

=
(d+ 1)(1 + d)d

2
− d(d+ 1)(2d+ 1)

6
=

=
d(d+ 1)(d+ 2)

6
= N · d

3
.

Thus, the average number of descents in f is d/3 (which is roughly√
2N/3).

4. Conclusions, improvements, and open problems

We have shown that every lookup table T of size N can be coded by
cN elements where c is a small constant, such that computations of the
form Tm(x)—the mth iterate of T at x—can be done efficiently. The
efficiency is measured in the number of recursions (descents) which our
algorithm performs.

In the case that T is a permutation, no recursions are needed. When
T is a general function, we can have up to

√
2N recursions but not more

than that, and if T is random, then the number of recursions reduces to
about (log2N)/5. The last assertion was only verified experimentally,

and a rigorous explanation of this reduction from O(
√
N) to O(logN)

in the random case would be interesting.
In a work in progress with Yossi Oren, we introduce another heuris-

tic for the decomposition of graphs of functions. For this heuristic, the
maximal number of descents reduces to log2N (which is optimal with
respect to the worst-case behavior). There are still cases where the
heuristic described in the current paper outperforms the newer heuris-
tic, though.2

The task of finding a heuristic approach which reduces the aver-
age number of recursions in the computations Tm(x) to less than our
(log2N)/5 seems to be of great practical interest.

2This paragraph appears in the published version of this paper, but was not
noticed by Tsung-Hsi Tsai, who in his paper Efficient computation of the iteration
of functions, to appear in Theoretical Computer Science, was able to reconstruct
our new heuristic and prove that it is optimal. In particular, we were mistaken to
think that there are cases where the new heuristic is not optimal.

12 BOAZ TSABAN

References

[1] O. Goldreich, S. Goldwasser, and A. Nussboim, On the implementation of huge
random objects, 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’03), 68–79.
Full version: http://www.wisdom.weizmann.ac.il/~oded/p toro.html

[2] Moni Naor and Omer Reingold, Constructing Pseudo-Random Permutations
with a Prescribed Structure, Journal of Cryptology 15 (2002), 97–102.

[3] B. Tsaban, Permutation graphs, fast forward permutations, and sampling the
cycle structure of a permutation, Journal of Algorithms 47 (2003), 104–121.

Department of Mathematics, Weizmann Institute of Science, Re-
hovot 76100, Israel

E-mail address: boaz.tsaban@weizmann.ac.il
URL: http://www.cs.biu.ac.il/~tsaban

	1. Introduction and Motivation
	2. Making a permutation fast forward
	3. Making an arbitrary function fast forward
	3.1. The basic approach
	3.2. An improved approach
	3.3. The random case

	4. Conclusions, improvements, and open problems
	References

