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Abstract

We consider two orientation problems in a graph, namely the mini-

mization of the sum of all the shortest path lengths and the minimization

of the diameter. We show that it is NP-complete to decide whether a graph

has an orientation such that the sum of all the shortest paths lengths is

at most an integer specified in the input. The proof is a short reduction

from a result of Chvátal and Thomassen showing that it is NP-complete

to decide whether a graph can be oriented so that its diameter is at most

2. In contrast, for each positive integer k, we describe a linear-time algo-

rithm that decides for a planar graph G whether there is an orientation for

which the diameter is at most k. We also extend this result from planar

graphs to any minor-closed family F not containing all apex graphs.

1 Introduction

We consider two problems concerned with orienting the edges of an undirected
graph in order to minimize two global measures of distance in the resulting
directed graph. Our work is motivated by an application involving the design of
urban light rail networks of the sort described in [22]. In such an application, a
number of stations are to be linked with unidirectional track in order to minimize
some function of the travel times between stations and subject to constraints
on cost, engineering and planning. In practice these constraints mean that the
choice of which stations to link may be forced upon us and the only control we
have is over the choice of direction of each piece of track. Since the stations that
are linked tend to be those that are close to each other, we make the simplifying
assumption that the travel time along each single piece of track or link is the
same. Consequently the network can be viewed as an (unweighted) graph in
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which the vertices represent stations and the edges represent track that is to
be built. Furthermore planning constraints tend to rule out the possibility of
tracks crossing, so the graph is usually planar. The aim is to orient the resulting
graph to minimize travel time. We assume that each journey in the oriented
network progresses along the shortest directed path from the vertex representing
the starting station to the vertex representing the destination.

All our graphs are simple, that is they have no loops or parallel edges. When
the underlying graph is obvious, we use n and m to denote its numbers of

vertices and edges, respectively. We use
→
G to denote a directed graph obtained

by orienting the edges of G. We let d(x, y) denote the distance from vertex x to
vertex y in a directed graph. The two measures of the quality of an orientation

are its diameter diam(
→
G), given by diam(

→
G) = maxx 6=y d(x, y) and the Wiener

Index Z(
→
G), given by Z(

→
G) =

∑

x 6=y d(x, y). The name Wiener Index is perhaps
not widely used but is more common in applications in chemistry.

The networks arising in the application tend to be planar and have small de-

gree. Our original aim was to determine the complexity of minimizing diam(
→
G)

and Z(
→
G) for planar graphs of bounded degree. We have two partial results in

this direction. In the next section we show that the problem where we are given
a graph G and an integer k and must determine whether G can be oriented so
that its Wiener Index is at most k, is NP-complete. We believe that it should
be possible to sharpen this result so that the input graph is restricted to having
degree at most three but our idea for a proof became extremely complicated, so
we have not pursued this. We do not know whether the input may be restricted
to planar graphs. Our hardness result depends on a result of Chvátal and
Thomassen [7] who showed that determining whether a graph may be oriented
so that its diameter is at most two is NP-complete.

In contrast, a result of Bollobás and Scott [6] shows that an oriented graph
with diameter two and n vertices must have at least (1 + o(1))n log2 n edges.
Since a planar graph with n vertices has at most 3n− 6 edges, this implies that
there is a constant upper bound on the number of vertices in a planar oriented
graph with diameter two. So there is a constant time algorithm to determine
whether a planar graph can be oriented so that its diameter is at most two.
However there are arbitrarily large planar graphs that can be oriented so that
their diameter is three, for example, a set of triangles sharing a common edge.

The bulk of this paper is devoted to showing that for any fixed integer l,
there is a polynomial time algorithm that will take a planar graph and determine
whether it may be oriented so that its diameter is at most l. In fact we establish
rather more than this. An apex graph is a graph G having a vertex v such
that G − v is planar. Using a result of [17], we can extend our main result to
apply not just to planar graphs but to any minor closed family of graphs not
containing all apex graphs.

In Section 3 we discuss necessary concepts from tree-width. In Section 4
we describe an algorithm that attempts to find a suitable orientation when the
input graph has bounded tree-width. Section 5 contains our main result. The
main reason that our algorithm works is that the diameter of a graph does not
increase when an edge is contracted and is at least Ω(l) for an l× l-grid. Such a
parameter is essentially what is called contraction-bidimensional in [12, 13, 14],
where a general framework is described for when the corresponding decision
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problems for these parameters are tractable. Perhaps the most notable example
is finding a k-dominating set in a planar graph [1, 18].

2 Complexity of the Wiener Index

Imagine we are given a graph and an integer k and we would like to know
whether the graph can be oriented in such a way that the Wiener Index is less
than k. In this section we investigate the complexity of this problem.

Chvátal and Thomassen [7] showed that the following problem is NP-
complete.

Problem 1.

Instance: A graph G.

Question: Is it possible to orient G to ensure that diam(
→
G) ≤ 2?

From this result we can easily conclude that the following problem concerning
the Wiener Index is NP-complete.

Problem 2.

Instance: A graph G, integer k.

Question: Is it possible to orient G to ensure that the Wiener Index of
→
G is at

most k?

Theorem 3. Problem 2 is NP-complete.

Proof. The problem is clearly in NP. Suppose that G has m edges. Let k =

2(n2 − n) − m. If diam(
→
G) ≤ 2 then all pairs of vertices are either joined

by an edge or by a path of length two. So Z(
→
G) = 2(n2 − n) − m = k.

Conversely if diam(
→
G) > 2, there are n2 − n − m pairs of vertices joined by

paths of length at least two including at least one path of length at least three,

so Z(
→
G) > 2(n2 − n)−m = k. Consequently there is an orientation of G with

diam(
→
G) ≤ 2 if and only if there is an orientation of G with Z(

→
G) ≤ k.

We have been unable to determine the complexity of the following problem.

Problem 4.

Instance: Planar graph G and integer k.

Question: Can we orient the edges of G so that Z(
→
G) ≤ k?

The rest of the paper is dedicated to the investigation of the complexity of
the following problem for any fixed integer l and any minor-closed family F of
graphs not containing all apex graphs.

Problem 5.

Instance: Graph G belonging to F .

Question: Can we orient the edges of G so that diam(
→
G) ≤ l?

There is a considerable amount of work devoted to orienting graphs to min-
imize the diameter, see for instance the survey [20] or the book [3]. Much of
the focus has been on very specific classes of graphs. One algorithmic result is
that for l ≥ 4, it is NP-complete to determine whether a chordal graph has an
orientation of diameter at most l [19].
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3 Tree-decompositions

The notion of a tree-decomposition was developed by Robertson and Seymour
in [24]. Good introductions to the theory of tree-decompositions can be found,
for example, in [4, 21, 25]. The definition of a tree-decomposition is as follows.

Definition 6. A tree-decomposition T of a graph G is a pair (T,W) where T

is a tree and W = (Wt : t ∈ V (T )) is a family of subsets of V (G) such that:

•
⋃

t∈V (T ) Wt = V (G) and every edge in G has both endpoints in Wt for
some t;

• if t, t′, t′′ ∈ V (T ) and t′ lies on the path from t to t′′ in T then Wt∩Wt′′ ⊆
Wt′ .

The width of (T,W) is defined to be

max{|Wt| − 1 : t ∈ V (T )}.

The tree-width of G is the minimum width among all possible tree-
decompositions of G.

One reason for the importance of tree-width is that many NP-hard problems
can be solved in polynomial or even linear time when restricted to graphs of
bounded tree-width [4, 25].

Bodlaender [5] gave a linear-time algorithm for finding tree decompositions
of small width.

Theorem 7. For any positive integer k, there is an algorithm running in time

O
(

2θ(k
3)n

)

that inputs a graph G and determines whether the tree-width of G is

at most k, and if so finds a tree-decomposition of G with width at most k.

4 Minimizing diameter: the bounded tree-width

case

In this section we show that there is an algorithm which for fixed integers k, l,
takes as input a graph G and a tree-decomposition with width k and determines
whether there is an orientation of G with diameter at most l. The algorithm
runs in time O(cn), where c is a constant depending on k and l.

It is possible to construct such an algorithm explicitly. For a full description
see [15] or for a brief outline see [16]. There, it is shown that c may be taken to
be

(l + 1)2(k+1)22[4(l+1)k+1+2(l+1)2k+2]k2.

Given that a full description of the algorithm is extremely lengthy and that
the constant is so large, we do not describe the explicit algorithm here but
instead prove the existence of a linear time algorithm by using the theory of
monadic second-order logic of graphs (MSOL) introduced by Courcelle in [9].

We briefly give some background on MSOL here but for more information
see [8] or [9]. A graph G is represented by a triple < V,E,R > where V and E

are just the vertex and edge sets respectively of G and R ⊂ V ×E is a relation
with (v, e) ∈ R if v is an endpoint of e. An MSOL formula on < V,E,R > may
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contain member variables, denoting members of either V or E, and set variables,
denoting subsets of either V or E. The atomic formulae of an MSOL formula
on < V,E,R > are v ∈ U , e ∈ A, v = w, e = f and (v, e) ∈ R where v, w

are variables denoting vertices, e, f are variables denoting edges, U denotes a
set of vertices and A denotes a set of edges. Standard logical connectives are
permitted and both existential and universal quantification is allowed over both
types of variable.

Courcelle [10] showed that for any graph property P , that may be expressed
by an MSOL formula, for each k, the problem of determining which graphs
satisfy P is solvable in time O(|E||V |) when the input is restricted to graphs
having tree-width at most k. Arnborg, Lagergren and Seese [2] gave another
proof of this result, reducing the time bound to O(|V |).

Theorem 8. For any k and l, there exists an algorithm that takes as input a

graph G with tree-width at most k and a tree decomposition of G with width at

most k, and determines whether G can be oriented so that its diameter is at

most l. The algorithm runs in time O(ck,ln) where ck,l depends only on k and

l.

Proof. The proof just consists of showing that the property of having an orien-
tation of diameter at most l is expressible in MSOL. Clearly it is necessary for
G to be connected in order to have an orientation with finite diameter. Since
connectivity is easily expressed in MSOL we shall assume that G is indeed con-
nected.

Let Ω(G) denote the set of all orientations of the edges of G. From a naive
perspective, a formula to check that a graph G may be oriented so that its
diameter is at most l, should have the form ∃ω ∈ Ω(G) : F (ω,G) where F is
a formula that is satisfied if and only if ω is an orientation with the required
properties.

However, it is not clear whether it is possible to quantify over all orientations
in such a straighforward way because an orientation is essentially a relation on
the ordered pairs of endpoints of each edge and quantification over functions
and relations on the vertices and edges is not allowed in MSOL. However, as
long as it is possible to specify the existence of one arbitrary or base orientation
ω0 then it becomes possible to effectively quantify over them all, by quantifying
over all subsets A of E, and reversing the orientation of edges in A with respect
to ω0.

Courcelle [11] showed that it is possible to choose a base orientation by taking
a depth-first search tree. More precisely there is an MSOL formula θ(X, r, x, y)
such that for each edge xy we have either θ(X, r, x, y) or θ(X, r, y, x) but not
both. (Here X must be a set of edges forming a spanning tree and r must be a
vertex representing the root of the tree.)

Now let

g(u, v, A,X, r) = (u ∈ V ) ∧ (v ∈ V ) ∧
[

u = v ∨ ∃e : e ∈ E ∧ uRe ∧ vRe∧
(

(θ(X, r, u, v) ∧ e 6∈ A) ∨ (θ(X, r, v, u) ∧ e ∈ A)
)]

.

So g determines if either u = v or there is an edge from u to v in the orientation
formed by reversing the edges of A with respect to the orientation specified by
θ.

5



We can now express the property of having an orientation of diameter at
most l by

∃X∃r∃A : ∀x∀v0∀vl[(x ∈ A → x ∈ E)

∧ ((v0 ∈ V ) ∧ (vl ∈ V ) → ∃v1, . . . , vl−1 :

(g(v0, v1, A,X, r) ∧ g(v1, v2, A,X, r) ∧ · · · ∧ g(vl−1, vl, A,X, r)))]

In the next section we shall see how to extend this result to certain classes
of graphs containing members with arbitrarily large tree-width.

5 Minimising the diameter when an apex graph

is excluded

It is now straightforward to establish our main result using the following re-
statement of a theorem of Eppstein [17].

Theorem 9. If F is a minor-closed family of graphs that does not include all

apex graphs, then there is a function f such that any graph G ∈ F with diameter

at most d has tree-width at most O(f(d)).

Theorem 10. For any minor-closed family F of graphs that does not include

all apex graphs and for every l, Problem 5 is solvable in time O(cn) where c

depends only on l and F .

Proof. Fix F and l. Then, by Theorem 9, there exists k (depending only on F
and l) such that any graph in F with diameter at most l has tree-width at most
k. So given an input graph G, using Bodlaender’s algorithm we can determine
whether G has tree-width at most k and if so find a tree decomposition with
width at most k in time O(c′n) where c′ depends only on k. If G has tree-
width at most k then Theorem 8 implies that there is an algorithm to determine
whether G may oriented to have diameter at most l running in time O(c′′n)
where c′′ depends only on k and l. On the other hand if the tree-width of
G exceeds k then its diameter exceeds l and so it cannot be oriented to have
diameter at most l.

A consequence of this result is that for fixed F not containing all apex graphs,
Problem 5 is fixed parameter tractable with respect to l.

Originally our main aim was to establish this result for the special case where
F is the class of planar graphs. Because of this and the fact that we can obtain
an expression for the constant in the running time bound, we give a sketch proof
of this special case that does not use Theorem 9.

Lemma 11. Any planar graph having a (2l + 1) × (2l + 1)-grid-minor has

diameter at least l.

Proof. Suppose that G is a planar graph having a (2l+1)× (2l+1)-grid-minor.
We may assume that G is connected because otherwise diam(G) = ∞. So a
(2l + 1) × (2l + 1)-grid may be obtained from G by a sequence of contractions
followed by a series of deletions of edges. If an edge of a graph is contracted
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then its diameter cannot increase. Let K be the graph obtained from G after
all the contractions of edges, so diam(G) ≥ diam(K).

It follows from Whitney’s Theorem [26] that a (2l + 1) × (2l + 1)-grid has
a unique embedding on a sphere. K is a simple planar graph of which the
(2l + 1) × (2l + 1)-grid is a spanning subgraph. The only edges of K that are
not present in the grid must have both endpoints in the same face of the grid.
Consequently diam(G) ≥ diam(K) ≥ l and so the diameter of G is at least l.

We need the following result from [23].

Theorem 12. Any planar graph with no g×g-grid-minor has tree-width at most

6g − 5.

We can now establish the result for planar graphs.

Theorem 13. For every l, Problem 5 is solvable in time

O
(

nl2(l + 1)2(12l+14)22[4(l+1)12l+14+2(l+1)24l+28]
)

when restricted to planar graphs.

Proof. Let G be a planar graph. Using Bodlaender’s algorithm [5] we can de-

termine in time O
(

2θ(l
3)n

)

if G has tree-width at most 12l+ 13. If so then the
algorithm will also find a corresponding tree-decomposition if one exists and
then the algorithm from [15, 16] discussed at the beginning of Section 4 may be
used to determine whether G can be oriented so that its diameter is at most l.

On the other hand if G has tree-width at least 12l+14, then by Theorem 12,
it has a (2l + 3)× (2l + 3)-grid-minor and therefore by Lemma 11 its diameter
is at least l + 1 and hence the diameter of any orientation is at least l + 1.

6 Conclusion

We have shown that Problem 1 which is NP-complete for arbitrary graphs be-
comes decidable in polynomial time for graphs belonging to any minor-closed
family that does not contain all apex graphs and in particular planar graphs,
even if the constant two is replaced by any larger constant. It would be interest-
ing to try to find a more efficient algorithm for this problem, not depending on
graph minor theory, and also to determine the complexity when l is part of the
input. Furthermore it also remains to determine the complexity of minimizing
the Wiener index for planar graphs.
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[7] V. Chvátal and C. Thomassen. Distances in orientations of graphs. J.

Combin. Theory Ser. B, 24:61–75, 1978.

[8] B. Courcelle. Handbook of Theoretical Computer Science, volume B, chap-
ter Graph rewriting: an algebraic and logical approach, pages 193–242.
Elsevier, 1990.

[9] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Inform. and Comput., 85:12–75, 1990.

[10] B. Courcelle. The monadic second-order logic of graphs. III. Tree-
decompositions, minors and complexity issues. RAIRO Inform. Théor.
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