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Abstract

A Λ-factor of a graphG is a spanning subgraph ofG whose every component is a

3-vertex path. Let v(G) be the number of vertices of G and γ(G) the domination

number of G. A claw is a graph with four vertices and three edges incident to

the same vertex. A graph is claw-free if it does not have an induced subgraph

isomorphic to a claw. Our results include the following. Let G be a 3-connected

claw-free graph, x ∈ V (G), e = xy ∈ E(G), and L a 3-vertex path in G. Then

(a1) if v(G) ≡ 0 mod 3, then G has a Λ-factor containing (avoiding) e, (a2) if

v(G) ≡ 1 mod 3, then G−x has a Λ-factor, (a3) if v(G) ≡ 2 mod 3, then G−{x, y}

has a Λ-factor, (a4) if v(G) ≡ 0 mod 3 and G is either cubic or 4-connected, then

G−L has a Λ-factor, (a5) if G is cubic with v(G) ≥ 6 and E is a set of three edges

in G, then G−E has a Λ-factor if and only if the subgraph induced by E in G is not

a claw and not a triangle, (a6) if v(G) ≡ 1 mod 3, then G− {v, e} has a Λ-factor

for every vertex v and every edge e in G, (a7) if v(G) ≡ 1 mod 3, then there exist

a 4-vertex path Π and a claw Y in G such that G−Π and G− Y have Λ-factors,

and (a8) γ(G) ≤ ⌈v(G)/3⌉ and if in addition G is not a cycle and v(G) ≡ 1 mod 3,

then γ(G) ≤ ⌊v(G)/3⌋. We also explore the relations between packing problems

of a graph and its line graph to obtain some results on different types of packings

and discuss relations between Λ-packing and domination problems.

Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint

packing, P3-factor, P3-packing, path-factor, induced packing, graph domination,

graph minor, the Hadwiger conjecture.

1 Introduction

We consider undirected graphs with no loops and no parallel edges unless stated

explicitly. All notions and facts on graphs, that are used but not described here, can be

found in [1, 2, 23].

Given a graph G and a family F of non-isomorphic graphs, an F -packing of G is a

subgraph of G whose every component is isomorphic to a member of F . An F -packing

P of G is called an F -factor if V (P ) = V (G). The F -packing problem is the problem of

finding in G an F -packing having the maximum number of vertices.
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If F consists of one graph F , then an F -packing and an F -factor are called simply

an F -packing and an F -factor, respectively. Accordingly, the F -packing problem is the

problem of finding in G an F -packing having the maximum number of vertices or,

equivalently, the maximum number of components.

If F is a 2-vertex connected graph, then the F packing problem is the classical

matching problem and a very beautiful and deep theory has been developed about this

problem and its generalizations (see, for example, [20] as well as [5], [7], and [19]). In

particular, it is known that there is a polynomial-time algorithm for finding a maximum

matching. It turns out that if F is a connected graph with at least three vertices, then

the F -packing problem is already NP -hard [4]. Moreover, if Pk is the k-vertex path,

then for every k ≥ 3 the Pk-packing problem turns out to be also NP -hard for cubic

graphs [10].

Let Λ denote a 3-vertex path. We will consider mainly the Λ-packing problem. This

problem is interesting for various reasons. Here are some of them.

(R1) Path Λ is the smallest graph F , for which the F -packing problem is NP -hard

(even in the class of cubic graphs). Although the Λ-packing problem is NP -hard, i.e.

possibly intractable in general, it would be interesting to find some natural and non-

trivial classes of graphs, for which the problem is tractable, i.e. solvable in polynomial

time (e.g. 3.4, 3.5, 3.12, and 3.14 below). It is also interesting to find polynomial-time

algorithms that provide a good approximation solution for the problem (e.g. 3.1 - 3.5

and 3.13 below).

(R2) Probably, one of the first non-trivial results in matching theory is Petersen’s

theorem (1891) stating that every cubic connected graph with at most two bridges has

a perfect matching (see [20]). There are indications that a result of similar nature may

also be true for the Λ-packing problem in the class of 3-connected graphs (see Problem

3.7 and theorems 3.8 - 3.11 below).

(R3) It is known [5] that there is a polynomial-time algorithm for the {P3, P4, P5}-
packing problem. It can also be shown that a cubic 3-connected graph has a {P3, P4, P5}-
factor. This fact for {P3, P4, P5}-factors is analogous to Petersen’s theorem for match-

ings mentioned above. However, the complexity status of an {A,B}-packing problem

for A,B ∈ {P3, P4, P5} and A 6= B is not known. Some results in [13] (see also 3.8 -

3.11 below)) show that the Λ-packing problem for cubic 3-connected graphs is related

to an {A,B}-packing problem with A = P3 = Λ and B ∈ {P4, P5}.

(R4) The Λ-packing problem is also related to the minimum domination problem in

a graph (which is known to be NP -hard). Namely, the size of a maximum Λ-packing in

a graph G can be used to give an upper bound for its domination number (see Section

5).

(R5) The Λ-packing problem is also related to the various problems on whether a

graph G has a spanning subgraph H of special type. In the graph hamiltonicity theory
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H is usually a Hamiltonian cycle or a Hamiltonian path. Obviously, the existence of such

a subgraph H in a graph G implies the existence of a Λ-packing with ⌊v(G)/3⌋ compo-

nents. For that reason, various Hamiltonicity conjectures give rise to the corresponding

Λ-factor problems or conjectures. (This was the original motivation to consider Problem

3.7 below.) For example, in 1984 M. M. Mathews and D. P. Summer [21] conjectured

that every 4-connected claw-free graph has a Hamiltonian cycle. Some results in the

paper support this conjecture.

(R6) Let L(G) denote the line graph of G. Then a vertex disjoint packing in L(G)

corresponds to an edge disjoint packing in G and a vertex disjoint packing in G corre-

sponds to an induced vertex disjoint packing in L(G). Since L(G) is a claw-free graph,

the study of the Λ-packing problem for claw-free graphs may allow to solve some prob-

lems on vertex and/or edge disjoint packings in graphs (see Section 6).

(R7) The problem of packing induced 3-vertex paths in a claw-free graph is also

related to the Hadwiger conjecture (see Section 6).

In Section 2 we give main notions and notation we use. In Section 3 we describe some

known results and open questions and outline main results of the paper. The formula-

tions and proofs of the main results on packings in claw-free graphs are given in Section

4. In Section 5 we discuss the relation between Λ-packing and domination problems

and provide some bounds on the graph domination numbers based on some Λ-packing

results. Finally, in Section 6 we explore the relation between packing problems of a

graph and its line graph to obtain some results on different types of packings. We also

discuss the induced Λ-packing problem and its relation with the Hadwiger conjecture.

2 Main notions, notation, and simple observations

As usual, V (G) and E(G) denote the set of vertices and edges of G, respectively, and

v(G) = |V (G)|, e(G) = |E(G)|. If P is a path with the end-vertices x and y, we put

End(P ) = {x, y}. Given X ⊆ E(G), let Ẋ denote the subgraph of G induced by X .

Given x ∈ V (G), let N(x,G) = N(x) denote the set of vertices in G adjacent to x. Let

Cmp(G) denote the set of components of G and cmp(G) = |Cmp(G)|. Let λ(G) denote

the maximum number of disjoint 3-vertex paths in G. A vertex subset X of G is called

a domination set in G, if every vertex in V (G) \ X is adjacent to a vertex in X . Let

γ(G) denote the size of a minimum domination set in G; γ(G) is called the domination

number of G. A leaf in a graph is a vertex of degree one. Let Lv(G) denote the set of

leaves in G and lv(G) = |Lv(G)|.
A claw is a graph isomorphic to K1,3, i.e. the graph with four vertices and three

edges having a common end-vertex. A graph is called claw-free if it contains no induced

claw. A net is a graph obtained from a triangle with three vertices x1, x2, and x3 by

adding three new vertices z1, z2, and z3 and three new edges x1z1, x2z2, and x3z3. A

graph with one edge and two vertices is called a match.
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A graph G is minimal 2-connected if G is 2-connected but G−e is not 2-connected for

every e ∈ E(G). A 2-frame (or simply, a frame) of G is a minimal 2-connected spanning

subgraph of G.

Given a subgraph S of a graph G, a vertex x ∈ V (S) is a boundary vertex of S if x

is adjacent to a vertex in G− S and an inner vertex of S, otherwise.

A block of a connected graph G is a maximal connected subgraph H of G such that

H − v is connected for every vertex v of H , and so H is either 2-connected or a match.

If B has at most one boundary vertex, then B is called an end-block of G. Let eb(G)

denote the number of end-blocks of connected graph G, and so if eb(G) = 1, then G is

either 2-connected or a match.

We call a graph H a chain if H is connected and has at most two end-blocks. An

end-chain of G is a maximal proper subgraph H of G such that H is a chain, every

block of H is a block of G with at most two boundary vertices in G, and H contains

an end-block of G. Obviously, a connected graph G has an end-chain if and only if G

has at least three end-blocks. Also if G has end-chains, then every end-block of G is a

subgraph (moreover, an end-block) of exactly one end-chain of G and every end-chain

of G contains exactly one end-block of G.

We call a graph G a ∆-graph if G is cubic and every vertex of G belongs to exactly

one triangle, and so a ∆-graph is a claw-free graph.

We call a graph G a cactus if G is connected, G has at least three end-blocks, and

each end-chain of G is a match.

Given a graph G, we write G = AxB if A and B are graphs, V (A) ∩ V (B) = {x},
and G = A∪B, and so if A and B are connected graphs with at least two vertices, then

G is connected and x is a cut-vertex of G.

We recall that a Λ-packing in a graph G is a subgraph of G whose every component

is a 3-vertex graph and a Λ-factor in G is a spanning Λ-packing of G. In addition, a

Λ-packing P in G is called a Λ-quasi-factor of G if v(G)− v(P ) ≤ 2.

We will use the following simple facts.

2.1 Let G = AxB, where A and B are connected graphs with at least two vertices.

Suppose that G is claw-free. Then the following holds.

(a1) N(x,A) and N(x,B) induce complete subgraphs in A and B, respectively.

(a2) If A is a block of G and v(A) ≥ 3, then B − x is either 2-connected or a match,

and so eb(B − x) = 1.

(a3) If A is a block of G, v(A) ≥ 4, and xy ∈ E(A), then A− {x, y} is a chain, and so

eb(A− x) ≤ 2.

(a4) If A is a chain and v(A) ≥ 3, then A− x is also a chain, and so eb(A− x) ≤ 2.

(a5) If A is an end-chain of G, v(A) ≥ 4, and xy ∈ E(A), then A− {x, y} is connected

and eb(A− {x, y}) ≤ 3.
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3 Preliminaries and an outline of new results

In [9, 16] we gave an answer to the following natural question:

How many disjoint 3-vertex paths must a cubic n-vertex graph have?

Obviously, λ(G) ≤ ⌊v(G)/3⌋.

3.1 If G is a cubic graph, then λ(G) ≥ ⌈v(G)/4⌉ and at least v(G)/4 disjoint 3-vertex

paths in G can be found in polynomial time.

Obviously, if every component of G is K4, then λ(G) = v(G)/4. Therefore the bound

in 3.1 is sharp.

Let G3
2 denote the set of graphs with each vertex of degree 2 or 3. In [9] we gave

(among other things) an answer to the following question:

How many disjoint 3-vertex paths must an n-vertex graph from G3
2 have?

3.2 Suppose that G ∈ G3
2 and G has no 5-vertex components. Then λ(G) ≥ v(G)/4

and at least v(G)/4 disjoint 3-vertex paths in G can be found in polynomial time.

From 3.2 it follows that every cubic graph G has at least v(G)/4 disjoint 3-vertex

paths [16] because if G is a cubic graph, then G ∈ G3
2 and G has no 5-vertex components.

In [9] we also gave a construction that allowed to prove the following:

3.3 There are infinitely many 2-connected graphs in G3
2 (and even subdivisions of cubic

3-connected graphs) for which the bound in 3.2 is attained.

Here are some packing results on regular graphs.

3.4 [11] Let G be a d-regular graph with d ≥ 4. Then λ(G) ≥ v(G)/4 and at least

v(G)/4 disjoint 3-vertex paths in G can be found in polynomial time.

3.5 [17] Let T be a tree on t vertices and let ǫ > 0. Suppose that G is a d-regular

graph and d ≥ δ ln δ, where δ = 128t3

ǫ2
. Then G contains at least (1− ǫ)n/t vertex disjoint

copies of T and they can be found in polynomial time.

There are infinitely many 2-connected cubic graphs G having no Λ-quasi-factors.

Some of such graphs were constructed in [14] to provide 2-connected counterexamples to

Reed’s domination conjecture (see Section 5). In particular, a graph sequence (Rk : k ≥
3) in [14] is such that each Rk is a cubic graph of connectivity two, v(Rk) = 20k, and

γ(Rk) = (1
3
+ 1

60
)v(Rk). Obviously, γ(G) ≤ v(G)− 2λ(G). Therefore λ(Rk) ≤

13

40
v(Rk).

Questions arise whether there are 2-connected cubic graphs with some additional prop-

erties and without Λ-quasi-factors. For example,

3.6 Problem. Does every 2-connected, cubic, bipartite, and planar graph have a Λ-

quasi-factor?
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In [12] we answered the question in 3.6 by giving a construction that provides in-

finitely many 2-connected, cubic, bipartite, and planar graphs without Λ-quasi-factors.

As to cubic 3-connected graphs, an old open question here is:

3.7 Problem (A. Kelmans 1981). Is the following claim true ?

(P) Every cubic 3-connected graph G has a Λ-quasi-factor, i.e. λ(G) = ⌊v(G)/3⌋.

In [13] we discuss Problem 3.7 and show, in particular, that claim (P) in 3.7 is

equivalent to some seemingly much stronger claims. Here are some results of this kind.

3.8 [13] The following are equivalent for cubic 3-connected graphs G:

(z) v(G) ≡ 0 mod 6 ⇒ G has a Λ-factor,

(t) v(G) ≡ 2 mod 6 ⇒ G− {x, y} has a Λ-factor for some x, y ∈ V (G), x 6= y, and

(f) v(G) ≡ 4 mod 6 ⇒ G− x has a Λ-factor for some x ∈ V (G).

3.9 [13] The following are equivalent for cubic 3-connected graphs G with v(G) ≡
0 mod 6:

(z0) G has a Λ-factor,

(z1) for every e ∈ E(G) there is a Λ-factor of G avoiding e, i.e. G− e has a Λ-factor,

(z2) for every e ∈ E(G) there is a Λ-factor of G containing e,

(z3) G−X has a Λ-factor for every X ⊆ E(G), |X| = 2, and

(z4) G− L has a Λ-factor for every 3-vertex path L in G.

3.10 [13] The following are equivalent for cubic 3-connected graphs G with v(G) ≡
2 mod 6:

(t0) G− {x, y} has a Λ-factor for some x, y ∈ V (G), x 6= y,

(t1) G− {x, y} has a Λ-factor for some xy ∈ E(G),

(t2) G− {x, y} has a Λ-factor for every xy ∈ E(G), and

(t3) there exists a 5-vertex path W such that G − W has a Λ-factor, and so G has a

{P3, P5}-factor.

3.11 [13] The following are equivalent for cubic 3-connected graphs G with v(G) ≡
4 mod 6:

(f0) G− x has a Λ-factor for some x ∈ V (G),

(f1) G− x has a Λ-factor for every x ∈ V (G),

(f2) G− {x, e} has a Λ-factor for every x ∈ V (G) and every e ∈ E(G), and

(f3) there exists a 4-vertex path Z such that G − Z has a Λ-factor, and so G has a

{P3, P4}-factor.
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There are some interesting results on the Λ-packing problem for claw-free graphs.

Recall that a graph is called claw-free if it contains no induced subgraph isomorphic to

a claw.

3.12 [6] Suppose that G is a 2-connected claw-free graph. Then

(a1) if v(G) ≡ 0 mod 3, then G has a Λ-factor,

(a2) if v(G) ≡ 1 mod 3, then G− x has a Λ-factor for some x ∈ V (G), and

(a3) if v(G) ≡ 2 mod 3, then G− {x, y} has a Λ-factor for some x, y ∈ V (G), x 6= y.

In every case a maximum Λ-packing can be found in polynomial time.

3.13 [6] Suppose that G is a connected claw-free graph and eb(G) ≥ 2. Then λ(G) ≥
⌊(v(G)− eb(G) + 2)/3⌋, this lower bound is sharp, and ⌊(v(G)− eb(G) + 2)/3⌋ disjoint

3-vertex paths in G can be found in polynomial time.

From 3.13 we have, in particular:

3.14 [6] Suppose that G is a connected claw-free graph having exactly two end-blocks.

Then λ(G) = ⌊v(G)/3⌋ and a maximum Λ-packing can be found in polynomial time.

As we have mentioned in Section 1, the Λ-packing problem remains NP -hard in the

class of all graphs and even in the class of cubic graphs [4, 10]. It would be interesting

to answer the following question.

3.15 Problem. Is the Λ-packing problem NP -hard in the class of claw-free graphs ?

In this paper (see Section 4) we give some more results on the Λ-packings in claw-

free graphs showing, in particular, to what extent the claims in 3.8 - 3.11 are true for

claw-free graphs. Here are some of these results.

(c1) If G is a 2-connected claw-free graph and v(G) ≡ 0 mod 3, then for every edge

e in G there exists a Λ-factor of G avoiding e, i.e. G − e has a Λ-factor (see 4.13 and

compare with 3.9 (z1) and 3.12 (a1)).

(c2) If G is a 3-connected claw-free graph and v(G) ≡ 0 mod 3, then for every edge

e in G there exists a Λ-factor of G containing e (see 4.20 and compare with 3.9 (z2)

and 3.12 (a1)).

(c3) If G is a cubic 2-connected claw-free graph with every vertex belonging to exactly

one triangle and E is a set of two edges in G, then G−E has a Λ-factor (see 4.23 and

compare with 3.9 (z3)).

(c4) If G is a cubic 3-connected claw-free graph with v(G) ≥ 6 and E is a set of three

edges in G, then G−E has a Λ-factor if and only if the subgraph induced by E in G is

not a claw and not a triangle (see 4.22).

(c5) If G is a cubic 3-connected claw-free graph or a 4-connected claw-free graph with
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v(G) ≡ 0 mod 3, then for every 3-vertex path L in G there exists a Λ-factor containing

L, i.e. G− L has a Λ-factor (see 4.19 and 4.21 and compare with 3.9 (z4)).

(c6) If G is a 2-connected claw-free graph and v(G) ≡ 2 mod 3, then for every vertex

x in G there exist two edge xy and xz in G such that G − {x, y} and G − {x, z} have

Λ-factors (see 4.13 and 4.15 and compare with 3.10 (t1) and 3.12 (a3)).

(c7) If G is a 3-connected claw-free graph and v(G) ≡ 2 mod 3, then G− {x, y} has

a Λ-factor for every edge xy in G (see 4.16 and compare with 3.10 (t2) and 3.12 (a3)).

(c8) If G is a 3-connected claw-free graph and v(G) ≡ 2 mod 3, then G has a 5-vertex

path W such that G−W has a Λ-factor, and so G has a {P3, P5}-factor (see 4.13 (a2)

and compare with 3.10 (t3)).

(c9) If G is a 2-connected claw-free graph and v(G) ≡ 1 mod 3, then G − x has a

Λ-factor for every vertex x in G (see 4.25 and compare with 3.11 (f1) and 3.12 (a2)).

(c10) If G is a 3-connected claw-free graph and v(G) ≡ 1 mod 3, then G−{x, e} has

a Λ-factor for every vertex x and every edge e in G (see 4.26 and compare with 3.11

(f2)).

(c11) If G is a 2-connected claw-free graph and v(G) ≡ 1 mod 3, then there exist a

4-vertex path Π and a claw Y in G such that G− Π and G− Y have Λ-factors, and so

G has a {P3, P4}-factor and {P3, Y }-factor (see 4.13 (a2) and 4.14 and compare with

3.11 (f3) and 5.1).

(c12) We show that the Λ-packing problem for a claw-free graph G can be reduced in

polynomial time to that for a special claw-free graph K (called a cactus) with v(K) ≤
v(G) (see 4.5 and 4.6).

(c13) If G is a 2-connected claw-free graph, then γ(G) ≤ ⌈v(G)/3⌉ and if in addition

G is not a cycle and v(G) ≡ 1 mod 3, then γ(G) ≤ ⌊v(G)/3⌋ (see 5.3).

4 Main results on claw-free graphs

We will often use the following combination of 3.12 and 3.14.

4.1 [6] Suppose that G is a connected claw-free graph having at most two end-blocks.

Then λ(G) = ⌊v(G)/3⌋ and a maximum Λ-packing can be found in polynomial time.

Recall that G = AxB is the union of graphs A and B with V (A)∩ V (B) = {x}. We

need the following bounds on λ(AxB).

4.2 Let G = AxB, where A and B are connected graphs with at least two vertices.

Then

(a0) if v(A) ≡ 0 mod 3, then λ(G) ≤ v(A)/3 + λ(B − x),

(a1) if v(A) ≡ 1 mod 3, then λ(G) ≤ (v(A)− 1)/3 + λ(B), and

8



(a2) if v(A) ≡ 2 mod 3, then λ(G) ≤ (v(A)− 2)/3 + λ(B ∪ xy), where xy ∈ E(A).

Proof. Let S be a maximum Λ-packing in G.

(p1) Suppose that v(A) ≡ 0 mod 3. Let S1 = S ∩ A and S2 = S − S1. Then

λ(S1) ≤ v(A)/3.

Suppose that x ∈ V (S1). Then λ(S2) = λ(B − x), and so λ(S) = λ(S1) + λ(S2) ≤
v(A)/3 + λ(B − x).

Now suppose that x 6∈ V (S1). Then λ(S1) ≤ v(A)/3 − 1. Let S ′

2 = S2 ∩ (B − x)

and S ′′

2 = S2 − S ′

2. Then λ(S ′

2) ≤ λ(B − x). If L is a 3-vertex path in S ′′

2 , then

x ∈ V (L). Hence λ(S ′′

2 ) ≤ 1. Therefore λ(S2) = λ(S ′

2) + λ(S ′′

2 ) ≤ λ(B − x) + 1. Thus,

λ(S) = λ(S1) + λ(S2) ≤ (v(A)/3− 1) + λ(B − x) + 1 = v(A)/3 + λ(B − x).

(p2) Suppose that v(A) ≡ 1 mod 3. Let S1 = S ∩ (A− x) and S2 = S − S ′.

Suppose that λ(S1) = v(A−x)/3. Then λ(S2) = λ(B), and so λ(S) = λ(S1)+λ(S2) =

v(A)/3 + λ(B − x).

Now suppose that λ(S1) ≤ v(A − x)/3 − 1. Let S ′

2 = S2 ∩ (B) and S ′′

2 = S2 − S ′

2.

Then λ(S ′

2) ≤ λ(B). If L is a 3-vertex path in S ′′

2 , then x ∈ V (L). Hence λ(S ′′

2 ) ≤ 1.

Therefore λ(S2) = λ(S ′

2) + λ(S ′′

2 ) ≤ λ(B) + 1. Thus, λ(S) = λ(S1) + λ(S2) ≤ (v(A)/3−
1) + λ(B) + 1 = v(A)/3 + λ(B).

(p3) Finally, suppose that v(A) ≡ 2 mod 3. Let S1 = S ∩ (A − {x, y}) for some

xy ∈ E(A) and S2 = S − S1. Let S ′

2 = S2 ∩ (B ∪ xy) and S ′′

2 = S2 − S ′

2. Then

λ(S ′

2) ≤ λ(B ∪ xy).

Suppose that λ(S1) = v(A − {x, y})/3. Then λ(S2) = λ(B ∪ xy), and so λ(S) =

λ(S1) + λ(S2) = v(A− {x, y})/3 + λ(B).

Suppose that λ(S1) = v(A − {x, y})/3 − 1. If L is a 3-vertex path in S ′′

2 , then

V (L) ⊂ V (A−S1). Since λ(S1) = v(A−{x, y})/3−1, we have: |V (A−S1)| = 5. Hence

λ(S ′′

2 ) ≤ 1. Therefore λ(S2) = λ(S ′

2)+λ(S ′′

2 ) ≤ λ(B)+1. Thus, λ(S) = λ(S1)+λ(S2) ≤
(v(A− {x, y})/3− 1) + λ(B ∪ xy) + 1 = v(A− {x, y})/3 + λ(B ∪ xy).

Now suppose that λ(S1) = v(A − {x, y})/3− 2. If L is a 3-vertex path in S ′′

2 , then

V (L) ∩ {x, y} 6= ∅. Hence λ(S ′′

2 ) ≤ 2. Therefore λ(S2) = λ(S ′

2) + λ(S ′′

2 ) ≤ λ(B) + 2.

Thus, we have: λ(S) = λ(S1) + λ(S2) ≤ (v(A − {x, y})/3 − 2) + λ(B) + 2 = v(A −
{x, y})/3 + λ(B ∪ xy). �

It turns out that the end-chains of a claw-free graph have some special Λ-packing

properties.

4.3 Let G be a connected claw-free graph, C an end-chain of G, v(C) ≥ 3, and b the

boundary vertex of C (and so eb(C) ≤ 2). Then there exists an edge bb′ in C such that

λ(C − {b, b′}) = ⌊v(C − {b, b′}/3)⌋.

Proof (uses 4.1). Let bx ∈ E(C). Since G is claw-free, C − {b, x} is also claw-free.

If there exists an edge bb′ in C such that eb(C − {b, b′}) ≤ 2, then we are done by 4.1.
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Let B be the end-block of C containing b, and so b is a boundary vertex of B. Since

G is claw-free, B and B − {b, x} are also claw-free for bx ∈ E(B) and N(x,B) induces

a complete subgraph K in B.

(p1) Suppose that B has exactly one edge bb′. Since v(C) ≥ 3, there is a (unique) block

B′ in C such that b′ is a boundary vertex of B′. If e(B′) = 1, then eb(C − {b, b′}) ≤ 2

and we are done. If e(B′) ≥ 2, then B′ is 2-connected. Since N(b′, B′) induces a

complete subgraph in B′, clearly B′ − b′ is either 2-connected or a match. Therefore

again eb(C − {b, b′}) ≤ 2 and we are done.

(p2) Now suppose that B has at least two edges, and so B is 2-connected. Then

eb(B − {b, x}) ≤ 2 for every edge bx in B. Therefore if B = C, then we are done. So

we assume that B 6= C, and so C has the end-block D distinct from B. If there is an

edge bb′ in B such that eb(B−{b, b′}) = 1, then eb(C −{b, b′}) ≤ 2 and we are done. So

we assume that eb(B − {b, x}) = 2 for every vertex x in K. Then v(K) ≥ 2. Let B1(x)

and B2(x) be the two end-blocks of B − {b, x}, where B1(x) has no vertex adjacent to

b. Since eb(B − {b, x}) = 2, clearly B1(x) and B2(x) are 2-connected for every edge bx

in B. Since B 6= D, clearly eb(C − {b, x}) = 3. Since G is claw-free, Cx = C − (K − x)

is also claw-free. Since bx is an end-block of Cx, clearly N(x, Cx− b) induces in Cx− b a

complete subgraph Kx. Now since B1(x) has a vertex adjacent to x, clearly Kx ⊆ B1(x).

Since B2(x) is 2-connected, K − x has an inner vertex z of B2(x). Since K − x is a

complete graph and B2(x) is 2-connected, we have: K − x ⊆ B2(x).

First we assume that v(K) ≥ 3, and so there is vertex y in K − {x, z}. Then

y ∈ B2(x), and so in B − {b, z}, vertex x is adjacent to B1(x) and B2(x)− z. Therefore

B − {b, z} is 2-connected, and so eb(B − {b, z}) = 1, a contradiction.

Now we assume that v(K) = 2, say, V (K) = {b1 = x, b2 = y}. Let B1 be the

subgraph of B induced by B1(x)∪x and B2 = B2(x). Then N(b1, C−b−b2) = N(b1, B1),

N(b2, C − b − b1) = N(b2, B2), and each N(bi, Bi) induces in Bi a complete subgraph.

Let B′

i = Bi − bi. Clearly, B′

1 = B1(b1) = B1(x). Since B1(x) is 2-connected, B′

1 is

2-connected. Since B2 = B2(x) is 2-connected, B′

i is either 2-connected or a match.

Obviously, B′

1, B
′

2, and D are the three end-blocks of C − {b, b1, b2}. Let Ci be the

end-chain in C − {b, b1, b2} containing B′

i and ci be the boundary vertex of Ci. Let

C i = C − {b, bi} and B′

i be the subgraph of C induces by Ci ∪ bi.

(p2.1) Suppose that v(Ci) ≡ 0 mod 3 for some i ∈ {1, 2}, say, for i = 1. Obviously,

C1 − (C1 − c1) has exactly two end-blocks (namely, B′

2 and D).

Since c1 is a vertex in C1−(C1−c1) and the boundary vertex of Ci, the neighborhood

of c1 in C1− (C1− c1) induces a complete subgraph in C1− (C1− c1). Therefore C
1−C1

has also two end-blocks (namely, B′

2 and D). By 4.1, λ(C1 − C1) = ⌊v(C1 − C1)/3⌋.
Since C1 is a chain and v(C1) ≡ 0 mod 3, by 4.1, λ(C1) = v(C1)/3. Thus, λ(C1) =

λ(C1 − C1) + v(C1)/3 = ⌊v(C1)/3⌋.

(p2.2) Suppose that v(C1) ≡ 1 mod 3 for some i ∈ {1, 2}, say i = 1. Since c1 is

the boundary vertex of end-chain C1 in C1, the neighborhood of c1 in C1 induces a
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complete subgraph in C1. Therefore C1 − c1 is a chain. Since v(C1) ≡ 1 mod 3, clearly

v(C1 − c1) ≡ 0 mod 3. Therefore by 4.1, λ(C1 − c1) = v(C1 − c1)/3. Obviously, C1 −
(C1 − c1) is a chain. By 4.1, λ(C1 − (C1 − c1)) = ⌊v(C1 − (C1 − c1))/3⌋. Thus,

λ(C1) = λ(C1 − C1) + v(C1 − c1)/3 = ⌊v(C1)/3⌋.

(p2.3) Finally, suppose that v(C1) ≡ 2 mod 3 and v(C2) ≡ 2 mod 3. Let C ′

1 denote the

end-chain in C2 containing B′

1. Then C1 ⊂ C ′

1 and v(C ′

1) = v(C1) + 1 = 0 mod 3. Now

the arguments similar to those in (p1) shows that our claim is true. �

Now we can improve bounds on λ(G) in 4.2 when G = AxB is claw-free and A is

an end-chain of G.

4.4 Let G = AxB, where A and B are connected graphs with at least two vertices.

Suppose that G is claw-free and A is an end-chain of G. Then

(a0) if v(A) ≡ 0 mod 3, then λ(G) = v(A)/3 + λ(B − x),

(a1) if v(A) ≡ 1 mod 3, then λ(G) = (v(A)− 1)/3 + λ(B),

(a2) if v(A) ≡ 2 mod 3, then λ(G) = (v(A)− 2)/3 + λ(B ∪ xy), where xy is an edge in

A.

Proof (uses 4.1, 4.2, and 4.3). Suppose that v(A) ≡ 0 mod 3. Then by 4.1, A has

a Λ-factor P . Let Q be a maximum Λ-packing in B−x. Then P ∪Q is a Λ-packing in G

and λ(P ∪Q) = v(A)/3 + λ(B − x). Therefore by 4.2 (a0), λ(G) = v(A)/3+ λ(B − x).

Suppose that v(A) ≡ 1 mod 3. Then by 4.1, A − x has a Λ-factor P . Let Q

be a maximum Λ-packing in B. Then P ∪ Q is a Λ-packing in G and λ(P ∪ Q) =

(v(A)− 1)/3 + λ(B). Therefore by 4.2 (a1), λ(G) = (v(A)− 1)/3 + λ(B).

Finally, suppose that v(A) ≡ 2 mod 3. Then by 4.3, there exists an edge xy in A

such that A − {x, y} has a Λ-factor P . Let Q be a maximum Λ-packing in B. Then

P ∪Q is a Λ-packing in G and λ(P ∪Q) = (v(A)− 2)/3 + λ(B ∪ xy). Therefore by 4.2

(a2), λ(G) = (v(A)− 2)/3 + λ(B ∪ xy). �

Theorem 4.4 suggests the following reduction procedure for claw-free graphs.

Let G be a connected claw-free graph, C an end-chain of G, and c the boundary

vertex of C. Let us define a graph ⌊C⌋ as follows:

if v(C) ≡ 0 mod 3 and v(C) ≥ 3, then ⌊C⌋ = C,

if v(C) ≡ 1 mod 3 and v(C) ≥ 4, then ⌊C⌋ = C − c, and

if v(C) ≡ 2 mod 3 and v(C) ≥ 5, then ⌊C⌋ = C −{c, c′}, where cc′ is an edge in C such

that λ(C − {c, c′}) = ⌊v(C − {c, c′}/3)⌋ (see 4.3).

Obviously, v(⌊C⌋)/3 = ⌊v(C)/3⌋.

Recall that a graph G is called a cactus if G is connected and has at least three

end-chains and each end-chain has exactly two vertices.

The following procedure for claw-free graphs allows to either find a Λ-factor in a graph

G or to reduce the Λ-packing problem for G to that for a cactus K with v(K) ≤ v(G).
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4.5 Reduction. Let G be a connected claw-free graph.

(s1) If C1 is an end-chain of G with v(C1) ≥ 3, then put D1 = ⌊C1⌋ and G1 = G−D1.

(s2) We assume that Gi and the sequence (D1, . . . , Di) has already been defined for some

i ≥ 1.

If Gi has less than three end-chains or every end-chain of Gi has exactly two vertices,

then stop and put i = k. Otherwise, let Ci+1 be an end-chain of G with v(Ci+1) ≥ 3.

Put Di+1 = ⌊Ci+1⌋ and Gi+1 = Gi −Di+1.

The output of this procedure is (D1, . . . , Dk) and Gk.

Obviously, Reduction 4.5 is a polynomial-time procedure.

Let Dk = ∪{Di : i ∈ {1, . . . , k}}. Clearly all Di’s are disjoint, and so λ(Dk) =
∑

{λ(Di) : i ∈ {1, . . . , k}}.
It follows that Gk in Reduction 4.5 is either a claw-free chain or a claw-free cactus.

It is easy to show that if Gk is a cactus, then Dk and Gk are uniquely defined; in this

case let us denote Dk by D(G) and Gk by R(G).

4.6 Let G be a connected claw-free graph and (D1, . . . , Dk) and Gk be the output of

Reduction 4.5 applied to G. Let Q be a maximum Λ-packing in Gk. Then

(a1) each Di has a Λ-factor Pi, and so λ(Pi) = λ(Di) = v(Di)/3,

(a2) if Gk is a chain, then P is a Λ-factor of G,

(a3) P = Q ∪ {Pi : i ∈ {1, . . . , k}} is a maximum Λ-packing in G,

(a4) if Gk is not a chain, then

λ(G) = λ(R(G)) + v(D(G)/3 ≥ ⌊(v(R(G))− eb(R(G)) + 2)/3⌋+ v(D(G))/3 = l,

this lower bound is sharp, and l disjoint 3-vertex paths in G can be found in polynomial

time.

Proof (uses 3.13, 4.1, 4.3, and 4.5). We prove (a1) and (a2). By Reduction 4.5,

each Di has at most two end-blocks and v(Di) ≡ 0 mod 3. Since G is claw-free, each Di

is also claw-free. By 4.1, each Di has a Λ-factor Pi, and so λ(Pi) = λ(Di) = v(Di)/3.

Therefore (a1) holds. If Gk is a chain, then by the same reason, Q is a Λ-factor of Gk.

Then P = Q ∪ {Pi : i ∈ {1, . . . , k}} is a Λ-factor of G, and so (a2) holds. Now (a3)

follows from 4.4 and (a4) follows from (a3) and 3.13. �

From 4.5 and 4.6 it follows that Problem 3.15 is equivalent to

4.7 Problem. Is Λ-packing problem NP -hard for claw-free cacti ?

Now we describe an infinite class of sub-cubic claw-free graphs with no Λ factors.

This class includes infinitely many cacti. We will use this description to establish some

Λ-packing properties of ∆-graphs (see 4.22).

Let S denote the set of graphs S with the following properties:

(α1) S is connected,
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(α2) every vertex in S has degree at most 3,

(α3) every vertex in S of degree 2 or 3 belongs to exactly one triangle, and

(α4) S has at least three leaves.

4.8 If S ∈ S, then S has no Λ-factor.

Proof Let S ∈ S. If v(S) 6≡ 0 mod 3, then our claim is obviously true. So we assume

that v(S) ≡ 0 mod 3. By (α3), v(S) ≡ lv(S) mod 3, and so lv(S) ≡ 0 mod 3. Obviously,

it is sufficient to prove our claim for S ∈ S with property (α′4): lv(A) = 3. We prove

our claim by induction on v(G). The smallest graph in S is a net N with v(N) = 6

and our claim is obviously true for N . So let v(S) ≥ 9. Suppose, on the contrary, that

S has a Λ-factor P . Let v be a leaf of S and vx the edge incident to v. Since P is a

Λ-factor in S, it has a component L = vxy, and so P − L is a Λ-factor in S − L and

d(x, S) ≥ 2. By property (c3), x belongs to a unique triangle xyz in A and d(x, a) = 3.

If d(z, S) = 2, then z is an isolated vertex in S − L, and so P is not a Λ-factor in S,

a contradiction. Therefore by (c2), d(z, S) = 3. Hence z is a leaf in S − L, and so

lv(S − L) = 3. Therefore S − L satisfies (α2), (α3), and (α′4).

Suppose that G − L is not connected and that the three leaves do not belong to a

common component. Then S − L has a component C with v(C) 6≡ 0 mod 3, and so

S − L has no Λ-factor, a contradiction.

Finally, suppose that S −L has a component C containing all three leaves of S −L.

Then C ∈ S and v(C) < v(S). By the induction hypothesis, C has no Λ-factor.

Therefore S − L also has no Λ-factor, a contradiction. �

Recall that a frame of G is a minimal 2-connected spanning subgraph of G.

We need the following procedure from [6] that provides a frame of a 2-connected

graph. This procedure was used in [6] to prove 3.12.

4.9 Procedure E . Let G be a 2-connected graph. We define sequences A = (A0, . . . , Ar)

and G = (G0, . . . , Gr) recursively, where each Ai and each Gi is a subgraph of G:

(s1) Let A0 be a longest cycle in G and G0 = A0.

(s2) Assuming that the sequences (A0, . . . , Ai−1) and (G0, . . . , Gi−1) are already defined,

let Ai be a longest path in G with the property

(Ei): e(Ai) ≥ 2 and Gi−1 ∩ Ai = End(Ai).

Put Gi = Gi−1 ∪ Ai.

(s3) Let r be the minimum positive integer such that G has no path Ar+1 with property

(Er+1).

If G is a 2-connected graph, then we put F (G) = Gr, A(G) = Ar, and A(G) = A in

Procedure E . Clearly, every 2-connected graph has a frame.

It is easy to see the following.
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4.10 Let G be a 2-connected graph. Then F (G) is a frame of G and F (G) is a Hamil-

tonian cycle of G if and only if r = 0.

We will also need the following modification of Procedure E . Recall that an edge

e = xy is a chord of a cycle C in G if e 6∈ E(C) and x, y ∈ V (C).

4.11 Procedure E ’. Let G be a 2-connected graph and e ∈ E(G). Let Procedure E ′ be

obtained from Procedure E by replacing the first step

(s1) Let A′

0 = G′

0 be a longest cycle in G.

by

(s′1) Let A′

0 be a longest cycle among all cycles C in G such that edge e is either in C

or is a chord of C and let G′

0 = A′

0.

Since G is 2-connected, G has a cycle containing e. Therefore a cycle A′

0 exists.

It turns out [6] that applied to a 2-connected claw-free graph G, Procedure E provides

a frame F (G) = Gr of G and its ear-assembly with very useful properties.

Recall that a claw-free frame of G is a minimal 2-connected claw-free spanning sub-

graph of G. Clearly, every 2-connected claw-free graph has a claw-free frame.

4.12 [6] Let G be a 2-connected claw-free graph and G not a cycle. Let F = F (G) and

A = A(G) from Procedure E . Then

(f1) F is a frame of G with the maximum vertex degree three,

(f2) G has a unique matching M such that Fc = F ∪M is a claw-free frame of G with

the maximum vertex degree three, and so every vertex of degree three belongs to a unique

triangle in Fc and every vertex of every triangle in Fc has degree three in Fc,

(f3) Fc −A is a claw-free frame of G−A (and so G−A is 2-connected and claw-free)

(put Fc = Fc(G)),

(f4) if P is a maximum Λ-packing of A, then G − P is a 2-connected claw-free graph,

and

(f5) the above claims are also true for Procedure E ′.

Obviously, even the first steps in Procedures E and E ′ are NP -hard. However, there

are modifications of these procedures which find F (G), Fc(G), A(G), and A(G) with

properties in 4.12 in polynomial time for every 2-connected claw-free graph G.

4.13 Suppose that G is a 2-connected claw-free graph.

(a1) If v(G) ≡ 0 mod 3 and e ∈ E(G), then G− e has a Λ-factor.

(a2) If v(G) ≡ k mod 3, where k ∈ {1, 2}, then G has a k-vertex path Pk and a (k + 3)-

vertex path Pk+3 such that G−Pk and G−Pk+3 have Λ-factors, and so G has a {Λ, Pk}-
factor and a {Λ, Pk+3}-factor.
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Proof (uses 4.12). We prove (a1) by induction on v(G). If G is a cycle, then our

claim is obviously true. Otherwise, consider A = A(G) provided by Procedure E ’. Then
e 6∈ E(A). Let P be a maximum Λ-packing in A(G). Since e(A) ≥ 2, clearly v(P ) = 3s

for some s ≥ 1. Therefore v(G−P ) ≡ 0 mod 3 and by 4.12, G−P is also a 2-connected

claw-free graph. Since e 6∈ E(A), clearly e 6∈ E(P ). Obviously, v(G − P ) < v(G). By

the induction hypothesis, G− P has a Λ-factor Q avoiding e. Then P ∪Q is a Λ-factor

of G avoiding edge e. The proof of (a2) is similar to that above. �

It turns out that an analogue of 4.13 (a2) when a 4-vertex path is replaced by a claw

is also true provided a graph has a claw.

4.14 Suppose that G is a 2-connected claw-free graph, v(G) ≡ 1 mod 3, and G is not a

cycle. Then G has at least two claws Y such that G− Y has a Λ-factor.

Proof (uses 3.14 and 4.12). Let H = Fc(G) and A = A(G) (see 4.12), and so

A ⊂ H . Suppose first that A is a cycle. Then A is a Hamiltonian cycle of H . Since G

is not a cycle, we have by 4.12 (f2): E(H) \E(A) 6= ∅ and every edge in E(H) \E(A)

belongs to a unique triangle in H . Then H has at least two claws and H − Y has a

Λ-factor for every claw in H . Since H is a spanning subgraph of G, every Λ-factor of

H − Y is also a Λ-factor of G− Y .

Now suppose that A is a path. Let x and y be the end-vertices of A. Since H is a

spanning subgraph of G, it suffices to prove the following

Claim. For every vertex v ∈ {x, y} there exist two claws Yv an Zv in H such that either

G− Yv or G− Zv has a Λ-factor.

Proof. By 4.12, every end-vertex of A has degree three and belongs to a unique triangle

of H . By symmetry, we can assume that v = y. Let ∆ be the triangle containing y

and V (∆) = {s, y, z}. Let Y and Z be the claws in H centered at y and z, respectively.

Then Y contains the end-edge yy′ of L and Z contains the edge zz′, where z′ 6∈ V (∆).

Let H ′ = H − A. By 4.12 (f3), H ′ is a 2-connected claw-free spanning subgraph of

G− A.

(p1) Suppose that v(L) ≡ 0 mod 3. Let R0 = (A − x) ∪ Y and H0 = H − R0. Then

A′ = R0 − Y = A − {x, y, y′} is the subpath of R0. Since v(L) ≡ 0 mod 3, also

v(A′) ≡ 0 mod 3. Then A′ has a unique Λ-factor P . Let H ′′ = H − (A− x). Obviously,

H0 = H ′′ − {s, z}. Since H ′ is 2-connected, H ′′ is also 2-connected. Since s and z have

degree three in H , they both have degree two in H ′′. Therefore H0 = H ′′ − {s, z} has

exactly two end-blocks. Since H is claw-free, H0 is also claw-free. By 3.14, H0 has a

Λ-factor Q. Then P ∪Q is a Λ-factor of H0 ∪ (A− Y ) = H − Y .

(p2) Suppose that v(A) ≡ 1 mod 3. Let R0 = L ∪ Z and H0 = H − R0. Then

L′ = R0−Z = L−y is the subpath ofR0. Since v(A) ≡ 1 mod 3, clearly v(A′) ≡ 0 mod 3.

Then A′ has a unique Λ-factor P . Since s and z have degree three in H , they both have

degree two in H ′. Now since H ′ is 2-connected, H0 = H ′ − {s, z, z′} has exactly two
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end-blocks. Since H is claw-free, H0 is also claw-free. By 3.14, H0 has a Λ-factor Q.

Then P ∪Q is a Λ-factor of H0 ∪ (A− Z) = H − Z.

(p3) Suppose that v(A) ≡ 2 mod 3. Let R0 = L ∪ ∆ and H0 = H − R0. Then

A′ = R0 − Y = A − {y, y′} is the subpath of R0. Since v(A) ≡ 2 mod 3, clearly

v(A′) ≡ 0 mod 3. Then A′ has a unique Λ-factor P . Since s and z have degree three

in H , they both have degree two in H ′. Now since H ′ is 2-connected, H0 = H ′ − {s, z}
has exactly two end-blocks. Since H is claw-free, H0 is also claw-free. By 3.14, H0 has

a Λ-factor Q. Then P ∪Q is a Λ-factor of H0 ∪ (A− Y ) = H − Y . �

By 4.13 (a2), every 2-connected claw-free graph with v(G) ≡ 2 mod 3 has an edge

xy such that G − {x, y} has a Λ-factor. It turns that the following stronger result is

true.

4.15 Suppose that G is a 2-connected claw-free graph and v(G) ≡ 2 mod 3. Then

for every vertex x in G there exist at least two edges xb1 and xb2 in G such that each

G− {x, bi} is connected and has a Λ-factor.

Proof (uses 4.1, 4.5, and 4.6). Since G is 2-connected, there exists an edge xy in

G such that G− {x, y} is connected. Suppose that G− {x, y} has no Λ - factor. Then

by 4.1, G− {x, y} has at least three end-blocks Bi, i ∈ {1, . . . , k}, k ≥ 3. Let b′i be the

boundary vertex of block Bi in G−{x, y}. Let Vi be the set of vertices in {x, y} adjacent

to a vertex in Bi − b′i and Bv be the set of the end-blocks in G− {x, y} having an inner

vertex adjacent to v ∈ {x, y}. Since G is 2-connected, each |Vi| ≥ 1. Since G is claw-

free, each |Bv| ≤ 2. Since k ≥ 3, |Bz| = 2 for some z ∈ {x, y}, say Bz = {B1, B2}. Let

zbi ∈ E(G), where bi ∈ V (Bi − b′i) for i ∈ {1, 2}. Since G is claw-free, {x, y, b1, b2} does

not induce a claw in G. Therefore sbj ∈ E(G) for {s, z} = {x, y} and some j ∈ {1, 2},
say, for j = 2. Then Bs = {Bi : i ≥ 2}. Since Bs = 2, we have: k = 3 and Bs = {B2, B3}.
Now we can assume that z = x and s = y. Obviously, G−{x, b1} is claw-free, connected,

and has exactly two end-blocks. By 4.1, G− {x, b1} has a Λ-factor.

We want to prove that G − {x, b2} also has a Λ-factor. Let Ci be the end-chain of

G − {x, y} containing Bi, i ∈ {1, 2, 3}. Graph G − {x, y} is claw-free and has exactly

three end-blocks. Since G − {x, y} has no Λ-factor, by 4.6 (a3), a graph Gk obtained

from G by Reduction 4.5 has exactly three end-chains and each of them has one edge.

Therefore each v(Ci) ≡ 2 mod 3. Graph G − {x, b2} is claw-free, connected, and has

a leaf y and two or three end-chains. If G − {x, b2} has two end-chains, then by 4.1,

G− {x, b2} has a Λ-factor. So we assume that G− {x, b2} has three end-chains C ′

1, C
′

1,

and C ′

1, where b′1 ∈ V (C ′

1) and b′3 ∈ V (C ′

3). Then C ′

1 = C1, C
′

2 = C2 − b′2, and C ′

3 is

obtained from C3 by adding edge yb3. Since v(C2) ≡ 2 mod 3, clearly v(C ′

2) ≡ 1 mod 3.

Then a graph Gk obtained from G by Reduction 4.5 has two end-blocks. Therefore by

4.6 (a3), G− {x, b2} has a Λ-factor. �

From 4.15 we have for 3-connected claw-free graphs the following stronger result

(with a simpler proof).
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4.16 Suppose that G is a 3-connected claw-free graph and v(G) ≡ 2 mod 3. Then

G− {x, y} has a Λ-factor for every edge xy in G.

Proof (uses 4.1). Let G′ = G− {x, y}. Since G is 3-connected, G′ is connected. By

4.1, it suffices to prove that G′ has at most two end-blocks. Suppose, on the contrary,

that G′ has at least three end-blocks. Let Bi, i ∈ {1, 2, 3}, be some three blocks of

G′. Since G is 3-connected, for every block Bi and every vertex v ∈ {x, y} there is an

edge vbi, where bi is an inner vertex of Bi. Then {v, b1, b2, b3} induces a claw in G, a

contradiction. �

As we have seen in the proof of 4.15, the claim of 4.16 is not true for claw-free

graphs of connectivity two.

4.17 Suppose that G is a 3-connected claw-free graph and v(G) ≡ 0 mod 3. Then for

every edge xy in G there exist at least two 3-vertex paths L1 and L2 in G centered at y,

containing xy, and such that each G− Li is connected and has a Λ-factor.

Proof (uses 4.1). We need the following simple fact.

Claim. Let G be a 3-connected graph. Then for every vertex x and every edge xy in

G there exist two 3-vertex paths Λ1 and Λ2 in G centered at y, containing xy, and such

that each G− Λi is connected.

By the above Claim, G has a 3-vertex path L = xyz such that G− L is connected.

If every such 3-vertex path belongs to a Λ-factor of G, then we are done. Therefore we

assume that G − L is connected but has no Λ-factor. Obviously, G − L is claw-free.

Therefore by 4.1, G − L has at least three end-blocks Bi, i ∈ {1, . . . , k}, k ≥ 3. Let

b′i be the boundary vertex of Bi. Let Vi be the set of vertices in L adjacent to inner

vertices G − L having an inner vertex adjacent to v in V (L). Since G is 3-connected,

each |Vi| ≥ 2. Since G is claw-free, each |Bv| ≤ 2. It follows that k = 3, each |Vi| = 2,

each |Bv| = 2, as well as all Vi’s are different and all Bv’s are different. Let s1 = z,

s2 = x, s3 = y, and S = {s1, s2, s3}. We can assume that Vi = S−si, i ∈ {1, 2, 3}. Then
for every vertex sj ∈ Vi there is a vertex bji in Bi− b′i adjacent to sj, where {bji : s

j ∈ Vi}
has exactly one vertex if and only if Bi − b′i has exactly one vertex. Let Li = s2s3bi,

where bi = b3i . By 4.1, it suffices to show that each G−Li is connected and has at most

two end-blocks.

Let i = 1. If B1− b1 is 2-connected, then B1− b1 and G−L1− (B1 − b′1) are the two

end-blocks of G− L1 and we are done. If B1 − b1 is empty, then G−L1 is 2-connected.

So we assume that B1− b1 is not empty and not 2-connected. Then B1− b1 is connected

and has exactly two end-blocks, say C1 and C2. Let c
′

i be the boundary vertex of Ci in

B1 − b1. Since G is 3-connected, each Ci − c′i has a vertex adjacent to {s2, s3}. We can

assume that a vertex c1 in C1− c′1 is adjacent to s2. If there exists a vertex c2 in C2− c′2
adjacent to s2, then {s2, b23, c1, c2} induces a claw in G, a contradiction. So we assume

that no vertex in C2 − c′2 is adjacent to s2. Then there is a vertex c2 in C2 − c′2 adjacent

to s3. Then {s2, s3, b32, c2} induces a claw in G, a contradiction.
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Finally, let i = 2. If B2 − b2 is 2-connected, then B1 and G− L2 − (B1 − b′1) are the

two end-blocks of G − L2 and we are done. If B1 − b1 is empty, then G − L2 has two

end-blocks, namely, B1 and the subgraph of G induced by B3 ∪ s1. So we assume that

B2 − b2 is not empty and not 2-connected. Then B2 − b2 is connected and has exactly

two end-blocks, say D1 and D2. Let d′i be the boundary vertex of Di in B2 − b2. Since

G is 3-connected, each Di − d′i has a vertex adjacent to {s1, s3}. We can assume that a

vertex d1 in D1 − d′1 is adjacent to s3. If there exists a vertex d2 in D2 − d′2 adjacent to

s3, then {s3, d1, d2, b
3
1} induces a claw in G, a contradiction. So suppose that no vertex

in D2 − d′2 is adjacent to s3. Then there is a vertex d2 in D2 − d′2 adjacent to s1. Then

{s1, s3, b13, d2} induces a claw in G, a contradiction. �

From the proof of 4.17 we have, in particular:

4.18 Suppose that G is a 3-connected claw-free graph and v(G) ≡ 0 mod 3. If L is a

3-vertex path and the center vertex of L has degree 3 in G, then G−L is connected and

has a Λ-factor in G.

From 4.18 and the proof of 4.17 we have:

4.19 Suppose that G is a cubic 3-connected claw-free graph or 4-connected claw-free

graph with v(G) ≡ 0 mod 3. Then G − L is connected and has a Λ-factor for every

3-vertex path L in G.

The claim of 4.19 may not be true for a claw-free graph of connectivity 3 if they are

not cubic. Recall that a net is a graph obtained from a claw by replacing its vertex of

degree 3 by a triangle. Let N be a net with the three leaves v1, v2, and v3, T a triangle

with V (T ) = {t1, t2, t3}, and let N and T be disjoint. Let H = N ∪ T ∪ {vitj : i, j ∈
{1, 2, 3}, i 6= j}. Then H is a 3-connected claw-free graph, v(H) = 9, each d(ti, H) = 4,

d(x,H) = 3 for every x ∈ V (H − T ), and H − T = N has no Λ-factor. If L is a

3-vertex path in T , then H − L = H − T , and so H − L has no Λ-factor. There are

infinitely many pairs (G,L) such that G is a 3-connected, claw-free, and non-cubic graph,

v(G) ≡ 0 mod 3, L is a 3-vertex path in G, and G− L has no Λ-factor.

By 4.8, such a pair can be obtained from the above pair (H,L) by replacing N by

any graph A with exactly three leaves satisfying the assumptions of 4.8.

From 4.17 we have, in particular:

4.20 Suppose that G is a 3-connected claw-free graph and v(G) ≡ 0 mod 3. Then for

every edge e of G there exists a Λ-factor in G containing e.

The following examples show that assumption “G is a 3-connected graph” in 4.20 is

essential. Let R be the graph obtained from two disjoint cycles A and B by adding a new

vertex z, and the set of four new edges {aiz, biz : i ∈ {1, 2}}, where a = a1a2 ∈ E(A)

and b = b1b2 ∈ E(B). It is easy to see that R is a claw-free graph of connectivity
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one. Furthermore, if v(A) ≡ 1 mod 3 and v(B) ≡ 1 mod 3, then v(R) ≡ 0 mod 3 and

R has no Λ-factor containing edge e ∈ {a, b}. Similarly, let Q be the graph obtained

from two disjoint cycles A and B by adding two new vertices z1 and z2, a new edge

e = z1z2, and the set of eight new edges {aizj , bizj : i, j ∈ {1, 2}}, where a1a2 ∈ E(A)

and b1b2 ∈ E(B). It is easy to see that Q is a claw-free graph of connectivity two.

Furthermore, if v(A) ≡ 2 mod 3 and v(B) ≡ 2 mod 3, then v(Q) ≡ 0 mod 3 and Q has

no Λ-factor containing edge e.

Let F be a graph, x ∈ V (F ), and X = {x1, x2, x3} be the set of vertices in F

adjacent to x. Let T be a triangle, V (T ) = {t1, t2, t3}, and V (F ) ∩ V (T ) = ∅. Let

G = (F − x) ∪ T ∪ {xiti : i ∈ {1, 2, 3}}. We say that G is obtained from F by replacing

a vertex x by a triangle.

Given a cubic graph F with possible parallel edges, let F∆ denote the graph obtained

from F by replacing each vertex of F by a triangle. Clearly, F∆ is cubic and claw-free,

every vertex belongs to exactly one triangle, every edge belongs to at most one triangle in

F∆, and v(F∆) ≡ 0 mod 3. Obviously, F∆ is k-connected if and only if F is k-connected,

k ∈ {1, 2, 3}. We call F∆ a ∆-graph.

4.21 Let G be a 2-connected ∆-graph. Let L be a 3-vertex path in G. Then

(a) G− L has a Λ-factor.

Moreover,

(a1) if L induces a triangle in G, then G has a Λ-factor R containing L and such that

each component of R induces a triangle

(a2) if L does not induce a triangle in G, then G has a Λ-factor R containing L and

such that no component of R induces a triangle, and

(a3) if L does not induce a triangle in G, then G has a Λ-factor containing L and a

component that induces a triangle.

Proof Since G is a 2-connected ∆-graph, G can be obtained from a 2-connected cubic

graph G′ (with possible parallel edges) by replacing each vertex of G′ by a triangle.

Obviously, there is a natural bijection α : E(G′) → E ′. Let E ′ be the set of edges in G

that belong to no triangle. Let L = xzz1. Since each vertex of G belongs to exactly one

triangle, we can assume that xz belongs to a triangle T = xzs.

(p1) Suppose that L induces a triangle in G, and so s = z1. Obviously the union of all

triangles in G contains a Λ-factor, say P , of G and L ⊂ P . Therefore claim (a1) is true.

(p2) Now suppose that L does not induce a triangle in G, and so s 6= z1. Let s̄ = ss1 and

z̄ = zz1 be the edges of G not belonging to T , and therefore belonging to no triangles

in G. Hence s̄ = α(s̄′) and z̄ = α(z̄′), where s̄′ = s′s′1 and z̄′ = z′z′1 are edges in G′, and

s′ = z′. Since every vertex in G belongs to exactly one triangle, clearly s1 6= z1.

(p2.1) We prove (a2). By using Tutte’s criterion for a graph to have a perfect matching

(see [20]), it is easy to prove the following
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Claim. If A is a cubic 2-connected graph, then for every 3-vertex path J of A there

exists a 2-factor of A containing J .

By the above Claim, G′ has a 2-factor F ′ containing 3-vertex path S ′ = s′1s
′z′1. Let

C ′ be the (cycle) component of F ′ containing S ′. If Q′ is a (cycle) component of F ′, then

let Q be the subgraph of G, induced by the edge subset {α(e) : e ∈ E(Q′)} ∪ {E(∆v) :

v ∈ V (Q′)}. Obviously v(Q) ≡ 0 mod 3 and Q has a (unique) Hamiltonian cycle H(Q).

Also the union F of all Q’s is a spanning subgraph of G and each Q is a component of F .

Moreover, if C is the component in F , corresponding to C ′, then L ⊂ H(C). Therefore

each H(Q) has a Λ-factor P (Q), such that no component of P (Q) induces a triangle,

and H(C) has a (unique) Λ-factor P (C), such that L ⊂ P (C) and no component of

P (C) induces a triangle. The union of all these Λ-factors is a Λ-factor P of G containing

L and such that no component of P induces a triangle. Therefore (a2) holds.

(p2.2) Finally, we prove (a3). Since G′ is 2-connected and cubic, there is a cycle C ′ in G′

such that V (C ′) 6= V (G′) and C ′ contains S ′ = s′1s
′z′1. Let, as above, C be the subgraph

of G, induced by the edge subset {α(e) : e ∈ E(C ′)} ∪ {E(∆v) : v ∈ V (C ′)}. Obviously,

v(C) ≡ 0 mod 3, C has a (unique) Hamiltonian cycle H , and L ⊂ H . Therefore H has

a (unique) Λ-factor P (C) containing L. Since V (C ′) 6= V (G′), we have V (G′ −C ′) 6= ∅.
Therefore G−C has a triangle. Moreover, every vertex v in G−C belongs to a unique

triangle ∆v, and therefore as in (p1), G − C has a Λ-factor Q whose every component

induces a triangle in G− C. Then P (C) ∪Q is a required a Λ-factor in G. �

Obviously, 4.21 (a) also follows from 4.18.

Theorem 4.21 is not true for a cubic 2-connected claw-free graph F with an edge xy

belonging to two triangles Ti with V (Ti) = {x, y, zi}, i ∈ {1, 2}, because L = z1xz2 is a

3-vertex path in F and y is an isolated vertex in F − L.

Now we can give polynomial-time characterization of pairs (G,E) such that G is a

2-connected ∆-graph, E ⊂ E(G), |E| = 3, and G − E has no Λ-factor. Recall that if

E ⊆ E(G), then Ė denotes the subgraph of G induced by E.

4.22 Suppose that G is a 2-connected ∆-graph. Let E ⊂ E(G) and |E| = 3. Then the

following are equivalent:

(g) G− E has no Λ-factor and

(e) Ė satisfies one of the following conditions:

(e1) Ė is a claw,

(e2) Ė is a triangle,

(e3) Ė has exactly two components, the 2-edge component Ė2 belongs to a triangle

in G, the 1-edge component Ė1 belongs to no triangle in G, and G−E is not connected,

and

(e4) Ė has exactly two components, the 2-edge component Ė2 belongs to a triangle T

and the 1-edge component Ė1 belongs to a triangle D in G, Ė1 and Ė2 belong to different
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component of G− {d, t}, where d and t are the edges in G− E(D)− E(T ) incident to

the single vertex of D − Ė1 and to the isolated vertex of T −E2, respectively.

Proof (uses 4.1, 4.8, and 4.21(a)). Let E = {a, b, c}, where c = c1c2.

(p1) We prove (e) ⇒ (g).

Suppose that Ė satisfies (e1), i.e. Ė is a claw. Then G − E has an isolated vertex

and therefore has no Λ-factor.

Suppose that Ė satisfies (e2), i.e. Ė is a triangle. Then by 4.8, G − E has no

Λ-factor.

Now we assume (as in (e3) and (e4)) that Ė has exactly two components Ė2 and

Ė1, the 2-edge component Ė2 belongs to a triangle T in G, E2 = {a, b}, and E1 = {c},
t = t1t2 is an edge in G − E, where t1 is an isolated vertex in T − E2, and so t1 is a

(unique) leaf in G− E. Let u be the edge in T distinct from a and b.

Suppose that Ė satisfies (e3), and so Ė1 belongs to no triangle in G and G − E is

not connected. Obviously, G−E has exactly two components. Let S the component in

G−E containing edge t. Then edge u is not in S. Therefore every vertex in S distinct

from the leaf t1 belongs to exactly one triangle. Hence v(S) ≡ 1 mod 3 implying that

G− E has no Λ-factor.

Finally, suppose that Ė satisfies (e4), and so edge c = c1c2 belongs to a triangle

D in G, G − {d, t} is not connected, and E1, E2 belong to different components of

G−{d, t}, where d is the edge in G−E(D) incident to the single vertex in D−{c1, c2}.
Suppose, on the contrary, that G − E has a Λ-factor P . Since G is 2-connected and

claw-free, G−{d, t} has exactly two components. Therefore G−{a, b}− (E(D)− c) has

also two components. Let C ′ be the component of G− {a, b} − (E(D)− c) containing

c. Since G is a ∆-graph, G = F∆ for some cubic 2-connected graph F (with possible

parallel edges). Let d′ and t′ be the edges in F corresponding to edges d and t of G,

respectively. Since F is 2-connected, F − {d′, t′} has at most two components. Since

G − {d, t} is not connected, F − {d′, t′} has exactly two components. It follows that

H = G− {a, b} −E(D)) = G−E −E(D) has also exactly two components. Therefore

C = C ′ − c is connected, and so C is a component of H containing the end-vertices c1
and c2 of edge c.

Let Cu and Ct be the components of H containing u and t, respectively. Then

Cu 6= Ct. Now C2 = Cu ∪ T is the component in G − {d, t} containing E2. By (e4),

c 6∈ E(C2). Therefore c is an edge of C1 = Ct ∪ D. Thus Ct = C. Clearly, C has

exactly three leaves c1, c2, and t1 (the leaf incident to t) and every other vertex of C

belongs to a unique triangle in C, and so v(C) ≡ 0 mod 3. By 4.8, C has no Λ-factor.

Therefore P has a 3-vertex path L which contains at least one edge in D− c. Since t is a

dangling edge in G−E, clearly P also has a 3-vertex path Lt containing t and Lt ⊂ C.

Therefore P has to contain a Λ-factor of C−L−Lt. However, v(C−L−Lt) 6≡ 0 mod 3,

a contradiction.

(p2) Finally, we prove (g) ⇒ (e). Namely, we assume that Ė does not satisfy (e) and
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we want to show that in this case G− E has a Λ-factor.

Let X, Y ⊂ E(G) be such that X meets no triangle in G, each edge in Y belongs to

a triangle in G, and no triangle in G has more than one edge from Y , and so X ∩Y = ∅.
We will use the following simple observation.

Claim. G−X−Y has a Λ-factor P such that every component of P induces a triangle

in G and if an edge y from Y is in a triangle T , then T − y is a component of P .

By the above Claim, we can assume that the two edges of E2 belong to the same

triangle T .

Suppose that Ė is connected. Since Ė does not satisfy (e), Ė is not a claw and not a

triangle. Then Ė is a 3-edge path and u, t 6∈ E. Let V be a 3-vertex path in G containing

u and avoiding E. Then G− V has no edges from E, and so G− V = G− E − V . By

4.21(a), G− V has a Λ-factor.

Finally, suppose that Ė is not connected, and so Ė has exactly two components Ė1

and Ė2. As in (p1), let E2 = {a, b} and E1 = {c}, and let u be the edge of T distinct

from a and b.

(p2.1) Suppose that c belongs to no triangle in G. Since Ė does not satisfy (e) (namely,

(e3)), G − E is connected. Clearly, G − E is claw-free. Also G − E has exactly two

end-blocks and the block of one edge t is one of them. By 4.1, G− E has a Λ-factor.

(p2.2) Finally, suppose that c belongs to a triangle D in G. Then D 6= T . Since Ė does

not satisfy (e) (namely, (e4)), Ė1 and Ė2 belong to the same component of G−{d, t}. Let
V (D) = {c1, c2, d1} and as above c = c1c2. Let d = d1d2 and t = t1t2, where t1 ∈ V (T ),

and so t1 is an isolated vertex in T − {a, b}.
Let G′ = G − {c, d}. Then G′ and G′ − E2 are claw-free and v(B) ≡ 0 mod 3 for

every block B in G′. Obviously, G′ − E2 = G − E − d. Since G is 2-connected, G − c

is also 2-connected. Therefore eb(G′) ≤ 2 and if eb(G′) = 2, then the end-vertices

d1 and d2 of edge d belong to different end-blocks B1 and B2 of G′, respectively. If

eb(G′) = 1, then G′ is 2-connected. Therefore G′ − E2 has at most two end-blocks. By

4.1, G′ − E2 = G − E − d has a Λ-factor P , which is also a Λ-factor of G − E. So we

assume that eb(G′) = 2. Since E1 and E2 belong to the same component of G− {d, t},
clearly d1, and E2 belong to the same component of G′ − t.

Suppose that t is a cut-edge of G′. Then G′ − t has exactly two components C1

and C2 containing {d1, t1} and d2, respectively, and each v(Ci) ≡ 0 mod 3. Let L be a

3-vertex path c1d1d2 in G− c. Then C ′

1 = C1 − {c1, d1, t1} and C ′

2 = (C2 − d2) ∪ {t, t1}
are the two components of G − E − L containing d1 and d2, respectively. Also each,

v(C ′

i) ≡ 0 mod 3 and C ′

i is claw-free and has exactly two end-blocks. By 3.12 and 3.14,

C ′

i has a Λ-factor Pi, i ∈ {1, 2}. Then L ∪ P1 ∪ P2 is a Λ-factor of G− E.

Finally, suppose that t is not a cut-edge of G′. Then {a, b, t} belongs to a 2-connected

block R of G′. Then R − E2 has at most two end-blocks. By 3.12 and 3.14, R − E2

has a Λ-factor Q. Let B denote the set of all 2-connected blocks of G′ distinct from

R. Since v(B) ≡ 0 mod 3 for every B ∈ B, each B in B has a Λ-factor P (B). Then
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{P (B) : B ∈ B} ∪Q is a Λ-factor of G′, which is also a Λ-factor of G−E. �

From 4.22 we have, in particular:

4.23 Suppose that G is a ∆-graph. Let E ⊂ E(G) and |E| = 2. Then G − E has a

Λ-factor.

From 4.22 we also have:

4.24 Suppose that G is a 3-connected claw-free graph. Let E ⊂ E(G) and |E| = 3.

Then G− E has a Λ-factor if and only if Ė is not a claw and not a triangle.

It turns out that condition “G is claw-free” in 4.22 and in 4.24 is essential. Namely,

we have a construction showing that for every 3-edge graph Y with no isolated vertices

there are infinitely many pairs (G,E) such that G is a cubic 3-connected graph, v(G) ≡
0 mod 3, E ⊂ E(G), the subgraph Ė induced by E in G is isomorphic to Y (and so

|E| = 3), and G−E has no Λ-factor.

4.25 Suppose that G is a 2-connected claw-free graph and v(G) ≡ 1 mod 3. Then G−x

has a Λ-factor for every vertex x in G.

Proof (uses 4.1). Let x ∈ V (G). Since v(G) ≡ 1 mod 3, clearly v(G− x) ≡ 0 mod 3.

Since G is 2-connected, G− x is connected. Since G is claw-free, G− x is claw-free and

has at most two end-blocks. By 4.1, G− x has a Λ-factor. �

If on step (s1) of Procedure E we find a longest cycle in G containing a given vertex

x, then this modification of Procedure E can also be used to prove 4.25.

Moreover, the following strengthening of 4.25 holds for 3-connected claw-free graphs.

4.26 Suppose that G is a 3-connected claw-free graph and v(G) ≡ 1 mod 3. Then

G− {x, e} has a Λ-factor for every vertex x and every edge e in G.

Proof (uses 3.12 and 4.13). Since G is 3-connected, G−x is a 2-connected claw-free

graph. Since v(G) ≡ 1 mod 3, we have v(G − x) ≡ 0 mod 3. By 3.12, G − x has a

Λ-factor P . If e 6∈ E(G− x), then P is a Λ-factor of G− {x, e}. If e ∈ E(G− x), then

by 4.13, G− {x, e} has a Λ-factor. �

5 Packings and domination in graphs

Recall that X ⊆ V (G) is called a domination set in graph G, if every vertex in

V (G) \X is adjacent to a vertex in X and that the domination number γ(G) is the size

of a minimum domination set in G. We call a subgraph P in G a star-packing if every

component of P is isomorphic to K1,s for some integer s ≥ 0.
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Obviously, X is a domination set in G if and only if there exists a star-factor P =

P (X) such that Cmp(P ) = {Px : x ∈ X}, where x ∈ V (Px) and x is a (unique) vertex

of degree at least two if v(Px) ≥ 3, and so |Cmp(P )| = |X|. Thus X is a minimum

domination set in G if and only if P (X) is a star-factor in G having the minimum number

of components and γ(G) = cmp(P (X)).

It is easy to show that every connected graph G with no isolated vertices has a

star-factor with no isolated vertices, and so γ(G) ≤ v(G)/2.

Clearly, every Λ-packing P is a star-packing in G and P can be extended to a star-

factor P ′ in G. Then γ(G) ≤ cmp(P ′). For that reason, results on the maximum

Λ-packings in graphs may be useful in the study of some graph domination problems.

Here is an example of such correlation.

In [22] B. Reed conjectured that if G is a connected cubic graph, then γ(G) ≤
⌈v(G)/3⌉. It turns out that Reed’s conjecture is not true for connected and even for

2-connected cubic graphs [14, 18]. Obviously,

(d1) if a graph G has a Λ-factor (and so v(G) ≡ 0 mod 3), then γ(G) ≤ v(G)/3,

(d2) if v(G) ≡ 1 mod 3 and G − x has a Λ-factor for some vertex x of G, then γ(G) ≤
⌈v(G)/3⌉, and

(d3) if v(G) ≡ 2 mod 3 and G−{x, y} has a Λ-factor for some edge xy of G, then again

γ(G) ≤ ⌈v(G)/3⌉.

Now if claim (P ) in Problem 3.7 is true, then from 3.8 and 3.10 it follows, in

particular, that (d1), (d2), and (d3) above are true, and so Reed’s conjecture is true for

3-connected cubic graphs.

The following packing result is also related with Reed’s domination conjecture.

5.1 [15] If G is a cubic Hamiltonian graph with v(G) ≡ 1 mod 3, then G has a claw

Y such that G− Y has a Λ-factor, and so G has {Λ, Y }-factor.

It follows that if G is a cubic Hamiltonian graph with v(G) ≡ 1 mod 3, then γ(G) ≤
⌊v(G)/3⌋ which is stronger than Reed’s conjecture suggests. The following natural

question arises:

5.2 Problem Is it true that γ(G) ≤ ⌊v(G)/3⌋ for every cubic 3-connected graph G

with v(G) ≡ 1 mod 3 ?

In [14] we gave a construction providing infinitely many cubic cyclically 4-connected

graphs G with v(G) ∈ {0, 2} mod 3 for which γ(G) = ⌈v(G)/3⌉, and so Reed’s suggested

bound is tight even in the class of cyclically 4-connected graphs. From this construction

it also follows that the claim similar to 5.1 for graphs G with v(G) 6≡ 1 mod 3 is not

true, namely, the graphs provided by the construction have no {Λ, Y }-factor.
No bipartite counterexamples to Reed’s conjecture have been found. We can show

that if claim (P ) in Problem 3.7 is true for bipartite graphs, then Reed’s conjecture is

also true for bipartite 3-connected cubic graphs.
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Let γi(G) denote the size of a minimum independent domination set, and so γi(G) ≥
γ(G). It is easy to see that if G is a claw-free graph, then γi(G) = γ(G).

From 4.13 and 4.14 we have the following upper bounds on the domination number

of claw-free graphs:

5.3 Let G be a 2-connected claw-free graph. Then γ(G) ≤ ⌈v(G)/3⌉ and if, in addition,

G is not a cycle and v(G) ≡ 1 mod 3, then γ(G) = γi(G) ≤ ⌊v(G)/3⌋.

6 Further related results and questions

Given a family F of non-isomorphic graphs, an edge disjoint F-packing Q of G is a

set {Q1, . . . Qk} such that each Qi ⊆ E(G), every two members of Q are disjoint, and

the subgraph Q̇i induced by Qi in G is isomorphic to a member of F . Let E(Q) =

∪{E(Qi) : i ∈ {1, . . . k}} and k(Q) = k. An edge disjoint F -packing Q in G is called

an edge disjoint F-factor of G if E(P ) = E(G). The edge disjoint F-packing problem

is the problem of finding in G an edge F -packing Q having the maximum number of

edges |E(Q)|. If F consists of one graph F , then an edge disjoint F -packing and an

edge disjoint F -factor are called simply an edge disjoint F -packing and an edge disjoint

F -factor, respectively. Accordingly, the edge disjoint F -packing problem is the problem

of finding in G an edge disjoint F -packing Q having the maximum number of edges

|E(Q)| or, equivalently, the maximum number of parts k(Q). Let λe(G) denote the

number k(Q) of parts in a maximum edge disjoint Λ-packing of G.

A graphD is called the line graph of a simple graphG if V (D) = E(G) and ab ∈ E(D)

if and only if edges a and b in G have a common end-vertex. Let L(G) denote the line

graph of a graph G. A graph G is called a line graph if there exists a graph F such that

G = L(F ). It is known (and easy to show) that if two non-isomorphic graphs A and B

are such that L(A) and L(B) are isomorphic, then {A,B} = {Y,∆}, where Y is a claw

and ∆ is a triangle and both L(A) and L(B) are triangles. Therefore if H 6∈ {Y,∆} and

H is a line graph, then there is a unique graph F such that H = L(F ). A packing P in

a graph G is called an induced packing in G if P is an induced subgraph of G.

We need the following simple observations. Let F a family of non-isomorphic graphs

and L(F) = {L(F ) : F ∈ F}.

6.1 Let G be a graph. If P is an F-packing in G, then L(P ) is an induced L(F)-packing

in L(G). If Y and ∆ are not in F and L(P ) is an induced L(F)-packing in L(G), then

P is an F-packing in G. In particular, if P is an F-factor in G, then L(P ) is a vertex

maximum induced L(F)-packing in L(G).

6.2 Let G be a graph and D = L(G). Then the following holds.

(a1) Let Q = {Qi : i ∈ {1, . . . , k}} be an edge disjoint F-packing in G. Then L(Q) is an

F ′-packing in D, where Cmp(L(Q)) = {L(Qi) : i ∈ {1, . . . , k}} and F ′ = {L(F ) : F ∈
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F}.

(a2) Let P be a packing in D and Cmp(P ) = {Pi : i ∈ {1, . . . , k}}. Then {Qi = V (Pi) :

i ∈ {1, . . . , k}} is an edge disjoint packing in G with Pi being a spanning subgraph of

L(Q̇i), where Q̇i is the subgraph in G induced by edge subset Qi.

These observations allow to deduce various byproducts from the packing results de-

scribed before and obtain some facts on edge disjoint packings in a graph. Here are some

of these results.

From 6.1 we have, in particular:

6.3 Let G be a graph. Then P is a Λ-packing in G if and only if L(P ) is an induced

matching in L(G).

Since the Λ-packing problem is NP -hard even for cubic graphs, we have:

6.4 The induced matching problem is NP -hard for line graphs of cubic graphs.

Using a procedure for connected graphs similar to Procedure E ′ for 2-connected

graphs, it is easy to show the following:

6.5 Let G be a connected claw-free graph. Then the following holds.

(a1) If M is a maximum matching in G, then e(M) = ⌊v(G)/2⌋.

(a2) If v(G) ≡ 1 mod 2, then for every edge e in D there exist a maximum matching M

in G that avoids e.

Since L(G) is a claw-free graph, we have from 6.2 and 6.5:

6.6 Let G be a connected graph. Then

(a1) λe(G) = ⌊e(G)/2⌋ and

(a2) if e(G) ≡ 1 mod 2, then for every 3-vertex path L in G there exists a maximum

edge disjoint Λ-packing Q such that L is not a member of Q.

An edge disjoint factor Q of G is said to be an edge k-factor if every member of Q
induces in G a connected graph having k edges.

6.7 Suppose that G is a graph such that L(G) is connected and has at most two end-

blocks. If e(G) ≡ 0 mod 3, then G has an edge 3-factor.

Proof (uses 4.1 and 6.2). Since V (L(G)) = E(G), we have: e(G) ≡ 0 mod 3 ⇒
v(L(G)) ≡ 0 mod 3. Since L(G) is claw-free, by 4.1, L(G) has a Λ-factor. Therefore we

are done by 6.2. �

We call a graph G an edge-chain if G− Lv(G) = (∪{Bi : i ∈ {1, . . . , k}}) ∪ {ei : i ∈
{1, . . . , k − 1}}, where each Bi is an edge 2-connected graph, all Bi’ are disjoint, and

each ei is an edge with one end-vertex in Bi and the other end-vertex in Bi+1. It is easy

to see the following.
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6.8 If G is an edge-chain, then L(G) has at most two end-blocks.

From 4.13 (a1), 4.20, 6.7, and 6.8 we have:

6.9 If G is an edge-chain and e(G) ≡ 0 mod 3, then G has a 3-edge factor. Moreover,

(a1) if G−Lv(G) is edge 2-connected and e(G) ≡ 0 mod 3, then for every 3-vertex path

L in G there exists an edge 3-factor Q with no member containing L,

(a2) if G is edge 3-connected e(G) ≡ 0 mod 3, then for every 3-vertex path L in G there

exists an edge 3-factor Q with a member containing L.

In [6] we put forward the following conjecture.

6.10 Conjecture. Every 3-connected claw-free graph with v(G) ≡ 0 mod 4 has a Π-

factor.

By 6.1, Conjecture 6.10 is equivalent to the following conjecture on induced Λ-

packings.

6.11 Conjecture. If G is a 3-connected claw-free graph with v(G) ≡ 0 mod 4 and P

is a maximum induced Λ-packing in L(G), then λ(P ) = v(G)/4.

As we mentioned in the introduction, the problem of packing induced 3-vertex paths

in a claw-free graph, interesting in itself, is also related to the Hadwiger conjecture.

Let h(G) be the maximum integer r such that G hasKr as a minor. In 1943 Hadwiger

conjectured that if a graph G has no proper vertex coloring with s − 1 colors, then

h(G) ≥ s (see [2]). Now consider a graph F with α(F ) = 2, where α(F ) in the size

of a maximum vertex subset in F with no two adjacent vertices, and so F is claw-free.

Then obviously the vertices of F cannot be colored properly with s − 1 colors, where

s = ⌈v(G)/2⌉. Thus, a natural (open) question is whether h(F ) ≥ s as the Hadwiger

conjecture claims. If P is a Λ-packing in F such that every component (3-vertex path)

of P is an induced subgraph in F , then every two components of P are connected by an

edge in G. Therefore contracting each component L of P to a new vertex c(L) results in

a graph G′ having the complete subgraph K with V (K) = {c(L) : L ∈ Cmp(P )}, and
so v(K) = λ(P ). Thus, the maximum packing of induced 3-vertex paths in F provides

a maximum complete minor K of F in which every vertex corresponds to an induced

3-vertex path in F .

Let h′(F ) be the maximum integer r such that F has a minor Kr in which every

vertex corresponds to either a vertex or an edge in F . Obviously, h(F ) ≥ h′(F ). In

1999 [8] we proved that if F is not s-connected, then the Hadwiger conjecture is true,

moreover, h′(F ) ≥ s.

From 6.2 we have in particular:

6.12 Let G be a graph and P a subgraph of G. Then P is an edge disjoint Π-packing

in G if and only if L(P ) is a packing of induced 3-vertex paths in L(G).
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It is known [3] that the maximum edge disjoint Π-packing problem is NP -hard.

Therefore by 6.12, the maximum packing of induced 3-vertex paths is also NP -hard.

However, probably the following is true.

6.13 Conjecture. Let α be a positive integer. Then there exists a polynomial-time

algorithm Aα for finding a maximum packing of disjoint induced 3-vertex paths in a

claw-free graph G with α(G) ≤ α.
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