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a b s t r a c t

A graph model for a set S of splits of a set X consists of a graph and a map from X to
the vertices of the graph such that the inclusion-minimal cuts of the graph represent S.
Phylogenetic trees are graph models in which the graph is a tree. We show that the model
can be generalized to a cactus (i.e. a tree of edges and cycles) without losing computational
efficiency. A cactus can represent a quadratic rather than linear number of splits in linear
space. We show how to decide in linear time in the size of a succinct representation of
S whether a set of splits has a cactus model, and if so construct it within the same time
bounds. As a byproduct, we show how to construct the subset of all compatible splits and
a maximal compatible set of splits in linear time. Note that it is N P -complete to find a
compatible subset of maximum size. Finally, we briefly discuss further generalizations of
tree models.

1. Introduction

The goal of phylogenetic analysis is to determine and describe the evolutionary relationship between species (taxa). A
phylogenetic tree describes in particular the branching process when during time a species is divided into two separate
species. One method of obtaining such an evolutionary tree is to consider a bunch of properties (binary characters) that the
actual speciesmay ormay not have. Then the goal is to construct a tree such that in particular the leaves are labeledwith the
different species and the properties correspond to the edges: The sets of species mapped to the two connected components
of the tree deleting one edge corresponds to the set of species having or not having the corresponding property. Hence, a
binary character induces a split, i.e., a partition of the set of taxa into two non-empty parts. In the following, we assume that
each split is given by the smaller of its two subsets.

Not every set of splits can be represented in a phylogenetic tree. The splits have to be pairwise compatible, i.e., the
intersection of two splits S and T has to be S, T , or the empty set. Given a set S of m pairwise compatible splits of a set X
of n taxa, Gusfield [19] showed how to construct an evolutionary tree in O(mn) time. Although he also gives a matching
lower bound for the worst case, Agarwala et al. [1] improved the running time for constructing a phylogenetic tree to
O(n + m + f ) time, where f ≤ mn/2 is the sum of the sizes of all splits. The Buneman graph [8] or the tree-popping
algorithm of Meacham [27,28] are other approaches for constructing the phylogenetic tree of a set of compatible splits. One
way of handling incompatible sets of splits is to compute a significant compatible subset of splits. It was shown by Day
and Sankoff [10] that the problem of finding a maximum compatible subset of splits is N P -complete. On the other hand,
it is well known, that a maximal compatible subset of splits can be found greedily. We sketch how the greedy algorithm
can be implemented to run in O(n + m + f ) time. Both, a maximum and a maximal compatible subset of splits have the
disadvantage that they are not unique. Thus, we consider the subset of splits of S that are pairwise compatible with all
other splits in S. This subset of all compatible splits is also known as the splits of the loose consensus tree [6] or the kernel
splits [3]. A comparison of this set of splits to other compatible subsets of splits can be found in [7, Chapter 6].
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Fig. 1. A drawing of the set of splits in Fig. 2 with axis-parallel rectangles.

Recently, McConnell [25] gave a linear time algorithm for constructing a generalized PQ-tree from which the set of all
compatible splits can be deduced. The algorithm is based on the overlap components of Dahlhaus [9]. We give a different
algorithm that computes the subset of all compatible splits inO(n+m+ f ) time. Both, the algorithm of Dahlhaus [9] and our
algorithm use lexicographical sorting as a basic construction step, however, for completely different purposes. We believe
that our algorithm is easier to understand and to implement. It also leads to a complete characterization of incompatible
splits in terms of prefix trees.

Another way of handling incompatible sets of splits is to extend phylogenetic trees to more complex networks. An
overview on the different kinds of phylogenetic networks and their construction can be found, e.g., in [24,23,30]. Two basic
types of networks representing splits are: Recombination networks (see e.g. [21]) and networks like splits graphs [2,17] that
represent incompatible splits by some minimal cuts of a graph. We use a representation that is similar to the latter case.

A graph model for a set of splits is a graph in which some of the vertices are labeled by the taxa such that there is a
one-to-one correspondence between the minimal cuts of the graph and the splits. Note that a phylogenetic tree is a tree
model. A cactus is a tree of edges and cycles. Both, a tree model and a cactus model require only O(n) space. While a tree
model can represent linearly many, cactus models can represent up to a quadratic number of splits. A cactus model for the
set of splits in Fig. 2(a) is given in Fig. 5. Note that galled trees [21] are also trees of edges and cycles. However, they belong
to the category of recombination networks and represent sets of splits differently.

Originally, the cactus model was introduced by Dinitz et al. [13] to represent the set of all minimum cuts of a connected
graph. Dinitz andNutov [14] later characterized all sets of splits that have a cactusmodel.While the proof is constructive [15],
it appears to be difficult to translate it into an algorithm. So far, efficient algorithms are known for constructing the
cactus of all minimum cuts of a graph [12,18,31,33]. A cactus model can also be deduced from the generalized PQ-tree
of McConnell [25].

Sets of splits that have a cactus model also have a characterization in terms of graph drawing. They are exactly the sets of
splits that have a drawing with axis-parallel rectangles [5]. See Fig. 1 for such a drawing. In this paper, we give an algorithm
that decides inO(n+m+ f ) timewhether a set of splits can be represented in a cactus, and if so constructs themodel in the
same asymptotic running time. The construction is based on the tree model of the subset of all compatible splits. In addition
it uses only some easy counting and sorting arguments. In the conclusion, we discuss that our algorithm extends to graph
models consisting of trees of edges and cliques or trees of edges, cycles, and cliques, respectively. Sets of splits having such
graph models have been characterized in [29,15], respectively.

The paper is organized as follows. In Section 2, we give basic definitions and introduce the necessary concepts. We define
the graph model of a set of splits in Section 3. In Section 4 we recall how to construct a tree model for a compatible set of
splits utilizing so-called tries. In Sections 5 and 6 we show how to construct a maximal compatible subset and the subset
of all compatible splits, respectively. Finally, in Section 7 we examine the existence and construction of a cactus model. We
conclude in Section 8.

2. Preliminaries

Throughout this paper, let X = {x1, . . . , xn} denote a finite set of n taxa. We will denote the size n of the set X by |X |. By
S ⊂ X we denote that S is a subset of X including that S might be equal to X . A split of X is the unordered pair {S, X \ S} such
that∅ � S � X .We say that S induces {S, X\S}.Wewill assume that the splits are given by the smaller subset. So, throughout
this paper, let S denote a set of m non-empty subsets S of X such that |S| ≤ |X \ S| and such that {S, X \ S} �= {T , X \ T }
for two elements S, T ∈ S. We will refer to the elements of S also as splits. Further, let f = ∑

S∈S |S|. Fixing an ordering
x1, . . . , xn of X , a split can be represented by a characteristic vector. The characteristic vector of the split induced by S is the
vector (v1, . . . , vn) ∈ {0, 1}n such that for all i = 1, . . . , n we have vi = 1 if and only if xi ∈ S. Hence, a set of splits can be
represented by a matrix where the columns are the characteristic vectors of the splits (provided an ordering of the splits is
fixed). An example is given in Fig. 2(a). A more succinct way of representing a split {S, X \ S} is to represent the set S that
induces it by a member list, i.e., the list of elements of S. An example is given in Fig. 2(b). Throughout this paper we assume
that splits are given in this succinct representation.

Let A = (aij)i=1,...,n,j=1,...,m be the matrix of characteristic vectors of the ordered set S = {S1, . . . , Sm} of splits with
respect to an ordering x1, . . . , xn of the taxa. We say that the splits are lexicographically sorted with respect to the fixed
ordering of the taxa if the columns of A are sorted lexicographically, i.e., if for 1 ≤ j < k ≤ m it holds that there is an
1 ≤ � ≤ n such that a�j = 1, a�k = 0 and aij = aik, i < �. Analogously, we say that the taxa are lexicographically sorted
with respect to an ordering of the splits if the columns of A are lexicographically sorted. A lexicographical sorting of splits
or taxa can be constructed in O(n + m + f ) time using partition refinement [34].



2363

(a) Characteristic vectors.

(b) Membership lists. (c) Tree model.

Fig. 2. A set S = {S1, . . . , S19} of splits of the set X = {x1, . . . , x12} represented as (a) characteristic vectors and (b) as membership lists. (c) A tree model
for the set S‖ = S \ {S2, S4, S11, S13} of compatible splits. ϕ is indicated by vertex labels and edge labels indicate the split that the edge represents.

If X is the set of vertices of a graph, a bipartition of X is also called a cut of the graph. A cut {S, V \ S} of a connected graph
G = (V , E) isminimal if and only if both S and V \ S induce connected subgraphs of G.

A rooted tree (T , r) consists of a connected graph T without cycles and a root r . The leaves are the vertices of degree one.
Vertex ν is the predecessor of a vertex μ (and μ is a child of ν and of the edge {ν, μ}) if ν is the next vertex after μ on the
unique path from μ to the root. The subtree rooted at vertex ν is the subgraph of T induced by the vertices μ for which ν is
contained on the path from μ to r . The level of a vertex ν is the length of the path from ν to the root r . The subtree root of a
set E ′ of edges and vertices of T is the vertex ν on the highest level such that E ′ is contained in the subtree rooted at ν.

3. Graph models and compatibility

A graph model for a set S of splits of a set X is a pair (G, ϕ) that consists of an undirected graph G = (V , E) and amapping
ϕ : X → V such that S is represented by the minimal cuts of G, i.e., the set of splits represented by S is

{{ϕ−1(S), ϕ−1(X \ S)}; {S, X \ S} is a minimal cut of G}.
A vertex ν ∈ V is called empty if ϕ−1(ν) = ∅.

Two splits {S, X \ S} and {T , X \ T } are compatible if at least one of the four corner sets

S ∩ T , S ∩ (X \ T ), (X \ S) ∩ T and (X \ S) ∩ (X \ T )

is empty. In the example in Fig. 2 there are two pairs of splits that are incompatible: splits S2 and S4 and splits S11 and S13,
respectively.

There is a tree model (i.e. a graph model (G, ϕ) such that G is a tree) for a set S of splits if and only if all splits in S are
pairwise compatible [19]. Let S‖ ⊂ S be the set of splits that are compatible with each split in S. We will call the splits
in S‖ the compatible splits of S. An example for the tree model of the subset of all compatible splits is given in Fig. 2(c).
Further, we call a set S of splits compatible, if all splits in S are pairwise compatible. Pairs of splits, sets of splits, or splits of
a set that are not compatible are called incompatible.
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Fig. 3. A trie for the set of splits in Fig. 2.

A cactus is a connected graph in which every edge belongs to at most one cycle. A cactus model is a graph model (G, ϕ)
such that G is a cactus. Note that the minimal cuts of a cactus are induced by one tree edge or by two edges belonging to the
same cycle. A cactus model for a set of splits is given in Fig. 5.

The split induced by (S \ T ) ∪ (T \ S) is called the diagonal split of two incompatible splits {S, X \ S} and {T , X \ T }. A
set S of splits is crossing if and only if it holds for every pair of incompatible splits that the splits induced by the four corner
sets are in S and the diagonal split is not in S. Dinitz and Nutov [14,15] showed that a set S of splits can be represented by
a cactus model if and only if it is crossing.

A cactus model (G, ϕ) is normal if there exists no empty vertex v in G with the following two properties: deleting v
splits G into exactly two connected components and v is incident to an edge that does not belong to a cycle. Nagamochi and
Kameda [32] showed that a normal cactus model is unique up to cycles of length three (which can also be represented as a
star) and that any cactus model can be transformed into a normal cactus model in linear time.

4. Tries

Treemodels can be constructed via tries [20]. A trie (or prefix tree) [11] for a set L of strings over an alphabetΣ is a rooted
tree (T , r) with the following properties. Each edge of T is labeled with a symbol from Σ . No vertex ν of T has two children
μ1, μ2 such that {ν, μ1} and {ν, μ2} have the same label. Let ν be a vertex of T and let σ1, . . . , σk be the symbols labeling the
edges on the path from r to ν. Then ν represents the string σ1 . . . σk. The set of strings represented by all leaves is contained
in L and the set of strings represented by all vertices of T contains L. A trie can be seen as a deterministic finite automaton.
An example for a trie can be found in Fig. 3.

Assume now that S = {S1, . . . , Sm} is lexicographically ordered. Consider for each taxon x ∈ X a string. It is the list of
splits in S that contain x, i.e., x is associated with the string Sj1 . . . Sjk such that j1 < j2 < · · · < jk and {S ∈ S; x ∈ S} =
{Sj1 , . . . , Sjk}. Consider the trie (T = (V , E), r) for the strings associatedwith the taxa x1, . . . , xn. The trie induces amapping
ϕ : X → V . The taxon x ∈ X is mapped to a vertex ν if the string associated with x equals the sequence of labels on the path
from r to ν. See Fig. 3 for an example. If S is compatible, then no two edges in T have the same label and (T , ϕ) is the tree
model for S [20]. In general, we will refer to (T , ϕ, r) as the trie constructed for S.

The trie can be constructed in O(n + m + f ) time [16]. Using a counter for each split, the multiple labels in the trie can
be easily determined in O(m + f ) time with any search on the trie. Summarizing, this yields the following theorem stating
the same result as in [1].

Theorem 1. It can be tested in O(n + m + f ) time whether a set of splits is compatible and a tree model for a compatible set of
splits can be constructed in O(n + m + f ) time.

5. A maximal compatible subset of splits

Amaximal compatible subset ofS is a compatible subsetS′ ⊂ Swith the property thatS′ ∪{S} is not compatible for any
S ∈ S \ S′. We briefly sketch how to compute a maximal compatible subset using a method similar to the one introduced
by Gusfield [19]. Let S = {S1, . . . , Sm} be lexicographically sorted with respect to the ordering x1, . . . , xn of the taxa. Since
each split is represented by its smaller part, we have the following lemma.

Lemma 2. Two splits Sj, S� ∈ S, j < � are incompatible if and only if Sj ∩ S� �= ∅ and S� \ Sj �= ∅.
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Fig. 4. The matrix of the characteristic vectors of four splits with respect to the three lexicographical orderings indicated on page 9. Only D is critical with
respect to any of the three indicated orderings of the taxa. However, each of the four splits is high with respect to some ordering.

Proof. Necessity is obvious by definition. So assume that Sj ∩ S� �= ∅ and (X \ Sj) ∩ S� �= ∅. It remains to show that neither
of the other two corner sets is empty. Since j < �, it follows from the lexicographical sorting that Sj �⊂ S� and hence,
Sj ∩ (X \ S�) �= ∅. Finally, |Sj ∪ S�| = |Sj| + |S�| − |Sj ∩ S�| ≤ n/2 + n/2 − 1 < n, hence (X \ Sj) ∩ (X \ S�) �= ∅. �

Let S0 = X . We define the set RRL1(S�) ⊂ {S0, . . . , S�−1} of recursively rightmost-left-1’s of a split S� ∈ S by including
Sj, 0 ≤ j < � in RRL1(S�) if and only if |RRL1(Sj)| ≤ 1 and it exists 1 ≤ i ≤ n such that xi ∈ Sj ∩ S� and xi �∈ Sk for each
k = j+1, . . . , �−1 with |RRL1(Sk)| = 1.We call the splits for which the set of recursively rightmost-left-1’s contains more
than one set the critical splits.

The intuition behind the set of recursively rightmost-left-1’s is the following. Consider thematrix of characteristic vectors
of S. For each 1 in the �th column consider the rightmost column j < � such that there is a 1 in the same row and such that
Sj is not critical. If there is no such column, let j = 0. Then Sj is contained in RRL1(S�). Consider, e.g., the second matrix in
Fig. 4, i.e., the lexicographical ordering A, B,D, C of the splits with respect to the ordering x4, x1, x3, x5, x2, x6 of the set X of
taxa. RRL1(D) = {B, X} and, hence, D is critical. It follows that RRL1(C) = {X}.

Lemma 2 and an argumentation similar to [19] yield the following.

Lemma 3. Deleting all critical splits from S results in a maximal compatible subset of S.

Proof. (1) Among two splits that are not compatible at least one is critical: Else, suppose that j2 is minimal such that there
is a j1 < j2 with the property that the two splits Sj1 and Sj2 are not compatible and such that neither Sj1 nor Sj2 is critical.
Then, there are 1 ≤ i, k ≤ n with xi ∈ Sj1 ∩ Sj2 and xk ∈ Sj2 \ Sj1 . Let RRL1(Sj2) = {Sj}. Then the set Sj is not critical and
xi, xk ∈ Sj. Hence, by Lemma 2, Sj and Sj1 are not compatible. Since j1 is not critical it follows further that j1 < j < j2.
This contradicts the minimality of j2.

(2) For any critical split there is a split that is not critical such that the two splits are incompatible: Let S ∈ S be a critical
split and let Sj, Sk ∈ RRL1(S), j < k. Then there are 1 ≤ i1, i2 ≤ nwith xi1 ∈ (Sj ∩ S�) \ Sk and xi2 ∈ Sk ∩ S�. Hence, Sk and
S are incompatible. Sk is not critical by definition of RRL1(S). �

Theorem 4. A maximal compatible subset of splits can be computed in O(n + m + f ) time.

Proof. We store the recursively rightmost-left-1’s of a split S� in a list L�. For each taxon, we use a pointer for the currently
considered split. At the beginning this pointer points to the first split in the string associated with the taxon.

We do the following step for each j = 1, . . . ,m. For each x ∈ Sj, let S be the current split associated with x. (Then S = Sj.)
Add the predecessor of S in the string w associated with x to Lj. Set the successor of S in w to the currently considered split
of x. If in the end of the step for j it holds that Lj contains more than an element, then delete for each x ∈ Sj the predecessor
of the current split from w. �

6. The subset of all compatible splits

In this section, we show how splits that are incompatible with some other split can be individuated in linear time.
Consider the following lexicographical orderings.

(1) Sort the splits with respect to the ordering x1, . . . , xn of the taxa, resulting in an ordering Sπ1(1), . . . , Sπ1(m) of S.
(2) First, sort the taxa with respect to the ordering Sπ1(1), . . . , Sπ1(m) of the splits, resulting in an ordering xπ(1), . . . , xπ(n) of

X . Then sort the splits with respect to the ordering xπ(1), . . . , xπ(n) of the taxa, resulting in an ordering Sπ2(1), . . . , Sπ2(m)

of S.
(3) Sort the splits with respect to the ordering xπ(n), . . . , xπ(1) of the taxa, resulting in an ordering Sπ3(1), . . . , Sπ3(m) of S.

The three lexicographical orderings of the set of splits are illustrated in Fig. 4. We call a split Sπi(j2) high with respect to a
lexicographical ordering πi if and only if there is a j1 < j2 such that Sπi(j2) and Sπi(j1) are not compatible. In Fig. 4, D is high
with respect to π1, D and C are high with respect to π2, and D, B, and A are high with respect to π3.

Lemma 5. Let S ∈ S be a split that is not high with respect to the ordering π1. Then there are 1 ≤ i1 ≤ i2 ≤ n such that
S = {xπ(i); i1 ≤ i ≤ i2}.
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(a) Algorithm output. (b) After normalization.

Fig. 5. Cactus model for splits from Fig. 2.

Proof. Let S = Sπ1(j3) and suppose there are i1, i2, i3 with i1 < i2 < i3 such that xπ(i1), xπ(i3) ∈ S and xπ(i2) �∈ S. Let
J = {j ∈ {1, . . . ,m}; j < j3 and xπ(i1) ∈ Sπ1(j)}. Since π is a lexicographical ordering of the taxa, it follows that there are
j1 ≤ j2 < j3 with xπ(i2) ∈ Sπ1(j2) and xπ(i1) ∈ Sπ1(j1). Hence J �= ∅. Further, it is not possible that xπ(i3) ∈ Sπ1(j) for all j ∈ J .
Else the row for xπ(i2) could not be between the rows for xπ(i1) and xπ(i3). Hence, there is a 1 ≤ j < j3 with xπ(i1) ∈ Sπ1(j) and
xπ(i3) �∈ Sπ1(j). By Lemma 2 it follows that Sπ1(j3) and Sπ1(j) are not compatible. Hence, Sπ1(j3) is high. �

Lemma 6. Let S ∈ S \ S‖. Then there is an i = 1, . . . , 3 such that S is high with respect to πi.

Proof. Let S ∈ S \ S‖. If S is not high with respect to π1, then there are 1 ≤ i1 ≤ i2 ≤ n such that S = {xπ(i1), . . . , xπ(i2)}.
If S = Sπ2(j1) is not high with respect to π2, then there is a j2 > j1 such that S and Sπ2(j2) are not compatible. Especially it
follows that there is a k > i2 such that xπ(k) ∈ Sπ2(j2). Hence, Sπ2(j2) is before S with respect to π3 and thus, S is high with
respect to π3. �

It remains to showhow to find the high splits. Note that the critical splits are high but the converse is not true. An example
is given in Fig. 4. So assume that S = {S1, . . . , Sm} is lexicographically sorted with respect to the ordering x1, . . . , xn of the
taxa. Let (T , ϕ, r) be the trie constructed in Section 4.

Lemma 7. The high splits are those that occur more than once as a label in the trie.

Proof. Let e1 and e2 be two edges of T that have the same label S. Let ν be the subtree root of e1 and e2. Let μi, i = 1, 2 be
the children of ν such that ei is contained in the subtree rooted at μi. Let Sji , i = 1, 2 be the labels of {ν, μi} and assume
without loss of generality that j1 < j2. Since the indices of the edge labels are strictly increasing on a path from the root to
a leaf in T , no edge in the path between ν and e2 is labeled Sj1 . Let y1, y2 ∈ X be such that ϕ(yi) is contained in the subtree
rooted at the child of ei, i = 1, 2. Then y1 ∈ S ∩ Sj1 and y2 ∈ S ∩ (X \ Sj1). Hence, by Lemma 2, S and Sj1 are not compatible.

Let Sj1 , Sj2 ∈ S, j1 < j2 be two splits that are not compatible. Then there are y1 ∈ Sj1 ∩ Sj2 and y2 ∈ (X \ Sj1) ∩ Sj2 . Hence,
there are edges e, e1 on the path from r to ϕ(y1) labeled Sj1 and Sj2 , respectively, and, since j1 < j2, it follows that e is before
e1. On the other hand, on the path from r to ϕ(y2) there is an edge e2 labeled Sj2 but no edge labeled Sj1 . Hence e1 �= e2. �

Corollary 8. The subset of all compatible splits can be constructed in O(n + m + f ) time.

Finally, the proof of Lemma 7 yields an alternative characterization of incompatible splits. For two edges e1 and e2 of the
trie T let E(e1, e2) be the set of edges on the path in T between e1 and e2.

Corollary 9. A split S ∈ S is not compatible if and only if there are two edges e1, e2 in the trie T with the following property. e1
and e2 have the same label and S is the label of some edge in E(e1, e2).

Proof. Let 1 ≤ j1 < j2 ≤ m. Assume first that Sj1 is the label of exactly one edge of T . The proof of Lemma 7 yields that Sj1
and Sj2 are incompatible if and only if there are two edges e1, e2 with label Sj2 in the trie such that Sj1 is the label of some
edge in E(e1, e2).

Assume now that a split S is the label of at least two edges e1 and e2 of T . Then on the one hand S is a label of the edges
e1, e2 ∈ E(e1, e2) and on the other hand, by Lemma 7, S is not compatible. �

7. Cactus model

In this section, we will show how to test the existence and construct a cactus model for a set of splits in linear time. The
algorithm uses parts of the construction given in [15]. Let (T‖, ϕ, r) be the trie for the subset S‖ of all compatible splits of
S. For a vertex ν of T‖ let X(ν) ⊂ X be the set of taxa that are mapped to the subtree of (T‖, r) rooted at ν.
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For a better understanding of the relation between the tree model of the subset of all compatible splits and the cactus
model, suppose first that S has a cactus model (G, ϕ). Note that any pair of incompatible splits must be represented in the
same cycle of G. More precisely, let c : ν1, . . . , ν� be a cycle of G. Consider the connected components of the graph G − c
that results from G by deleting all edges of c . Let the base sets of c be the sets Xi, i = 1, . . . , � of taxa that are mapped to the
connected component of G − c containing νi. Then the cycle c represents the splits {Xi, X \ Xi}, i = 1, . . . , � in S‖ and the

splits {⋃k
i=j Xi, X \ ⋃k

i=j Xi}, 1 ≤ j < k ≤ �, k − j < � − 1 in S‖ \ S.
For example, let c be the cycle on the left-hand side of the cactus model in Fig. 5b. Then � = 4 and the base sets are

X1 = {x1, x8, x9, x10, x11, x12}, X2 = {x2}, X3 = {x3}, X4 = {x4, x5, x6, x7}. Cycle c represents 6 splits: the four compatible
splits X \ X1, X2, X3, X4 ∈ S‖ and the two incompatible splits X3 ∪ X4, X2 ∪ X3 ∈ S \ S‖.

The cycles in the cactus model correspond to some stars in the tree model of all compatible splits as follows. Note
first that for each base set S of a cycle c either S ∈ S‖ or X \ S ∈ S‖. Hence, for each base set S there is a vertex ν
of T‖ such that X(ν) = S or X(ν) = X \ S. Let X1, . . . , X� be the base sets of a cycle c. We distinguish two cases. If
there is an i = 1, . . . , � (say i = �) such that X \ Xi ∈ S, let ν be the vertex of T‖ such that X \ Xi = X(ν). Since
X \ Xi = X1 ∪ · · · ∪ X�−1 it follows that {Xi; i = 1, . . . , � − 1} = {X(μ); μ child of ν}. If Xi ∈ S for all i = 1, . . . , �, then
{Xi; i = 1, . . . , �} = {X(μ); μ child of the root r}. In either case, ν or r , respectively, has to be an empty vertex. Further, the

ordering on the base sets induces an ordering on the children of ν or r , respectively, and the
(

�
2

)
−� = �(�−3)/2incompatible

splits represented by c are inducedby the unions of the sets represented by at least two and atmost �−1 consecutive children
of ν or r , respectively. Hence, starting with the tree (T‖, r) we can construct the cycles in G in the following way. First, we
assign each split S ∈ S \ S‖ to the vertex ν of the highest level such that S ⊂ X(ν). A vertex that is assigned at least one
split will be called a cycle-replacement vertex. Then we test for each cycle-replacement vertex whether its children can be
ordered such that the assigned splits are unions of the sets represented by consecutive children. Finally, we check whether
S contains all necessary splits.

We first assign each split in S \ S‖ to exactly one vertex of T‖. Let Mν be the set of children of a vertex ν of T‖. We call

N (ν) =
{
M ⊂ Mν;

⋃
μ∈M

X(μ) ∈ S \ S‖

}

the neighbor group of ν. We say that a split S is a neighbor of a vertex ν if S = ⋃
μ∈M X(μ) for someM ∈ N (ν).

Lemma 10. (1) Each split S ∈ S \ S‖ is the neighbor of exactly one vertex: the subtree root of {ϕ(x); x ∈ S}.
(2) All neighbor groups can be computed in O(n + m + f ) time.

Proof. (1) Let S ∈ S \ S‖. Obviously, S cannot be the neighbor of a vertex other than the subtree root of {ϕ(x); x ∈ S}.
Suppose S is not the neighbor of a vertex. Let ν be a vertex of T‖ on the highest level such that X(ν) ∩ S �= ∅, and
X(ν) ∩ (X \ S) �= ∅. Then for each child μ of ν either X(μ) ⊂ S or X(μ) ⊂ X \ S. Since S is not a neighbor of ν it follows
that S �⊂ X(ν). Hence, S ∩ X(ν), (X \ S) ∩ X(ν) and S ∩ (X \ X(ν)) are not empty. Hence, since |S|, |X(ν)| < |X |/2 it
follows also (X \ S) ∩ (X \ X(ν)) �= ∅. This means that S and X(ν) ∈ S‖ are not compatible, a contradiction.

(2) The vertex ν to which a set S ∈ S\S‖ is assigned can be found in O(|S|) time. We proceed from the vertices ϕ(x), x ∈ S
upwards. Let ν be the predecessor of the currently considered vertex. If ν is found for the first time, add ν to the set R
of potential subtree roots. Use a counter to store the number of children of ν and the number of vertices in ϕ−1(ν) that
have already been visited by the algorithm. If all sets represented by all the children of a vertex turn out to be contained
in S and ϕ−1(ν) ⊂ S, then we delete ν from R and continue to proceed upwards. In the end, there is only one vertex
ν left in R. Let � be the level of ν and let μ1, . . . , μk be those among the traversed vertices that have level � + 1. Then
S = V (μ1) ∪ · · · ∪ V (μk). The size of the subtree of T‖ that has to be traversed is linear in the size of S. �

Let ν be a cycle-replacement vertex and let μ1, . . . , μ� be the children of ν. Let S ∈ N (ν) and let π be a permutation
of {1, . . . , �}. The set S is an interval with respect to π if there are 1 ≤ i ≤ j ≤ � such that S = {μπ(i), . . . , μπ(j)}. The
permutation π is a consecutive-ones ordering forN (ν) if each set inN (ν) is an interval with respect to π . If each set inN (ν)
or its complement is an interval, then π is a circular consecutive-ones ordering. The neighbor group N (ν) has the (circular)
consecutive-ones property if there exists a (circular) consecutive-ones ordering for N (ν). Our observations in the beginning
of Section 7 can now be reformulated as follows.

Lemma 11. A set S of splits has a cactus model if and only if for each cycle-replacement vertex ν in the tree model of S‖ it holds
that

(1) N (ν) has the consecutive-ones property if ν is not the root,
(2) N (ν) has the circular consecutive-ones property if ν is the root,
(3) N (ν) has degree(ν)(degree(ν) − 3)/2 elements, and
(4) ν is empty.

A (circular) consecutive-ones ordering of neighbor groups can be constructed, if it exists, e.g., using PQ -trees [4] or
lexicographical breadth-first search [22]. We here give a much simpler algorithm based on the special structure of neighbor
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groups in the case of crossing splits. Let ν be a cycle-replacement vertex of T‖. We first assume that ν is not the root. Let
two(ν) ⊂ N (ν) be the subset of elements of size two. If there is a cactus model for S, then there exists an ordering
π : μ1, . . . , μ� of the set Mν of children of ν such that two(ν) = {{μ1, μ2}, . . . , {μ�−1, μ�}}. If S is a crossing set of splits,
we can find π as follows:

• Let μ1 be a child of ν that occurs only in one element of two(ν), say {μ1, μ2}. Remove {μ1, μ2} from two(ν) and set
i = 2.

• While i < � let {μi, μi+1} ∈ two(ν) be the only neighbor containing μi. Remove {μi, μi+1} from two(ν) and increase i
by one.

If two(ν) does not contain the required sets, S does not have a cactus representation. Having found the ordering
π , it remains to test whether all elements of N (ν) are intervals with respect to π . The algorithm can be implemented
straight forwardly in O(|N (ν)| · degree(ν)) time. Note that in case S has a cactus representation θ(|N (ν)| · degree(ν)) =
θ(degree(ν)3) = θ(

∑
S∈N (ν) |S|).

If the root r is a cycle-replacement vertex, we apply an analogous procedure to the set {S; S ∈ N (r) orMr \ S ∈ N (r)}.
Having then found the ordering π , we have to check whether S or its complement is an interval with respect to π . Hence,
the procedure finds (circular) consecutive-ones orderings for all neighbor groups in O(f ) time.

Having identified the cycle-replacement vertices and the ordering of their children, and knowing that the conditions for
the existence of a cactus model are fulfilled, the final construction is as follows. For the cactus model (G, ϕ), we start with a
copy of T‖.

For each cycle-replacement vertex ν let μ1, . . . , μ� be the children of ν ordered according to a (circular) consecutive-
ones ordering of N (ν). Let μ′

1, . . . , μ
′
� be new vertices. Replace ν by the cycle {ν, μ′

1}, {μ′
1, μ

′
2}, . . . , {μ′

�−1, μ
′
�}, {μ′

�, ν}
(or by the cycle {μ′

1, μ
′
2}, . . . , {μ′

�−1, μ
′
�}, {μ′

�, μ
′
1}, respectively, if ν is the root) and replace each edge {ν, μi} by the edge

{μ′
i, μi}.
The pseudo-code for the cactus construction can be found in Algorithm 1. The result is a cactusmodel (G, ϕ) forSwhich,

however, need not be normal. See Fig. 5. It can be normalized in linear time [32] if necessary. Summarizing, we have the
following theorem.

Theorem 12. It can be tested in O(n + m + f ) time whether a set of splits is crossing and a cactus model for a crossing set of
splits can be constructed in O(n + m + f ) time.

Algorithm 1 (Construction of a Cactus Model).

Input: set S of splits of X = {x1, . . . , xn}
Output: cactus model (G, ϕ) for S or information that S is not crossing
begin
Construct the set S‖ of all compatible splits of S (Section 6);
Construct the trie (T , ϕ, r) for S‖ (Section 4);
for each inner vertex ν of Tdo

Construct the neighbor group N (ν) (Lemma 10);
Let (G, ϕ) be a copy of (T , ϕ);
for each inner vertex ν of T with N (ν) �= ∅ do

if Conditions 1–4 of Lemma 11 are fulfilled
Order the set Mν of children of ν according to
a (circular) consecutive-ones ordering for N (ν);
Replace ν in G by a cycle of length degree(ν);

else
S is not crossing (i.e. no cactus model exists);
exit;

end

8. Conclusion and Extensions

We presented algorithms for constructing the tree model of a maximal compatible subset of splits and of the subset of
all compatible splits, and for testing the existence of and, if it exists, constructing a cactus model. All these are optimal in
the sense that they run in time linear in the size of a succinct representation of the splits.

We assumed that the splits are distinct and given by their smaller parts. This is without loss of generality since we can
transform an arbitrary (multi-)setS ofm non-empty proper subsets of a set of n taxa andwith f = ∑

S∈S |S| inO(n+m+ f )
time into a set S′ with the desired properties such that S and S′ induce the same splits. Let x1 ∈ X be a fixed taxon. First,
for each S ∈ S with |S| > n/2 replace S by X \ S. We break ties, by further replacing each S ∈ S with |S| = n/2 and x1 ∈ S
by X \ S. Now, after sorting the splits lexicographically, all identical splits are in a row. Crossing sets of splits are circular [2],
i.e., they have the circular consecutive-ones property. Suppose now thatS is any circular set of splits. Then Conditions 1+ 2
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of Lemma 11 are fulfilled for all cycle-replacement vertices. Hence, a cactus model for a superset of S with the property that
the splits in S‖ are represented by tree edges can be constructed in linear time: For each cycle-replacement vertex ν that is

not empty add the set ϕ−1(ν) to S. (Eventually divide ϕ−1(ν) into two sets if ν is the root.) Finally, add the missing sets to
S to fulfill Condition 3 of Lemma 11.

Crossing sets of splits are especially semi-crossing [15], i.e., for any pair of incompatible splits, the splits induced by
the four corner sets are in the set. Another specialization of semi-crossing sets applied, e.g., in modular decomposition are
the so-called decomposable sets [26,29]. A semi-crossing set of splits is decomposable if for any pair of incompatible splits
also the diagonal split is in the set. A graph model for a semi-crossing set of splits can be obtained by replacing each star
consisting of a cycle-replacement vertex and its children by either a cycle or a complete graph [15]. A graph model for a
decomposable set of splits can be obtained by replacing each star consisting of a cycle-replacement vertex and its children
by a complete graph [29]. Hence, applying our algorithm, it can be decided in linear time whether a set of splits is semi-
crossing or decomposable and if so a graph model for a semi-crossing or decomposable set of splits can also be constructed
in linear time.
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