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Abstract

The complexity class PP consists of all decision
problems solvable by polynomial-time probabilis-
tic Turing machines. It is well known that PP
is a highly intractable complexity class and that
PP-complete problems are in all likelihood harder
than NP-complete problems. We investigate the
existence of phase transitions for a family of PP-
complete Boolean satisfiability problems under the
fixed clauses-to-variables ratio model. A typi-
cal member of this family is the decision prob-
lem #3SAT(� ����): given a 3CNF-formula, is
it satisfied by at least the square-root of the total
number of possible truth assignments? We pro-
vide evidence to the effect that there is a critical
ratio ���� at which the asymptotic probability of
#3SAT(� ����) undergoes a phase transition from
1 to 0. We obtain upper and lower bounds for � ���
by showing that ������ � ���� � �����. We
also carry out a set of experiments on random in-
stances of #3SAT(� ����) using a natural modi-
fication of the Davis-Putnam-Logemann-Loveland
(DPLL) procedure. Our experimental results sug-
gest that ���� � ���. Moreover, the average number
of recursive calls of this modified DPLL procedure
reaches a peak around ��� as well.

1 Introduction and Summary of Results
During the past several years, there has been an intensive
investigation of random Boolean satisfiability in probabil-
ity spaces parametrized by a fixed clauses-to-variables ratio.
More precisely, if � � � is an integer, � is a positive in-
teger and � is a positive rational such that �� is an integer,
then ����� �� denotes the space of random �CNF-formulas
with � variables ��� � � � � �� and �� clauses that are gener-
ated uniformly and independently by selecting � variables
without replacement from the � variables and then negat-
ing each variable with probability ���. Much of the work
in this area is aimed at establishing or at least providing ev-
idence for the conjecture, first articulated by [Chvátal and
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Reed, 1992], that a phase transition occurs in the probability
	���� �� of a random formula in ����� �� being satisfiable,
as � � �. Specifically, this conjecture asserts that, for ev-
ery � � �, there is a positive real number �� such that if
� 
 ��, then 	
���� 	���� �� � �, whereas if � � �� , then
	
���� 	���� �� � ��

So far, this conjecture has been established only for � �
� by showing that �� � � [Chvátal and Reed, 1992;
Fernandez de la Vega, 1992; Goerdt, 1996]. For � � 
,
upper and lower bounds for �� have been obtained ana-
lytically and experiments have been carried out that pro-
vide evidence for the existence of �� and estimate its ac-
tual value. For � � 
, in particular, it has been proved
that 
��� � �� � ����� [Achlioptas and Sorkin, 2000;
Janson et al., 2000] and extensive experiments have sug-
gested that �� � ��� [Selman et al., 1996]. Moreover, the
experiments reveal that the median running time of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure for satisfia-
bility attains a peak around ���. Thus, the critical ratio at
which the probability of satisfiability undergoes a phase tran-
sition coincides with the ratio at which this procedure requires
maximum computational effort to decide whether a random
formula is satisfiable.

Boolean satisfiability is the prototypical NP-complete
problem. Since many reasoning and planning problems in
artificial intelligence turn out to be complete for complexity
classes beyond NP, in recent years researchers have embarked
on an investigation of phase transitions for such problems.
For instance, it is known that STRIPS planning is complete
for the class PSPACE of all polynomial-space solvable prob-
lems [Bylander, 1994]. A probabilistic analysis of STRIPS
planning and an experimental comparison of different algo-
rithms for this problem have been carried out in [Bylander,
1996]. In addition to STRIPS planning, researchers have also
investigated phase transitions for the prototypical PSPACE-
complete problem QSAT, which is the problem of evaluat-
ing a given quantified Boolean formula [Cadoli et al., 1997;
Gent and Walsh, 1999]. Actually, this investigation has
mainly focused on the restriction of QSAT to random quan-
tified Boolean formulas with two alternations (universal-
existential) of quantifiers, a restriction which forms a com-
plete problem for the class ��� at the second level of the
polynomial hierarchy PH. The lowest level of PH is NP,
while higher levels of this hierarchy consist of all decision



problems (or of the complements of all decision problems)
computable by nondeterministic polynomial-time Turing ma-
chines using oracles from lower levels (see [Papadimitriou,
1994] for additional information on PH and its levels). An-
other PSPACE-complete problem closely related to QSAT is
stochastic Boolean satisfiability SSAT, which is the problem
of evaluating an expression consisting of existential and ra-
nodmized quantifiers applied to a Boolean formula. Exper-
imental results on phase transitions for SSAT have been re-
ported in [Littman, 1999] and [Littman et al., 2001].

Between NP and PSPACE lie several other important com-
plexity classes that contain problems of significance in ar-
tificial intelligence. Two such classes, closely related to
each other and of interest to us here, are #P and PP. The
class #P, introduced and first studied by [Valiant, 1979a;
1979b], consists of all functions that count the number of
accepting paths of nondeterministic polynomial-time Turing
machines. The prototypical #P-complete problem is #SAT,
i.e., the problem of counting the number of truth assign-
ments that satisfy a CNF-formula. It is well known that nu-
merous ��-complete problems arise naturally in logic, al-
gebra, and graph theory [Valiant, 1979a; 1979b]. Moreover,
#P-complete problems are encountered in artificial intelli-
gence; these include the problem of computing Dempster’s
rule for combining evidence [Orponen, 1990] and the prob-
lem of computing probabilities in Bayesian belief networks
[Roth, 1996]. Recently, researchers have initiated an exper-
imental investigation of extensions of the DPLL procedure
for solving #SAT. Specifically, a procedure for solving #SAT,
called Counting Davis-Putnam (CDP), was presented and ex-
periments on random 3CNF formulas from the space ����� ��
were carried out in [Birnbaum and Lozinskii, 1999]. The
main experimental finding was that the median running time
of CDP reaches its peak when � � ���. A different DPLL ex-
tension for solving #SAT, called Decomposing Davis-Putnam
(DDP), was presented in [Bayardo and Pehoushek, 2000];
this procedure is based on recursively identifying connected
components in the constraint graph associated with a CNF-
formula. Additional experiments on random 3CNF-formulas
from ����� �� were conducted and it was found out that the
median running time of DDP reaches its peak when � � ���.

In the case of the NP-complete problems �SAT, � � 
,
the peak in the median running time of the DPLL procedure
occurs at the critical ratio at which the probability of satisfi-
ability appears to undergo a phase transition. Since #SAT is
a counting problem (returning numbers as answers) and not
a decision problem (returning “yes” or “no” as answers), it
is not meaningful to associate with it a probability of getting
a “yes” answer; therefore, it does not seem possible to cor-
relate the peak in the median running times of algorithms for
#SAT with a structural phase transition of #SAT. Nonetheless,
there exist decision problems that in a certain sense embody
the intrinsic computational complexity of #P-complete prob-
lems. These are the problems that are complete for the class
�� of all decision problems solvable using a polynomial-time
probabilistic Turing machine, i.e., a polynomial-time nonde-
terministic Turing machine � that accepts a string � if and
only if at least half of the computations of � on input � are
accepting. The class �� was first studied by [Simon, 1975]

and [Gill, 1977], where several problems were shown to be
��-complete under polynomial-time reductions. In partic-
ular, the following decision problem, also called #SAT, is
��-complete: given a CNF-formula 
 and a positive inte-
ger �, does 
 have at least � satisfying truth assignments?
This problem constitutes the decision version of the count-
ing problem #SAT, which justifies the innocuous overload of
notation. Another canonical ��-complete problem, which is
actually a special case of #SAT, is MAJORITY SAT: given a
CNF-formula, is it satisfied by at least half of the possible
truth assignments to its variables? In addition, several eval-
uation and testing problems in probabilistic planning under
various domain representations have recently been shown to
be PP-complete [Littman et al., 1998].

It is known that the class �� contains both NP and coNP,
and is contained in PSPACE (see [Papadimitriou, 1994]).
Moreover, as pointed out by [Angluin, 1980], there is a tight
connection between �� and ��. Specifically, ��� � ���,
which means that the class of decision problems computable
in polynomial time using �� oracles coincides with the class
of decision problems computable in polynomial time using
�� oracles. This is precisely the sense in which��-complete
problems embody the same intrinsic computational complex-
ity as ��-complete problems. Moreover, PP-complete prob-
lems (and #P-complete problems) are considered to be sub-
stantially harder than NP-complete problems, since in a tech-
nical sense they dominate all problems in the polynomial hi-
erarchy PH. Indeed, the main result in [Toda, 1989] asserts
that �� � ��� � ���. In particular, Toda’s result implies
that no��-complete problem lies in��, unless�� collapses
at one of its levels, which is considered to be a highly improb-
able state of affairs in complexity theory.

In [Littman, 1999], initial experiments were carried out
to study the median running time of an extension of the
DPLL procedure on instances �
� �� of the PP-complete deci-
sion problem #SAT in which 
 was a random 3CNF-formula
drawn from ����� ��� and � � ��, for some nonnegative inte-
ger � � �. These experiments were also reported in [Littman
et al., 2001], which additionally contains a discussion on pos-
sible phase transitions for the decision problem #SAT and pre-
liminary results concerning coarse upper and lower bounds
for the critical ratios at which phase transitions may occur (in
these two papers #SAT is called MAJSAT). As noted earlier,
the main emphasis of both [Littman, 1999] and [Littman et
al., 2001] is not on #SAT or on��-complete problems, but on
stochastic Boolean satisfiability SSAT, which is a PSPACE-
complete problem containing #SAT as a special case.

In this paper, we embark on a systematic investigation of
phase transitions for a large family of ��-complete satisfi-
ability problems. Specifically, for every integer � � 
 and
every integer � � �, let #kSAT(� ����) be the following de-
cision problem: given a �CNF-formula 
 with � variables,
does 
 have at least ���� satisfying truth assignments? In
particular, for � � � and for every � � 
, we have the de-
cision problem #kSAT(� ����): given a �CNF-formula, is
it satisfied by at least the square-root of the total number of
possible truth assignments? Clearly, each problem in this
family is a restriction of the decision problem #SAT. Note



that, while an instance of #SAT is a pair �
� ��, an instance
of #kSAT(� ����) is just a �CNF-formula 
; this makes it
possible to study the behavior of random #kSAT(� ����) in
the same framework as the one used for random �SAT. One
may also consider the behavior of random MAJORITY �SAT,
� � 
. In Section 3.2, however, we observe that the asymp-
totic behavior of random MAJORITY �SAT is trivial and that,
in particular, it does not undergo any phase transition. In con-
trast, the state of affairs for random #kSAT(� ����) will turn
out to be by far more interesting.

We first show that, for every � � 
 and every � � �, the
problem #kSAT(� ����) is indeed ��-complete. We con-
jecture that each of these problems undergoes a phase tran-
sition at some critical ratio ���� of clauses to variables: as
� � �, for ratios � 
 ����, almost all formulas in ����� ��

are “yes” instances of #kSAT(� ����), whereas for ratios
� � ����, almost all formulas in ����� �� are “no” instances
of #kSAT(� ����). As a first step towards this conjecture,
we establish analytically upper and lower bounds for ����. A
standard application of Markov’s inequality easily yields that
�����
�

�
����	������� is an upper bound for ���� (this was also

implicit in [Littman et al., 2001]). Using an elementary argu-
ment and the fact that the probability of satisfiability of ran-
dom 2CNF-formulas undergoes a phase transition at �� � �,
we show that �� � ���� is a coarse lower bound for ����. In
particular, these results imply that the critical ratio ���� of
#3SAT(� ����) obeys the following bounds: ��� � ���� �
�����. After this, we analyze a randomized algorithm, called
Extended Unit Clause (EUC), for #3SAT(� ����) and show
that it almost surely returns a “yes” answer when � 
 ������;
therefore, ���� � ������. Although EUC is a simple heuris-
tic, its analysis is rather complex. This analysis is carried
out by adopting and extending the powerful methodology of
differential equations, first used by [Achlioptas, 2000] to de-
rive improved lower bounds for the critical ratio �� of random
3CNF-formulas.

Finally, we complement these analytical results with a set
of experiments for #3SAT(� ����) by implementing a modi-
fication of the Counting Davis-Putnam procedure (CDP) and
running it on formulas drawn from ����� ���. Our experi-
mental results suggest that the probability of #3SAT(� ����)
undergoes a phase transition when � � ���. Thus, the
����� upper bound for ���� obtained using Markov’s inequal-
ity turns out to be remarkably close to the value of ���� sug-
gested by the experiments. Moreover, the average number of
recursive calls of the modified CDP procedure reaches a peak
around the same critical ratio ���.

2 PP-completeness of #kSAT(� �
���)

In Valiant [Valiant, 1979a], the counting problem #SAT was
shown to be ��-complete via parsimonious reductions,
i.e., every problem in �� can be reduced to #SAT via a
polynomial-time reduction that preserves the number of solu-
tions. Moreover, the same holds true for the counting versions
of many other NP-complete problems, including #�SAT, the
restriction of #SAT to �CNF-formulas. We now use this fact
to identify a large family of ��-complete problems.

Proposition 2.1: For every integer � � 
 and every integer
� � �, the decision problem #kSAT(� ����) is ��-complete.
In particular, #3SAT(� ����) is ��-complete.

Proof: For concreteness, in what follows we show that
#3SAT(� ����) is ��-complete. Let � be the following
problem: given a 3CNF-formula � and a positive integer �,
does � have at least �� satisfying truth assignments? Since
#3SAT is a ��-complete problem under parsimonious re-
ductions, there is a polynomial-time transformation such that,
given a CNF-formula 
 with variables ��� � � � � ��, it pro-
duces a 3CNF-formula � whose variables include ��� � � � � ��
and has the same number of satisfying truth assignments as

. Consequently, 
 is a “yes” instance of MAJORITY SAT
(i.e., it has at least ���� satisfying truth assignments) if and
only if ��� � � �� is a “yes” instance of �. Consequently, �
is ��-complete.

We now show that there is a polynomial-time reduction
of � to #3SAT(� ����). Given a 3CNF-formula � with
variables ��� � � � � �� and a positive integer �, we can con-
struct in polynomial time a 3CNF-formula � with variables
��� � � � � ��� ��� � � � � �� that is tautologically equivalent to the
CNF-formula � 	 ����
� 	 
 
 
 	 ��. It is clear that �� �
������, where �� and �� denote the numbers of truth as-
signments that satisfy � and � respectively. Consequently, �
has at least �� satisfying truth assignments if and only if � has
at least �� � ����� satisying truth assignments.

3 Upper and Lower Bounds for #kSAT(� �
���)

Let ����
� be the random variable on ����� �� such that

����
� �
� is the number of truth assignments on ��� � � � � ��

that satisfy 
, where 
 is a random �CNF-formula in
����� ��. Thus, 
 is a “yes” instance of #kSAT(� ����) if
and only if ����

� �
� � ����. We now have all the notation in
place to formulate the following conjecture for the family of
problems #kSAT(� ����), where � � 
 and � � �.

Conjecture 3.1: For every integer � � 
 and every integer
� � �, there is a positive real number ���� such that:

� If � 
 ����, then 	
���� �������
� � ����� � �.

� If � � ����, then 	
���� �������
� � ����� � �.

We have not been able to settle this conjecture, which ap-
pears to be as difficult as the conjecture concerning phase
transitions of random �SAT, � � 
. In what follows, how-
ever, we establish certain analytical results that yield upper
and lower bounds for the value of ����; in particular, these
results demonstrate that the asymptotic behavior of random
#kSAT(� ����) is non-trivial.

3.1 Upper Bounds for #kSAT(� �
���)

Let � be a random variable taking nonnegative values and
having finite expectation ����. Markov’s inequality is a ba-
sic result in probability theory which asserts that if � is a pos-
itive real number, then ���� � �� � ��	�


 � The special case
of this inequality with � � � has been used in the past to ob-
tain a coarse upper bound for the critical ratio �� in random
�SAT. We now use the full power of Markov’s inequality to



obtain an upper bound for ����. As usual, 	���� denotes the
logarithm of � in base �.

Proposition 3.2: Let � � 
 and � � � be two integers. For
every positive rational number � � �����

�
�

����	������� ,

	
�
���

�������
� � ����� � ��

It follows that if ���� exists, then ���� �
�����
�

�
����	�������

. In

particular, ���� � �
�

�
����	 �� � ������

Proof: For every truth assignment � on the variables
��� � � � � ��, let �� be the random variable on ����� �� such
that ���
� � �, if � satisfies 
, and ���
� � �, other-
wise. Each �� is a Bernoulli random variable with mean
��� �������. Since ����

� � ����, the linearity of expecta-
tion implies that ������

� � � �� � ���������. By Markov’s
inequality, we have that

�������
� � ����� � ��� �����������������

It follows that if � is such that ��� �������������� 
 �, then
	
���� �������

� � ����� � �. The result then is obtained
by taking logarithms in base � in both sides of the above in-
equality and solving for �.

Several remarks are in order now. First, note if � is kept
fixed while � is allowed to vary, then the smallest upper bound
is obtained when � � �. Moreover, the quantity �

����	�������

is the coarse upper bound for the critical ratio �� for random
�SAT obtained using Markov’s inequality. In particular, for
random 
SAT this bound is � ����, which is twice the bound
for ���� given by Proposition 3.2.

Let MAJORITY �SAT be the restriction of MAJORITY
SAT to �CNF-formulas, � � �. Obviously, a formula 

in ����� �� is a “yes” instance of MAJORITY �SAT if and
only if ����

� �
� � ����. Markov’s inequality implies that
�������

� � ����� � ��� � �������, from which it follows
that 	
���� �������

� � ����� � �, for every � � �. Thus,
for every � � �, the asymptotic behavior of random MAJOR-
ITY �SAT is trivial; in particular, MAJORITY �SAT does not
undergo any phase transition.

3.2 Lower Bounds for #kSAT(� �
���)

We say that a partial truth assignment � covers a clause � if
it satisfies at least one of the literals of �. We also say that �
covers a CNF-formula 
 with � variables if � covers every
clause of 
. Perhaps the simplest sufficient condition for 
 to
have at least ���� satisfying truth assignments is to ensure that
there is a partial assignment over ������
 variables covering

. The next proposition shows that if � is small enough, then
this sufficient condition is almost surely true for formulas in
����� ��, as ���.

Proposition 3.3: Let � � 
 and � � � be two integers. If
� 
 � 
 � � ���, then, as � � �, almost all formulas in
����� �� are covered by a partial truth assignment on �� �
���
 variables. Consequently, if � 
 � 
 �� ���, then

	
�
���

�������
� � ����� � ��

It follows that if ���� exists, then ���� � �����. In particular,
���� � ����

Proof: In [Chvátal and Reed, 1992; Fernandez de la Vega,
1992; Goerdt, 1996]), it was shown that if � 
 �, then 2CNF-
formulas in ������ are satisfiable with asymptotic probability
�. Fix a ratio � 
 ����� and consider a random formula 
 in
����� ��. By removing �� � �� literals at random from every
clause of 
, we obtain a random 2CNF-formula 
� which is
almost surely satisfiable. Let � be a satisfying truth assign-
ment of 
� and let � be the partial truth assignment obtained
from � by taking for each clause a literal satisfied by �. Since
� 
 �����, we have that � is a truth assignment on ������

variables that covers 
�; hence, � covers 
 as well.

The preceding Propositions 3.2 and 3.3 imply that, unlike
MAJORITY �SAT, for every � � 
 and every � � �, the
asymptotic behavior of #kSAT(� ����) is non-trivial.

3.3 An Improved Lower Bound for #3SAT(� �
���)

In what follows, we focus on #3SAT(� ����). So far, we have
established that if ���� exists, then ��� � ���� � �����. The
main result is an improved lower bound for ����.

Theorem 3.4: For every positive real number � 
 ������,

	
�
���

�������
� � ����� � ��

It follows that if ���� exists, then ���� � ������.

The remainder of this section is devoted to a discussion
of the methodology used and an outline of the proof of this
result. We adopt an algorithmic approach, which originated
in [Chao and Franco, 1986] and has turned out to be very
fruitful in establishing lower bound for the critical ratio � �
of random 
SAT(see Achlioptas:2001 for an overview). We
consider a particular randomized algorithm, called Extended
Unit Clause (EUC), that takes as a input a 3CNF-formula 

on � variables and attempts to construct a small partial as-
signment � covering all clauses of 
. Algorirthm EUC suc-
ceeds if the number of variables assigned by � is � ����
,
and fails otherwise. Our goal is to show that algorithm EUC
succeeds almost surely on formulas 
 from ����� �� for each
� 
 ������. Consequently, ���� � ������.

EUC Algorithm:
For � �� � to � do

If there are any 1-clauses, (forced step)
pick a 1-clause uniformly at random and satisfy it.

Otherwise, (free step)
pick an unassigned variable uniformly at random and remove all
literals involving that variable in all remaining clauses.

Return true if the number of assigned variables is � �����;
otherwise, return false.

To analyze the average performance of algorithm EUC we
use the differential equations methodology (DEM), initially
introduced in [Achlioptas, 2000] and described more exten-
sively in [Achlioptas, 2001]. Due to space limitations, we
give only a high-level description of how DEM can be ap-
plied to the analysis of algorithm EUC and also outline the
steps in the derivation of the improved lower bound ������.



Since DEM was developed to analyze satisfiability testing
algorithms, it should not be surprising that certain modifica-
tions are needed so that it can be applied to counting algo-
rithms, such as EUC. The main component of EUC not han-
dled directly by DEM is the free step, since in a satisfiability
context it is always a better strategy to assign a value to the
selected variable, instead of removing all the literals involv-
ing that variable. We will describe where and how we extend
DEM to handle free steps.

Let � ��� be the random set of variables remaining at iter-
ation � �� � � � �� and let ����� denote the set of random
�-clauses �� � � � 
� remaining at iteration �. To trace the
value of �������, we rely on the assumption that, at every it-
eration of the execution of the algorithm being considered,
a property called uniform randomness is maintained. This
property asserts that in every iteration � � � � �, condi-
tional on �� ���� � �� and ������� � ��, ����� is drawn from
����

�����. In [Achlioptas, 2001], a protocol, called card
game, is presented; this protocol restricts the possible ways
in which a variable can be selected and assigned. It is shown
that any algorithm obeying that protocol. satisfies the uniform
randomness property. Unfortunately, due to the presence of
the free steps, algorithm EUC does not satisfy the card pro-
tocol, unlike the majority of algorithms for satisfiability an-
alyzed so far. It is tedious, but straightforward, to show that
the natural generalization of the card game in which we allow
the elimination of the literals involving the selected variable
guarantees the uniform randomness property.

We analyze the algorithm EUC by studying the evolution
of the random variables that count the number of clauses in
�����, ����� � �������. We also need a random variable
� ��� that counts the number of variables assigned up to it-
eration �. We trace the evolution of ����� and � ��� by us-
ing a result in [Wormald, 1995], which states that if a set
of random variables ������ � � � � � evolving jointly
with � such that (1) in each iteration �, the random variable
������ � ������������� with high probability (w.h.p.) is
very close to its expectation and (2) ����� evolves smoothly
with �, then the entire evolution of ����� will remain close
to its mean path, that is, the path that ����� would follow
if ������ was, in each iteration, the value of its expectation.
Furthermore, this mean path can be expressed as the set of so-
lutions of a system of differential equations obtained by con-
sidering the scaled version of the space-state of the process
obtained by dividing every parameter by �.

As discussed in [Achlioptas, 2001], Wormald’s theorem
guarantees that the value of the random variables considered
differs in  ��� from its mean path. This possible deviation
produces some difficulties in our analysis; indeed, at each it-
eration we need to know the value of ����� with far more pre-
cision, because depending on the exact value taken by � ����
algorithm EUC performs different operations. To settle this
technical difficulty, Achlioptas derived an elegant solution,
called the lazy-server lemma. Intutively, this lemma states
that the aforementioned difficulty can be overcome if, instead
of handling unit clauses deterministically as soon as they ap-
pear, at iteration �we take care of unit clauses with probability
	 and perform a free step with probability �� � 	�, where 	
has to be chosen appropriately.

An additional technical difficulty remains. As discussed
in [Achlioptas, 2001], condition (2) of Wormald’s theorem
does not hold when the iteration � is getting close to �.
This second problem is fixed by determining an iteration
�� � ��� � !��
 at which our algorithm will stop the iter-
ative process and it will deal with the remaining formula in
a deterministic fashion. We now modify algorithm EUC by
incorporating the features described above and obtain the fol-
lowing algorithm:

EUC with lazy-server policy:
For � �� � to �� do

Set ���� � � with probability �
1. If ���� � �
a) If there are �-clauses,

pick a 1-clause uniformly at random and satisfy it.
b) Otherwise

pick an unset variable uniformly at random
and assign it uniformly at random

2. Otherwise
Pick an unset variable uniformly at random
and remove all literals with that underlying
variable in all remaining clauses.

Find a minimal covering for the remaining clauses.
Return true if the number of assigned variables
is �����; otherwise, return false.

Next, we compute the equation that determine the ex-
pected value for the evolution of �����, ����� and � ���,
conditional on the history of the random variables considered
up to iteration �. Let ���� be a random variable repre-
senting this history (i.e., ���� � ������ � � � � �����, where
���� � ������� ������ � ����). Since ����� distributes as
���� � �� ������, the expected number of clauses in �����
containing a given literal " is equal to ���������� � ��.
Using this, we obtain the following system of equa-
tions describing the evolution of �����, ����� and � ���.
�������������� � � �
����

���

�������������� � � �
����
��� � 	 �
����

������ � ��� 	� �
����
���

���� ��������� � 	
with initial conditions ����� � �, ����� � ��, � ��� � �.

It is time to fix the value of 	. According to the lazy-server
lemma any value such that

	 � 	
�����

�� �
� ��� 	�

������

�� �

would suffice. This inequality is solved by setting

	 � �� � #�
����������� ���

� � ��������� ��

with # � �.
To obtain the set of differential equations associated to the

process, as discussed in [Achlioptas, 2001], we consider the
scaled version of the process, �� ������ ������ $��� obtained
by dividing every parameter �� ������ ������ � ��� by �. We
obtain the following differential equations.

���
�� � � ������

���
���
�� � � ������

��� � 	��� ������
������
������ � ��� 	��� ������

������
���

��
�� � 	��� ������



with 	��� ������ � �� � #� ������������
�
�����������

and initial condi-
tions ����� � �, ����� � � and $��� � �. We solve the
system numerically using the utility dsolve of mapple (it is
easy to get ����� � ��� � ��� analytically) for � � ������,
! � ���� and # � ����.

Now we are almost done. First, we can see that for every
� � � � �� w.h.p. �
��� � � by testing numerically that
	��� ������ 
 ������ if � � ����������� and appealing to
the lazy-server lemma. Moreover, we get $�� � ����� 

������� and, transforming this result back to the random-
ized space-state, we can infer that $���� 
 ���������  ���.
Similarly, the number of remaining clauses at that iteration is
����

�� � ����
�� � ����� ����� � ����� ����� �  ��� 


���������  ���. It is easy to verify that the ratio of clauses
to variables at iteration �� is smaller than �, and we can apply
again the argument used to obtain the first naive lower bound
of ��� to guarantee that there exists a covering partial assign-
ment with size 
 ��������. Thus, by adding the previous
quantities, we get �������� 
 ���, which means that the
algorithm succeeds.

4 Experimental Results for #3SAT(� �
���)

Preliminary experiments were run for random 3CNF-
formulas with 4, 8, 16 and 32 variables on a SUN Ultra
5 workstation. For each space we generated 1200 random
3CNF-formulas with sizes ranging from 1 to 160 clauses in
length. Each clause was generated by randomly selecting 3
variables without replacement and then negating each of them
with probability of ���.

Our goal was to test the formulas for being “yes” instances
of #3SAT(� ����), i.e., for having at least as many satisfying
assignments as the square-root of the total number of truth as-
signments. For this, we implemented a threshold DPLL algo-
rithm by modifying the basic Counting Davis-Putnam algo-
rithm in [Birnbaum and Lozinskii, 1999] to include tracking
of lower and upper bounds on the count and early termination
if the threshold is violated by the upper bound or satisfied by
the lower bound.

The results are depicted in Figures 1 and 2. In both figures
the horizontal axis is the ratio of the number of clauses to
number of variables in the space. The ranges of formula sizes
represented in the graphs are 1 to 20, 1 to 40, 1 to 80, and 1
to 160 for the 4, 8, 16 and 32 variable spaces respectively.

The phase transition graphs show for each test point the
fraction of 1200 newly generated random formulas that had a
number of satisfying truth assignments greater than or equal
to the square-root of the total number of truth assignments.
They strongly suggest that ��� is a critical ratio around which
a phase transition occurs. The performance graphs show the
average number of recursive calls required to test each for-
mula and they exhibit a peak around the same ratio. In the
test runs a range of 1 to 160 clauses was used for each space
and the run-times on the SUN Ultra 5 were approximately 10,
15 and 35 minutes for the 4, 8 and 16 variable cases, and 7
hours for the 32 variable case.

After a larger set of experiments is carried out, we plan to
apply finite-size scaling to further analyze the phase transition
phenomenon exhibited by #3SAT(� ����).
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Figure 1: Phase Transition Graphs
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Figure 2: Performance Graphs

We conclude by pointing out that in Section 3.1.4
of [Littman et al., 2001] it was suggested that for every
� � � � �, the critical ratio of #3SAT(� ���) is given aprox-
imately by the formula ������ ��. By taking � � ���, this
formula suggests that the critical ratio ���� of #3SAT(� ����)
should be approximately 2.1, which is at odds with our ex-
perimental finding of 2.5 as the approximate value of � ���.
We stand behind our experimental results; actually, we be-
lieve that this discrepancy is not caused by any significant dif-
ference in the outcome between the experiments carried out
by [Littman et al., 2001] and ours, but rather is due to the way
in which the above formula was extrapolated from the exper-
iments in [Littman et al., 2001]. Specifically, in [Littman et
al., 2001] experiments were carried out by varying � and the
ratio � of clauses to variables, but keeping the number of vari-
ables to a fixed value � � 
�. The above formula ������ ��
was then derived by visual inspection of the resulting sur-



face. We believe that, instead, the value of the critical ratio
should be estimated by the crossover points of the curves ob-
tained from experiments for different values of the number �
of variables.. In any case, we see no theoretical argument or
experimental evidence that a linear relationship between the
critical ratio and � should hold.
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