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Av. Päısos Catalans 26, 43007 Tarragona, Spain

Abstract

An offensive alliance in a graph Γ = (V,E) is a set of vertices S ⊂ V

where for every vertex v in its boundary it holds that the majority
of vertices in v’s closed neighborhood are in S. In the case of strong
offensive alliance, strict majority is required. An alliance S is called
global if it affects every vertex in V \S, that is, S is a dominating set
of Γ. The offensive alliance number ao(Γ) (respectively, strong offen-
sive alliance number aô(Γ)) is the minimum cardinality of an offensive
(respectively, strong offensive) alliance in Γ. The global offensive al-
liance number γo(Γ) and the global strong offensive alliance number
γô(Γ) are defined similarly. Clearly, ao(Γ) ≤ γo(Γ) and aô(Γ) ≤ γô(Γ).
It was shown in [Discuss. Math. Graph Theory 24 (2004), no. 2,
263-275] that ao(Γ) ≤ 2n

3 and aô(Γ) ≤ 5n
6 , where n denotes the or-

der of Γ. In this paper we obtain several tight bounds on γo(Γ) and
γô(Γ) in terms of several parameters of Γ. For instance, we show that
2m+n
3∆+1 ≤ γo(Γ) ≤ 2n

3 and 2(m+n)
3∆+2 ≤ γô(Γ) ≤ 5n

6 , where m denotes the
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size of Γ and ∆ its maximum degree (the last upper bound holds true
for all Γ with minimum degree greatest or equal to two).

Keywords: offensive alliance, global alliance, domination, independence
number.

AMS Subject Classification numbers: 05C69; 15C05

1 Introduction

The study of defensive alliances in graphs, together with a variety of other
kinds of alliances, was introduced in [6]. In the referred paper was initiated
the study of the mathematical properties of alliances. In particular, several
bounds on the defensive alliance number were given. The particular case of
global (strong) defensive alliance was investigated in [4].

The study of offensive alliances was initiated by Favaron et al. in [2]
where were derived several bounds on the offensive alliance number and the
strong offensive alliance number. On the other hand, in [7] were obtained sev-
eral tight bounds on different types of alliance numbers of a graph: (global)
defensive alliance number, global offensive alliance number and global dual
alliance number. In particular, was investigated the relationship between
the alliance numbers of a graph and its algebraic connectivity, its spectral
radius, and its Laplacian spectral radius. A particular study of the alliance
numbers, for the case of planar graphs, can be found in [9]. Moreover, for
the study of defensive alliances in the line graph of a simple graph we cite
[10].

The aim of this paper is to study mathematical properties of the global
offensive alliance number and the global strong offensive alliance number
of a graph. We begin by stating some notation and terminology. In this
paper Γ = (V,E) denotes a simple graph of order n and size m. The degree
of a vertex v ∈ V will be denoted by δ(v), the minimum degree will be
denoted by δ, and the maximum degree by ∆. The subgraph induced by
a set S ⊂ V will be denoted by 〈S〉. For a non-empty subset S ⊂ V ,
and a vertex v ∈ V , we denote by NS(v) the set of neighbors v has in S:
NS(v) := {u ∈ S : u ∼ v}. Similarly, we denote by NV \S(v) the set of
neighbors v has in V \ S: NV \S(v) := {u ∈ V \ S : u ∼ v}. The boundary of

a set S ⊂ V is defined as ∂(S) :=
⋃

v∈S

NV \S(v).
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A non-empty set of vertices S ⊂ V is called offensive alliance if and only
if for every v ∈ ∂(S), |NS(v)| ≥ |NV \S(v)| + 1. That is, a non-empty set of
vertices S ⊂ V is called offensive alliance if and only if for every v ∈ ∂(S),
2|NS(v)| ≥ δ(v) + 1.

An offensive alliance S is called strong if for every vertex v ∈ ∂(S),
|NS(v)| ≥ |NV \S(v)| + 2. In other words, an offensive alliance S is called
strong if for every vertex v ∈ ∂(S), 2|NS(v)| ≥ δ(v) + 2.

The offensive alliance number (respectively, strong offensive alliance
number), denoted ao(Γ) (respectively, aô(Γ)), is defined as the minimum
cardinality of an offensive alliance (respectively, strong offensive alliance) in
Γ.

A non-empty set of vertices S ⊂ V is a global offensive alliance if for every
vertex v ∈ V \S, |NS(v)| ≥ |NV \S(v)|+1. Thus, global offensive alliances are
also dominating sets, and one can define the global offensive alliance number,
denoted γo(Γ), to equal the minimum cardinality of a global offensive alliance
in Γ. Analogously, S ⊂ V is a global strong offensive alliance if for every
vertex v ∈ V \ S, |NS(v)| ≥ |NV \S(v)| + 2, and the global strong offensive
alliance number, denoted γô(Γ), is defined as the minimum cardinality of a
global strong offensive alliance in Γ.

In this paper we obtain several tight bounds on γo(Γ) and γô(Γ) in terms
of several parameters of Γ. For instance, we show that

⌈

2m+ n

3∆ + 1

⌉

≤ γo(Γ) ≤
⌊

2n

3

⌋

(1)

and
⌈

2(m+ n)

3∆ + 2

⌉

≤ γô(Γ) ≤
⌊

5n

6

⌋

(2)

(the last upper bound holds true for all Γ with minimum degree greatest or
equal to two).

2 Bounding above the global offensive alliance

number

It was shown in [2] that the offensive alliance number of a graph of order
n ≥ 2 is bounded by

ao(Γ) ≤
⌊

2n

3

⌋

, ao(Γ) ≤
⌊

γ(Γ) + n

2

⌋

, (3)
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where γ(Γ) denotes de domination number of Γ, and the strong offensive
alliance number of a graph of order n ≥ 3 is bounded by

aô(Γ) ≤
⌊

5n

6

⌋

. (4)

Clearly, ao(Γ) ≤ γo(Γ) and aô(Γ) ≤ γô(Γ). Now we are going to obtain the
above bounds for the case of global alliances.

Theorem 1. For all connected graph Γ of order n ≥ 2,

i) γo(Γ) ≤ min

{

n− α(Γ),

⌊

n + α(Γ)

2

⌋}

, where α(Γ) denotes the inde-

pendence number of Γ;

ii) γo(Γ) ≤
⌊

2n

3

⌋

;

iii) γo(Γ) ≤
⌊

γ(Γ) + n

2

⌋

, where γ(Γ) denotes the domination number of Γ;

iv) γo(Γ) ≤
⌊

n(2µ− δ)

2µ

⌋

, where µ denotes the Laplacian spectral radius of

Γ and δ denotes its minimum degree.

Proof. Let S ⊂ V be an independent set of maximum cardinality α(Γ). Since
the set V \S is a global offensive alliance in Γ = (V,E), then

γo(Γ) + α(Γ) ≤ n. (5)

If |V \S| = 1, then Γ = K1,n−1 and γo(Γ) = 1. If |V \S| 6= 1, let V \S = X∪Y

be a partition of V \S such that the edge-cut between X and Y has the
maximum cardinality. Suppose |X| ≤ |Y |. For every v ∈ Y , |NS(v)| ≥ 1
and |NX(v)| ≥ |NY (v)|. Therefore, the set W = S ∪X is a global offensive
alliance in Γ, i.e., for every v ∈ Y , |NW (v)| ≥ |NY (v)| + 1. Then we have,
2|X|+ α(Γ) ≤ n and γo(Γ) ≤ |X|+ α(Γ). Thus,

2γo(Γ)− α(Γ) ≤ n. (6)

The bounds i) and ii) follow from (5) and (6).
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The proof of iii) follows in the spirit of the proof of (6): in this case
we take S ⊂ V as a dominating set of minimum cardinality. Finally, it was
shown in [8] that

α(Γ) ≤ n(µ− δ)

µ
.

Thus, by (6) we obtain iv).

The above bounds are attained, for instance, for the cocktail-party graph
Γ = K6−F ∼= K2,2,2 where n = µ = 6, δ = 4, α(Γ) = γ(Γ) = 2 and γo(Γ)=4.

In the spirit of the proof of iii) we obtain

2γo(Γ)− γc ≤ n, (7)

where γc(Γ) denotes the connected-domination number of Γ. Moreover, it
was shown in [5] that if Γ is a connected graph of order n and maximum
degree ∆, then

γc ≤ n−∆. (8)

Thus, by (7) and (8) we obtain

γo(Γ) ≤
⌊

2n−∆

2

⌋

. (9)

This bound improves ii) if ∆ > 2n
3
.

Theorem 2. For all connected graph Γ of order n,

i) γô(Γ) ≤
⌊

n + γ2(Γ)

2

⌋

, where γ2(Γ) denotes the 2-domination number

of Γ.

If the minimum degree of Γ is greatest or equal to two, then

ii) γô(Γ) ≤ n− α(Γ), where α(Γ) denotes the independence number of Γ;

iii) γô(Γ) ≤
⌊

5n

6

⌋

;

iv) if Γ is a cubic graph, then γ0̂(Γ) ≤
⌊

3n

4

⌋

.
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Proof. Let H ⊂ V be a 2-dominating set of minimum cardinality. If |V \H| =
1, then γ2(Γ) = n − 1 and γô(Γ) ≤ n − 1. If |V \H| 6= 1, let V \H = X ∪ Y

be a partition of V \H such that the edge-cut between X and Y has the
maximum cardinality. Suppose |X| ≤ |Y |. For every v ∈ Y , |NH(v)| ≥ 2
and |NX(v)| ≥ |NY (v)|. Therefore, the set W = H ∪ X is a global strong
offensive alliance in Γ, i.e., for every v ∈ Y , |NW (v)| ≥ |NY (v)|+2. Then we
have,

2|X|+ γ2(Γ) ≤ n (10)

and
γô(Γ) ≤ |X|+ γ2(Γ). (11)

Thus, by (10) and (11), i) follows.
Let S ⊂ V be an independent set of maximum cardinality α(Γ). Since

δ ≥ 2, the set V \S is a global strong offensive alliance in Γ = (V,E). Hence,
ii) follows. On the other hand, it was shown in [1] that

δ ≥ 2 ⇒ γ2(Γ) ≤
2n

3
. (12)

So, by i) and (12), iii) follows.
Finally, if Γ is connected with maximum degree ∆ ≤ 3, then for all global

strong offensive alliance S such that |S| = γ0̂(Γ), V \S is an independent set.
Thus, m ≤ 3(n− γ0̂(Γ)) + γ0̂(Γ). Hence, the result follows.

Figure 1:

The bounds i) and ii) are attained, for instance, for the cocktail-party
graph Γ = K6 − F where γ2(Γ) = 2 and γô(Γ) = 4. The bound iii), is
attained, for instance, for the left hand side graph of Figure 1: in this case
γô(Γ) = 6. Example of equality in iv) is Γ = K3 ×K2. We emphasize that
there are graphs with minimum degree one, such that bounds ii) and iii fail.
This is, for instance, the case of the star graph, Γ = K1,r, with r ≥ 6. In this
case n = r + 1 and γô(Γ) = α(Γ) = r.
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3 Bounding below the global offensive alliance

number

Theorem 3. For all connected graph Γ of order n, minimum degree δ and
maximum degree ∆,

i) γ0(Γ) ≥











⌈

n(δ+1)
2∆+δ+1

⌉

if δ odd;

⌈

nδ
2∆+δ

⌉

otherwise;

ii) γ0̂(Γ) ≥















⌈

n(δ+3)
2∆+δ+3

⌉

if δ odd;

⌈

n(δ+2)
2∆+δ+2

⌉

otherwise.

Proof. Let γ
k
(Γ) denotes the k-domination number of Γ. Since all global

strong offensive alliance is a
⌈

δ+1
2

⌉

-dominating set and all global strong of-
fensive alliance is a

⌈

δ+2
2

⌉

-dominating set,

γ⌈ δ+1
2 ⌉(Γ) ≤ γ0(Γ) (13)

and
γ⌈ δ+2

2 ⌉(Γ) ≤ γ0̂(Γ). (14)

On the other hand, for all k-dominating set S ⊂ V , k(n−|S|) ≤ ∆|S|. Hence,

γ
k
(Γ) ≥

⌈

kn

∆+ k

⌉

. (15)

Therefore, the result follows.

Examples of equality in above theorem are Γ = K3,3 and the 3-cube
graph.

The following result provides tight bounds on γo(Γ) and γô(Γ) in terms
of the order and size of Γ.

Theorem 4. For all graph Γ of order n and size m,

γo(Γ) ≥
⌈

3n−
√
9n2 − 8n− 16m

4

⌉
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and

γô(Γ) ≥
⌈

3n+ 1−
√
9n2 − 10n− 16m+ 1

4

⌉

.

Proof. If S denotes a global offensive alliance in Γ = (V,E), then

2m =
∑

v∈V \S

δ(v) +
∑

v∈S

δ(v) ≤ (n− |S|)(2|S| − 1) + |S|(n− 1). (16)

Hence, solving 2|S|2 − 3n|S| + 2m + n ≤ 0 we obtain the bound on γo(Γ).
The bound on γô(Γ) is derived by analogy by using

2m ≤ (n− |S|)(2|S| − 2) + |S|(n− 1) (17)

instead of (16).

Example of equality in the above bounds is the right hand side graph
of Figure 1 where S = {2, 6, 5} is a minimal global offensive alliance and
S ′ = {1, 3, 4} is a minimal global strong offensive alliance. Even so, the
following bounds, expressed in terms of the order, size, and the maximum
degree of Γ, improve the previous result.

Theorem 5. For all graph Γ of order n, size m and maximum degree ∆,

γ0(Γ) ≥
⌈

2m+ n

3∆ + 1

⌉

and γ0̂(Γ) ≥
⌈

2(m+ n)

3∆ + 2

⌉

.

Proof. If S ⊂ V , then

|S|∆ ≥
∑

v∈V \S

|NS(v)|. (18)

Moreover, if S is a global offensive alliance in Γ, then

∑

v∈V \S

|NS(v)| ≥
∑

v∈V \S

|NV \S(v)|+ (n− |S|). (19)

8



Thus,

2m =
∑

v∈V \S

δ(v) +
∑

v∈S

δ(v)

=
∑

v∈V \S

|NS(v)|+
∑

v∈V \S

|NV \S(v)|+
∑

v∈S

δ(v)

≤ 2
∑

v∈V \S

|NS(v)|+ |S| − n +
∑

v∈S

δ(v)

≤ (3∆ + 1)|S| − n.

So, the bound on γ0(Γ) follows. If the global offensive alliance S is strong,
then we have

∑

v∈V \S

|NS(v)| ≥
∑

v∈V \S

|NV \S(v)|+ 2(n− |S|). (20)

Basically, the bound on γô(Γ) follows as before by using (20) instead of
(19).

The above bounds are reached, for instance, in the case of the 3-cube
graph Γ = K2 ×K2 ×K2, where γo(Γ) = γô(Γ) = 4. Notice that Theorem 4
only gives γo(Γ) ≥ 2.

As we can see in [7], we can obtain bounds on the alliance numbers from
the spectrum of Γ or from the Laplacian spectrum of Γ. For instance, the
following result was proved in [7]. For completeness we include the proof of
this result.

Theorem 6. For all graph Γ of order n and size m, minimum degree δ and
Laplacian spectral radius µ,

γo(Γ) ≥
⌈

n

µ

⌈

δ + 1

2

⌉⌉

and γô(Γ) ≥
⌈

n

µ

(⌈

δ

2

⌉

+ 1

)⌉

.

Proof. It was shown in [3] that the Laplacian spectral radius of Γ, µ, satisfies

µ = 2nmax

{
∑

vi∼vj
(wi − wj)

2

∑

vi∈V

∑

vj∈V
(wi − wj)2

: w 6= αj for α ∈ R

}

. (21)

Let S ⊂ V . From (21), taking w ∈ R
n defined as

wi =

{

1 if vi ∈ S;
0 otherwise,

9



we obtain

µ ≥
n

∑

v∈V \S

|NS(v)|

|S|(n− |S|) . (22)

Moreover, if S is a global offensive alliance in Γ,

|NS(v)| ≥
⌈

δ(v) + 1

2

⌉

∀v ∈ V \ S. (23)

Thus, (22) and (23) lead to

µ ≥ n

|s|

⌈

δ + 1

2

⌉

. (24)

Therefore, solving (24) for |S|, and considering that it is an integer, we obtain
the bound on γao(Γ). If the global offensive alliance S is strong, then

|NS(v)| ≥
⌈

δ(v)

2

⌉

+ 1 ∀v ∈ V \ S. (25)

Thus, (22) and (25) lead to the bound on γô(Γ).

If Γ is the Petersen graph, then µ = 5. Thus, Theorem 6 leads to
γo(Γ) ≥ 4 and γô(Γ) ≥ 6. Therefore, the above bounds are tight.

4 Offensive alliances and connected subgraphs

An offensive alliance (global offensive alliance) S in Γ is minimal if no proper
subset of S is an offensive alliance (global offensive alliance) in Γ.

Theorem 7. Let Γ = (V,E) be a connected graph of order n and diameter
D(Γ). If Γ has a minimal (global) offensive alliance S such that 〈V \S〉 is
connected, then D(Γ) ≤ n− |S|+ 1.

Proof. If S ⊂ V is a minimal (global) offensive alliance in Γ then V \S is a
dominating set in Γ. So, if 〈V \S〉 is connected, then D(Γ) ≤ D(〈V \S〉) + 2.
Hence, D(Γ) ≤ n− |S|+ 1.
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We remark that there are graphs such that for every minimal (global)
offensive alliance S, 〈V \S〉 is not connected. For instance, the case of the
3-cube graph.

The above bound is tight. Let Γ be the left hand side graph of Figure
2. In this case the set S = {1, 3, 5} is a minimal global offensive alliance and
V \S = {2, 4} is connected. Thus, 3 = D(Γ) ≤ n− |S|+ 1 = 3.

Theorem 8. Let Γ = (V,E) be a graph of order n and maximum degree ∆.
For all minimal global offensive alliance S such that 〈V \S〉 is connected,

|S| ≥
⌈

3n− 2

∆ + 3

⌉

.

Moreover, for all minimal global strong offensive alliance S such that 〈V \S〉
is connected,

|S| ≥
⌈

4n− 2

∆ + 4

⌉

.

Proof. Let S ⊂ V . As 〈V \S〉 is connected,
∑

v∈V \S

|NV \S(v)| ≥ 2(n− |S| − 1). (26)

So, the first bound follows, by (18), (19) and (26). The second bound is
derived by analogy by using (20) instead of (19).

Figure 2:

The above bounds are tight. If Γ is the left hand side graph of Figure
2, then S = {1, 3, 5} is a minimal global offensive alliance in Γ and V \S =
{2, 4} is connected. Moreover, if Γ is the right hand side graph of Figure 2,
then S = {3, 4, 5, 6} is a minimal global strong offensive alliance in Γ and
V \S = {1, 2} is connected.
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We define the global-connected offensive alliance number, γco(Γ), (respec-
tively, global-connected strong offensive alliance number γcô(Γ)) as the mini-
mum cardinality of any global offensive alliance (respectively, global strong
offensive alliance) in Γ whose induced subgraph is connected.

Theorem 9. Let Γ be a simple graph of order n, size m, diameter D and
maximum degree ∆. The global-connected offensive alliance number of Γ is
bounded by

γco(Γ) ≥
⌈

2m+ n+ 2(D − 1)2

2n+∆+ 1

⌉

and the global-connected strong offensive alliance number of Γ is bounded by

γĉo(Γ) ≥
⌈

2 (m+ n+ (D − 1)2)

2n+∆+ 2

⌉

.

Proof. If S is a global offensive alliance in Γ = (V,E), then by (19) we have

(|S| − 1)(n− |S|) ≥
∑

v∈V \S

|NV \S(v)|. (27)

Thus,

(2|S| − 1)(n− |S|) ≥
∑

v∈V \S

|NS(v)|+
∑

v∈V \S

|NV \S(v)| =
∑

v∈V \S

δ(v). (28)

Therefore,

(2|S| − 1)(n− |S|) + ∆|S| ≥
∑

v∈V \S

δ(v) +
∑

v∈S

δ(v) = 2m. (29)

On the other hand, if S is a dominating set and 〈S〉 is connected, then
D(Γ) ≤ D(〈S〉) + 2. So, D(Γ) ≤ |S|+ 1. Hence,

2n|S| − n+ |S|+∆|S| ≥ 2m+ 2(D(Γ)− 1)2. (30)

Thus, the bound on γco(Γ) follows. Basically the bound on γĉo(Γ) follows as
before by using (20) instead of (19).

The above bounds are tight, as we show in the following instance. Let
Γ3,t be the graph obtained by joining every vertex of the complete graph K3

with every vertex of the trivial graph of order t ≥ 8. In such case, γco(Γ3,t) =
γĉo(Γ3,t) = 3 and Theorem 9 leads to γco(Γr,t) ≥ 3 and γĉo(Γ3,t) ≥ 3.
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