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Abstract

In this paper, we consider various problems concerning quasi-matchings and semi-
matchings in bipartite graphs, which generalize the classical problem of determining a
perfect matching in bipartite graphs. We prove a vast generalization of Hall’s marriage
theorem, and present an algorithm that solves the problem of determining a lexicographi-
cally minimum g-quasi-matching (that is a set F of edges in a bipartite graph such that in
one set of the bipartition every vertex v has at least g(v) incident edges from F , where g

is a so-called need mapping, while on the other side of the bipartition the distribution of
degrees with respect to F is lexicographically minimum). We also present an application
in designing an optimal CDMA-based wireless sensor networks.

Keywords: matching, quasi-matching, semi-matching, flow, Hungarian method, augmenting
path
AMS subject classification (2000): 05C70, 68R10, 05C90

1 Introduction

Problems related to matchings and factors belong to the classical and intensively studied prob-
lems in graph theory. We refer to the monograph of Lovász and Plummer [10] from over 20 years
ago which is still one of the most comprehensive surveys on the topic. Since the seminal paper
of P. Hall [7] containing a characterization of perfect matchings in bipartite graphs, many gen-
eralizations and variations of matchings and factors in (bipartite) graphs have been considered.
Let us mention the concepts of 2-matchings, weighted matchings and f -factors [10]. At least
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as much interest has been given to algorithmic issues related to matchings, where a similarly
influential role is played by the famous max-flow min-cut theorem of Ford and Fulkerson [5],
cf. [10]. The research in the area is still vivid, which is in part due to its applicability. Notably
applications often require special properties and yield different variants of existing concepts
which were not previously covered by the theory. In this paper, we introduce and study the
so-called f, g-quasi-matching as a natural generalization of matchings in bipartite graphs.

When modeling CDMA-based wireless sensor networks with graphs [3, 9], the following
routing problem was encountered (naturally, it can appear in any communication network with
similar features). The topology of the network is given by the nodes (in our case sensor units)
that are able to communicate among each other with respect to physical limitations and their
mutual distance. There is a special vertex, the sink, represented by a fixed station with relatively
large computational capabilities. In our model, we assume that nodes are also fixed, and they
can also communicate with the sink, depending on the mentioned limitations. This yields the
initial rooted graph, in which we wish to pass information from nodes to the root. While nearby
nodes communicate directly with the sink, other (remote) nodes can pass information to the
sink by using other nodes as communication devices. For the purpose of energy saving and
latency, the number of hops from a given node to the station must be as small as possible.
The overall aim is to design a routing protocol, by which each node in the network transfers
information to the sink as quickly as possible. Translating our problem to graphs, we wish
to find a spanning tree in a given rooted graph using only edges that connect two different
distance-levels with respect to the root. There are many such trees obtainable by an ordinary
BFS-algorithm, yet they may have vertices with relatively large degree, which can cause both
communication delay and large energy consumption of these nodes. Since the life-time of the
network depends on its weakest nodes, such situations need to be avoided. See [1] for more
on wireless sensor networks and their routing protocols. We remark that finding a spanning
tree with the smallest maximum degree in a non-rooted graphs is a rather well studied problem
(see [6] and the references therein), yet it does not have much connection with the problem on
rooted graphs.

Our situation can be quickly translated to the following optimization problem. Given a
rooted graph, find a spanning tree with maximum degree as small as possible. Another more
general problem follows from the requirement that more than one path from a node to the sink
is needed, either to provide robustness against possible node failures or to avoid communication
delay due to collisions at more frequent nodes. Hence alternative paths need to be determined
in advance. Then the problem is to find a spanning subgraph with maximum degree as small
as possible in which each vertex has k neighbors in the neighboring distance level that is closer
to the root. More generally, if we have a traffic estimation at the nodes, then the number of
neighbors in the lower level can be assigned to each vertex individually. By concentrating solely
on two neighboring levels, the problem is to find a spanning subgraph in a bipartite graph such
that, in one set of the partition, the degrees of vertices are prescribed: they can be 1 (derived
from the original problem), have a fixed degree k (for the so-called multipath routing), or they
can be determined by an arbitrary function that corresponds to estimated traffic at the nodes.
In the other set of the bipartition, we are either aiming at the minimization of the largest degree
(optimization problem), or we are also facing some constraints on degrees of vertices (decision
problem). We will address both of these problems.

A variation of the first (and the simplest) of the mentioned problems was considered in
[8], with motivation arising from some task scheduling. The authors introduced the so-called
semi-matchings which coincide with spanning forests in bipartite graphs and their objective was
the reduction of a certain cost-function that is connected to the maximum degree of a forest.

2



We present a solution to the more general problem of determining an optimal quasi-matchings,
where on one side of the bipartition degrees of vertices with respect to a quasi-matching obey
specified lower bounds, while on the other side not only the maximum degree of vertices is
minimized, but also their degree distribution is lexicographically minimum. As it turns out,
the resulting algorithm is on-line, in the sense that an increase or decrease of a lower bound
by one in a vertex, after the semi-matching has been built, requires only one additional step to
obtain an optimal semi-matching of the graph with new bounds.

In the next section, we fix the notation and present the main problems, expressed in the
language of graph theory. In Section 3, the Hungarian method is extended to the above men-
tioned problem of finding a lexicographically minimum quasi-matching in a bipartite graph
that yields an efficient algorithm for the original problem. This algorithm is presented as an
off-line algorithm, although it can be interpreted as an on-line algorithm when only additions
of vertices or the increase of the prescribed lower bounds occur. It is extended in Section 4 to
the case when the prescribed lower bound decreases (or the vertex is deleted). In Section 5, we
consider a decision version of the most general problem that comes from the above discussion.
We prove a characterization of bipartite graphs that admit a spanning subgraph in which for
the degrees of vertices of one of the sets in the partition arbitrary lower bounds are imposed,
while in the other set of the partition degrees of vertices with respect to the spanning subgraph
need to obey arbitrarily specified upper bounds. This result is a vast generalization of the
famous Hall’s marriage theorem.

2 Quasi-matchings in bipartite graphs

This section introduces the terminology used throughout the paper. We also characterize min-
imum semi-matchings and establish their various properties concerning optimality.

Definition 1 Let G = A+B be a bipartite graph. Given a positive integer k, a set F ⊆ E(G)
is a k-quasi-matching of Y ⊆ B, if every element of Y has at least k incident edges from F . A
1-quasi-matching of Y in which every element of Y has exactly 1 incident edge from F is called
a semi-matching.

Definition 2 Let G = A + B be a bipartite graph and g : B → N a mapping. For a vertex
v ∈ B we call g(v) the need of v, and for any Y ⊆ B, the need of Y is g(Y ) =

∑

v∈Y g(v). A
set F ⊆ E(G) is a g-quasi-matching of Y ⊆ B if every element v of Y has at least g(v) incident
edges from F . Next, for a mapping f : A → N, and a vertex u ∈ A we call f(u) the capacity
of u, and for any X ⊆ A, the capacity of X is f(X) =

∑

u∈X f(u). A set F ⊆ E(G) is an
f, g-quasi-matching of A+ B if every element v of Y has at least g(v) incident edges from F ,
and every element u of X has at most f(u) incident edges from F .

Note that a g-quasi-matching of B with a constant need function, g(v) = k, for all v ∈ B,
is a k-quasi-matching of B.

Definition 3 Let G = A+B be a bipartite graph and F ⊆ E(G). For a vertex v ∈ V (G), the
F -degree of v, dF (v) is the degree of v in G[F ]. The degree of F is the maximum degree in
G[F ] of a vertex from A.

Note that a matching of Y ⊆ B is a semi-matching of Y with degree equal to 1. We are
interested in the following two problems.
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Problem 1 Given a bipartite graph G = A + B and a need function g on B, find a g-quasi-
matching of B with minimum degree.

Problem 2 Given a bipartite graph G = A+B, is there an f, g-quasi-matching of A+ B?

We solve the first problem by generalizing Hungarian method in Section 3 and the second
one by giving a characterization that generalizes Hall’s theorem in Section 5.

Definition 4 Let G = A + B be a bipartite graph, let F ⊆ E(G), and X ⊆ A. Let dF (X) be
the sequence d1, d2, . . . , d|X| of F -degrees of vertices from X, where d1 ≥ d2 ≥ · · · ≥ d|X|. For
Y ⊆ B, we define dF (Y ) = dF (N(Y )).

The following definition applies to all types of quasi-matchings (integer, g-quasi-matchings
and f, g-quasi-matchings).

Definition 5 Let G = A+B be a bipartite graph, let F, F ′ be two quasi-matchings of Y ⊆ B.
Then F is (lexicographically) greater than F ′, if dF (Y ) is lexicographically greater than dF ′(Y ).
A quasi-matching F of Y ⊆ B that is not greater than any other quasi-matching of Y is a
minimum quasi-matching of Y .

Clearly, a minimum quasi-matching of B has a minimum degree. It is also easy to see that
in a minimum g-quasi-matching all vertices in B have F -degree equal to their need. Thus, to
solve Problem 1, we propose

Problem 3 Given a bipartite graph G = A+B and a need function g : B → N, find a (lexico-
graphically) minimum g-quasi-matching of B.

An on-line algorithm for solving Problem 3 is one of the major contributions of this paper.
We start with the following easy lemma. (Recall that the pigeonhole or Dirichlet principle
states that given a set of t objects that are placed into boxes, and there are s boxes available,
then there will be a box containing at least ⌈ t

s
⌉ objects.)

Lemma 6 Let G = A + B be a bipartite graph, g : B → N a need function, and F a g-quasi-
matching of B. Let X ⊆ A, with |X | = k, and let Y = N(X) be the set of their neighbors.
Let t be the number of edges with one end-vertex from Y and the other from A − X, and let
g(Y ) = t+dk+ r, where 0 ≤ r < k and d ≥ 0. Then dF (X) is lexicographically greater or equal
to the distribution with r integers d+ 1 and k − r integers d.

Proof. Note that dF (X) is (lexicographically) the smallest only if all edges with one end-
vertex from Y and the the other from A − X are in F . We may thus assume without loss of
generality that this is the case. Hence

∑

x∈X dF (x) = dk + r.
If r = 0, then either dF (X) consists of precisely k integers d or dF (x) contains at least one

integer strictly greater than d. Both distributions are lexicographically greater or equal to the
distribution with k integers d.

So suppose r > 0 implying k > r ≥ 1. By applying Dirichlet’s principle, either X contains
a vertex a with dF (a) > d + 1 ≥ 1 (in which case dF (X) is lexicographically greater than the
distribution with the largest degree d+1) or there are r vertices in X with F -degree d+1 and
k − r vertices in X with F -degree d. The claim follows.
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Definition 7 Let G = A + B be a bipartite graph and F ⊆ E(G) a set of edges. A (forward)
F -alternating path from a vertex a ∈ A to a vertex a′ ∈ A in G is a path P such that every
internal vertex of P is in P incident with one edge in F and another not in F , and that a is
in P incident with F , but a′ is not. A path P from a vertex a ∈ A to a vertex a′ ∈ A in G is a
backward F -alternating path if the reversed path on the same edges from a′ to a is a (forward)
F -alternating path. An F -augmenting path P in G is a path from a vertex b ∈ B to a vertex
a ∈ A, such that P − b is an F -alternating path from a′ to a, and the edge a′b is not in F .

Note that by performing F -exchange F ′ = F ⊕ E(P ) of edges in an F -alternating path P
from a ∈ A to a′ ∈ A, the degree of a decreases by one (dF ′(a) = dF (a) − 1), the degree of a′

increases by one (dF ′ (a′) = dF (a) + 1), and all other quasi-matching-degrees remain as in F .

Definition 8 Let G = A + B be a bipartite graph, F a quasi-matching of Y ⊆ B and P an
F -alternating path from a ∈ A to a′ ∈ A. The decline of P is dc(P ) = dF (a)− dF (a

′).

Definition 9 Let G = A+B be a bipartite graph, F ⊆ E(G), and a ∈ A. The a-section of G
is a maximal subgraph Ga = Xa + Ya ⊆ G, such that there is an F -alternating path Pa′ from a
to every a′ ∈ Xa and Ya = NF (Xa) is the set of F -neighbors of Xa. Furthermore, Fa is the set
of edges in F incident with Xa.

Thus defined a-sections play a crucial role in our proof of the following characterization of
minimum g-quasi-matchings.

Theorem 10 Let G = A+B be a bipartite graph, g : B → N a need function and F a g-quasi-
matching of B. Then F is a minimum g-quasi-matching of B if and only if any F -alternating
path in G has decline at most 1.

Proof. Suppose there is an F -alternating path P in G whose decline is at least two. By
performing an F -exchange of edges on P , we get a g-quasi-matching F ′, such that F is lexico-
graphically greater than F ′, a contradiction.

The converse is by induction on g(B) =
∑

y∈B g(y). Assume that all F -alternating paths
in G have decline at most 1. Let a ∈ A be a vertex with the largest F -degree in G, and let
H = X + Y be the a-section in G. Note that for any a′ ∈ X ,

dF (a)− 1 ≤ dF (a
′) ≤ dF (a).

Also note that by definition of the a-section (maximality), any edge connecting a vertex
from Y to a vertex from A − X is in F . Let t be the number of edges connecting a vertex
from Y to a vertex from A − X . Then by letting |X | = k and d = dF (a), we easily infer
that g(Y ) = t + k(d − 1) + r, where r is the number of vertices in X with F -degree equal to
d. By Lemma 6, the distribution dF (X) coincides with the lexicographically minimum degree
distribution of a g-quasi-matching. Hence, if X = A (and so t = 0), the proof is complete.

Thus, suppose that X 6= A. Let Y ′ = N(A−X), and note that Y ∪ Y ′ = B, while Y ∩ Y ′

may be nonempty. Let F ′ be the restriction of F to the edges with one endvertex in A−X , and
set F ′′ = F −F ′ (i.e. F ′′ contains edges from F that have one endvertex in X). We set a need
mapping g′ of Y ′ with g′(v) = g(v) − dF ′′ (v) for any v ∈ Y ′. Now, any F ′-alternating path in
(X −A) + Y ′ has decline at most one because F ′ is just the restriction of F . As g′(Y ′) < g(B)
we infer by induction hypothesis that F ′ is a (lexicographically) minimum g′-quasi-matching of
Y ′.

Let Q be a minimum g-quasi-matching. Hence dQ(A) is not greater than dF (A). In addition
we infer by Lemma 6 that the distribution dQ(X) is at least dF (X), that is, there is at least
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r vertices from X whose Q-degree is d. Let p, p ≥ r be the number of vertices in X whose
Q-degree is d. Denote by Q′′ the set of edges from Q that have one endvertex in X , and let
Q′ = Q − Q′′. Now we introduce a need mapping g′′ on Y ′ by setting g′′(v) = g(v) − dQ′′(v)
for any v ∈ Y ′. Note that g′′(Y ′) = g′(Y ′)− (p− r), and so

∑

u∈A−X

dQ′(u) =
∑

u∈A−X

dF ′(u)− (p− r). (1)

Note also that g′(u) ≥ g′′(u) for any u ∈ Y ′. Since Q′ is clearly a minimum g′′-quasi-
matching of (A −X) + Y ′ we infer (again by induction hypothesis) that it has no alternating
paths with decline more than 1.

We gradually increase the g′′-quasi-matching Q′ of (A−X) + Y ′ to a g′-quasi-matching by
using the following procedure that consists of p− r steps. We denote by Qi the quasi-matching
in the i-th step of the procedure (and set Q0 = Q′). In each step we obtain Qi from Qi−1

by taking a vertex u ∈ Y ′ with g′′(u) < g′(u), for which dQi−1
(u) < g′(u). Let P be an

augmenting path from u to a vertex ai of smallest possible Qi−1-degree in A−X . Then we set
Qi = Qi−1 ⊕E(P ). Note that all vertices from A−X on P have degree dQi

(ai) because P − u
is a forward Qi−1-alternating path, having decline exactly 1 (unless ai is already a neighbor of
u). From this we quickly infer that there are no Qi-alternating path with decline more than 1,
provided there were no such Qi−1-alternating paths. In the last step we get a g′-quasi-matching
Qp−r which thus has no alternating paths with decline more than 1. By induction hypothesis
Qp−r is a minimum g′-quasi-matching of (A −X) + Y ′ hence its degree distribution in A−X
coincides with dF ′(A−X).

From (1) we find that dQ′(A −X) is the smallest possible (noting that it can be obtained
from dF ′(A −X) by taking off p − r units from vertex degrees in A −X) if there are exactly
p− r vertices in A −X with Q′-degree d − 1 and whose F ′-degree is d (in all other cases, the
number of vertices with F ′-degree equal to d is less than the sum of p − r and the number of
vertices with Q′-degree equal to d, which would in turn imply that dF (A) is strictly smaller
than dQ(A)). Now, this implies that in other vertices of A − X the distributions of dQ′ and
dF ′ are the same. Combined with distributions of degrees in X we derive that dF (A) = dQ(A),
and so F is a minimum g-quasi-matching as well.

The 1-quasi-matchings alias semi-matchings were studied also in [8]. In order to connect
our results to theirs, we adopt the following definition.

Definition 11 Let G = A+B be a bipartite graph, F a semi-matching of B, and f : R+ → R a

strictly (weakly) convex function. Then the function costf , defined as
∑|A|

i=1 f(dF (ai)) is called
a strict (weak) cost function for f .

In [8], the strictly convex function ℓ(n) = 1
2n(n + 1) is emphasized. It is interesting in

task scheduling, as it measures total latency of uniform tasks on a single machine. It is also
proved that a semi-matching F has minimum costℓ(F ) if and only if any F -alternating path
in G = A + B has decline at most 1. By Theorem 10, F -alternating paths in G have such
property if and only if F is (lexicographically) minimium semi-matching of B. The special case
of Theorem 10 where the need function is constant 1 combined with the results from [8] leads
to the following equivalent characteristics of the (lexicographically) minimium semi-matching.

Corollary 12 Let G = A+B be a bipartite graph, F a semi-matching of B, and f : R+ → R

a strictly convex function. Then the following are equivalent:

(i) F is (lexicographically) minimium semi-matching of B.
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(ii) Any F -alternating path in G has decline at most 1.
(iii) F has minimum costℓ(F ) for ℓ(n) = 1

2n(n+ 1).
(iv) F has minimum costf (F ).
(v) Lp-norm, 1 ≤ p < ∞, of the vector X = (dF (a1), . . . , dF (a|A|)) is minimal.
(vi) The variance of the vector X = (dF (a1), . . . , dF (a|A|)) is minimal.

Proof. The equivalence (i) ⇐⇒ (ii) follows from the Theorem 10. Furthermore, (ii) is
equivalent to (iii) ([8], Theorem 3.1) and (iv) ([8], Theorem 3.5). Finally, (iii) is equivalent to
(v) ([8], Theorem 3.9) and (vi) ([8], Theorem 3.10).

Every property of the above Theorem 12 implies that F has minimum costf (F ) for every
weakly convex function f ([8], Theorem 3.5) and that L∞-norm of the vector X = (dF (a1), . . . ,
dF (a|A|)) is minimal ([8], Theorem 3.12). In both cases, the converse is not true.

Corollary 13 Let G = A+B be a bipartite graph and let F be a (lexicographically) minimium
semi-matching of B. Then there exists a maximum matching M ⊆ F in G.

Proof. Follows directly from Theorem 12 and Theorem 3.7 from [8].

The converse of Corollary 13 does not hold (see [8]).

3 Generalized Hungarian method

In this section, we solve Problem 3 with an algorithm of complexity O(g(B)|E(G)|). We use
the fact that quasi-matchings are a generalization of matchings: if we restrict ourselves to
quasi-matchings with degree one, our method is a generalization of the Hungarian method of
augmenting paths for finding maximum matchings in bipartite graphs.

Let B = {b1, . . . , bn} and Bℓ = {b1, . . . , bℓ}, ℓ = 1, . . . , n. Define a mapping gi : B → N with
g0(b) = 0, for all b ∈ B, ℓ1 = 1, ℓi = max {j | gi−1(bj) 6= 0} for i > 1, and

gi(b) =







gi−1(b) + 1; b = bℓi and gi−1(b) < g(b),
1; b = bℓi+1 and gi−1(bℓi) = g(bℓi),
gi−1(b); otherwise

for every 1 ≤ i ≤ g(B). Note that for simplicity we assume g(b) > 0 for all b ∈ B. We propose to
find a minimum g-quasi-matching F of B using an iterative algorithm that gradually extends
an gi-quasi-matching Fi of Bℓ using an Fi−1-augmenting path Pi−1 from bℓ to a ∈ A with
smallest dFi−1

(a). By induction, we argue that Fi is a minimum gi-quasi-matching of Bℓ, thus
the final Fi is a minimum g-quasi-matching of corresponding Bℓ = B.

Lemma 14 Let G = A + B be a bipartite graph and a ∈ A. Using the notation of Algorithm
1, the following holds:

dFi
(a) =

{

dFi−1
(a) + 1; if a is the A−endvertex of Pi−1,

dFi−1
(a); otherwise .

7



Algorithm 1 Iterative construction of a minimum g-quasi-matching of B.

Parameter G = A+B: a bipartite graph with B = {b1, . . . , bn}.
Output F : a minimum g-quasi-matching of B.
Set i = 0, ℓ = 0.
Set Fi = ∅, Bℓ = ∅, Gℓ = ∅.
while ℓ ≤ n do
ℓ = ℓ+ 1.
Set Bℓ = Bℓ−1 ∪ {bℓ}.
Set Gℓ = G[Bℓ−1 ∪ A].
c = 0.
while c < g(bℓ) do
i = i+ 1, c = c+ 1.
Set Pi−1 to be an Fi−1-augmenting path in Gℓ from bℓ to a ∈ A with smallest possible
degree dFi−1

(a).
Set Fi = Fi−1 ⊕ E(Pi−1).

end while
end while
return Fi.

Proof. The Lemma is obviously true for every vertex a ∈ A \ V (Pi−1). Since Fi = Fi−1 ⊕
E(Pi−1), e ∈ Fi−1 ∩ E(Pi−1) implies that e /∈ Fi. Similarly, for every e ∈ E(Pi−1) \ Fi−1 we
have e ∈ Fi. Therefore, the number of Fi-edges at an internal Pi−1 vertex a is the same as
the number of Fi−1-edges at a. However, if a is the A-endvertex of Pi−1, then its only Pi−1

incident edge is not in Fi−1 but is in Fi, so dFi
(a) = dFi−1

(a) + 1.

Theorem 15 Let G = A+B be a bipartite graph. Using the notation of Algorithm 1, Fi is a
minimum gi-quasi-matching of Bℓ in Gℓ for i = 1, . . . , n.

Proof. For i = 1, we have ℓ = 1, B1 = {b1} and g1(b1) = 1. Let a be any vertex from N(b1).
Then F1 = P0 = b1a is a minimum g1-quasi-matching of B1 in G1.

Suppose now that Fi−1 is a minimum gi−1-quasi-matching of B′ = Bℓ (or B′ = Bℓ−1) in
G′ = Gℓ (or G′ = Gℓ−1). We claim that Fi = Fi−1 ⊕E(Pi−1) is a minimum gi-quasi-matching
of Bℓ in Gℓ. If this is not the case, then Theorem 10 yields an Fi-alternating path P in Gℓ from
a′ ∈ A to a′′ ∈ A with decline dFi

(a′)− dFi
(a′′) ≥ 2. Note that every Fi-alternating subpath of

P from a vertex a ∈ A leads to a′′ and every backward Fi-alternating subpath leads to a′.
Consider first the case for E(P )∩E(Pi−1) = ∅. Then an edge e of P is in Fi−1 if and only if it

is in Fi. For the rest of the proof let a denote the endvertex of Pi−1. We distinguish three cases:

Case A1: a /∈ {a′, a′′}.
Lemma 14 implies that dFi

(a′) = dFi−1
(a′) and dFi

(a′′) = dFi−1
(a′′). Thus, P is an Fi−1-

alternating path from a′ to a′′ in G′ with decline at least 2. A contradiction to Theorem 10,
since Fi−1 is a minimum gi−1-quasi-matching of B′ in G′.

Case A2: a = a′.
Lemma 14 implies dFi

(a′) = dFi−1
(a′) + 1 and dFi

(a′′) = dFi−1
(a′′). Let v be the common

vertex of the paths P and Pi−1 closest to bℓ in Pi−1. Then Q = bℓPi−1vPa′′ (resp. Q = bℓPa′′

for v = bℓ) is an Fi−1-augmenting path in Gℓ. Since Pi−1 in Gℓ is chosen so that dFi−1
(a) is

minimum, we have
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dFi−1
(a) = dFi−1

(a′) ≤ dFi−1
(a′′)

dFi−1
(a′)− dFi−1

(a′′) ≤ 0.

This contradicts the assumption dFi
(a′)− dFi

(a′′) ≥ 2, as

dFi−1
(a′) + 1− dFi−1

(a′′) ≥ 2
dFi−1

(a′)− dFi−1
(a′′) ≥ 1.

Case A3: a = a′′.
In this case, Lemma 14 implies that P is an Fi−1-alternating path from a′ to a′′ in G′ with
dFi

(a′) = dFi−1
(a′) and dFi

(a′′) = dFi−1
(a′′) + 1. The inequality dFi

(a′)− dFi
(a′′) ≥ 2 yields

dFi−1
(a′)− dFi−1

(a′′)− 1 ≥ 2
dFi−1

(a′)− dFi−1
(a′′) ≥ 3.

Hence, P is an Fi−1-alternating path in G′ with decline at least 3. But this is again impos-
sible by Theorem 10 and minimality of Fi−1.

It remains to examine the case E(P ) ∩ E(Pi−1) 6= ∅.
Case B1: a /∈ {a′, a′′}.

Let v be the common vertex of P and Pi−1 closest to bℓ in Pi−1. Then Q = bℓPi−1vPa′′

(resp. Q = bℓPa′′ for v = bℓ) is an Fi−1-augmenting path in Gℓ. The choice of Pi−1 implies
dFi−1

(a) ≤ dFi−1
(a′′).

Let v′ be the common vertex of P and Pi−1 closest to a′ in P . Then R = a′Pv′Pi−1a is an
Fi−1-alternating path in Gℓ. Since Lemma 14 implies

2 ≤ dFi
(a′)− dFi

(a′′) = dFi−1
(a′)− dFi−1

(a′′) ≤ dFi−1
(a′)− dFi−1

(a),

R is a path with Fi−1-decline at least two, another contradiction to Theorem 10 and minimality
of Fi−1.

Case B2: a = a′.
Let Q be the Fi−1-augmenting path in Gℓ from bℓ to a′′ as in case B1. The existence of such a
path ensures that dFi−1

(a)− dFi−1
(a′′) ≤ 0. But this is not possible, since Lemma 14 implies

2 ≤ dFi
(a′)− dFi

(a′′) = dFi
(a)− dFi

(a′′) = dFi−1
(a) + 1− dFi−1

(a′′)

and hence dFi−1
(a)− dFi−1

(a′′) ≥ 1.
Case B3: a = a′′.

Let R be the Fi−1-alternating path in Gℓ from a′ to a constructed as in case B1. We claim that
R has decline at least three. From dFi

(a′)− dFi
(a′′) ≥ 2 and Lemma 14, we deduce that

dFi−1
(a′)− dFi−1

(a′′)− 1 ≥ 2
dFi−1

(a′)− dFi−1
(a′′) ≥ 3

dFi−1
(a′)− dFi−1

(a) ≥ 3.

But this contradicts the minimality of Fi−1.
We conclude that Fi is a minimum gi-quasi-matching of Bℓ in Gℓ.

By setting ℓ = n, Theorem 15 proves correctness of the Algorithm 1.

Corollary 16 Algorithm 1 finds a minimum g-quasi-matching of B and has time-complexity
O(g(B)|E(G)|), where g(B) is the need of B.

9



Proof. As Bn = B, Theorem 15 establishes that B is a minimum g-quasi-matching of B. The
path Pi can be found using an augmented Hungarian method: the algorithm performs a breadth-
first search from the vertex bℓ in such way, that if the vertex whose neighbors are examined is in
A, then the search proceeds along its Fi−1 incident edges only, but from vertices of B, the search
proceeds along the non-Fi−1-incident edges only. The search tree T produced in this manner
has exchanging levels of non-Fi−1 and Fi−1 edges, and in T there is a unique Fi−1-augmenting
path from any vertex to B. This path starting at a vertex a ∈ A of minimum Fi−1-degree
is the path Pi−1 required for Algorithm 1. The whole tree T (and thus the augmenting path
Pi−1 can be constructed in O(|E|) time. As there are g(B) =

∑

b∈B g(b) iterations, the overall
complexity of Algorithm 1 is O(g(B)|E(G)|).

Note that Theorem 10 can be applied to prune the tree constructed in the generalized Hungarian
method in such a way, that the search tree contains vertices of one Fi−1-degree only. If d is
the minimum Fi−1-degree of a neighbor of bi, then Pi−1 need not contain any vertex of degree
d + 1. Furthermore, as soon as a vertex of Fi−1-degree d − 1 is encountered, we can assume
that this is the terminating vertex of Pi−1. These observations do not improve the theoretical
complexity of the algorithm (in the worst case, for instance when G has a perfect matching, we
still need to consider O(|E(G)|) edges at each iteration), but they could considerably improve
any practical implementation.

4 On-line application of Algorithm 1

Note that each step of Algorithm 1 can be viewed as a part of an on-line procedure, where
the need of a vertex, denoted bℓ, increases by one. In particular, this allows for immediate
application of this algorithm to the on-line setting — to rearrange it for the on-line addition
of a new vertex v with need g(v), one only needs to perform one step of the outer while loop
(hence the inner while loop which takes O(|E(G)|) time is performed g(v) times).

However, the full on-line setting, as presented in [2], also allows for removal of the vertices
of B, i.e. an on-line event is not just appearance of a new vertex, but also disappearance of
an existing vertex. In our setting, this would correspond to a wireless sensor malfunction or
running out of battery, and in the task-scheduling setting of [2], this corresponds to a task being
removed from the schedule or the number of required machines for the task being decreased.

Algorithm 2 describes how to augment an existing minimum quasi-matching when the need
of a single vertex b ∈ B decreases by one to obtain an optimal quasi-matching with respect
to the new need function. As above, if b disappears, then this algorithm simply needs to be
performed g(v) times.

Let G = A + B be a bipartite graph with B = {b1, . . . , bn}, and let b ∈ B, say b = bk for
some k. If g : B → N is a need function of B, then we denote by gb the mapping from B to N

with gb(bi) = g(bi) for i 6= k, and gb(b) = g(b)− 1.

Theorem 17 Let G = A+B be a bipartite graph and F a minimum g-quasi-matching of B in
G. Using the notation and assumptions of Algorithm 2, F ′ is a minimum gb-quasi-matching of
B in G.

Proof. By Theorem 10, we need to prove that every F ′-alternating path has decline at most
1 in G. Note that every F -alternating path has decline at most 1 in G, since F is minimum by
assumption. There are two cases in the algorithm that we deal with separately.

Suppose first there is no such backward F -alternating path P in G from a′ ∈ Ab to a′′ ∈ A
with dF (a

′′) = dF (a
′) + 1. Then F ′ = F − ab, and note that dF (A) = dF ′(A) except in a
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Algorithm 2 Obtaining a minimum gb-quasi-matching from a minimum g-quasi-matching in
G = A+B.

Parameter G = A+B: a bipartite graph with B = {b1, . . . , bn} and need function g : B → N.
Parameter F : a minimum g-quasi-matching of B in G.
Parameter b: a vertex of B.
Output F ′: a minimum gb-quasi-matching in G.
Set Ab be the set of F -neighbors of b.
Set a ∈ Ab be the vertex with largest F -degree in Ab.
if there is a backward F -alternating path P in G from a′ ∈ Ab to a′′ ∈ A with dF (a

′′) =
dF (a

′) + 1 then
set F ′ = F ⊕ P − a′b

else
set F ′ = F − ab.

end if
return F ′.

where dF ′(a) = dF (a)− 1. Hence, if there is any F ′-alternating path with decline greater than
1, it ends in a. Now, no such violating path could start with a vertex from Ab, since a has
the largest F -degree among these vertices. And also, no such violating path could start in any
other vertex a′′ of A, because that would mean there is a backward F -alternating path in G
from a ∈ Ab to a′′ ∈ A with dF (a

′′) = dF (a
′) + 1, contrary to our assumption.

Secondly, suppose there exists a backward F -alternating path in G from a′ ∈ Ab to a′′ ∈ A
with dF (a

′′) = dF (a
′) + 1, and let P be a shortest such path. Then F ′ = F ⊕ P − a′b, and we

have dF (A) = dF ′(A) except in a′′ where dF ′(a′′) = dF (a
′′)−1. By the choice of P and the fact

that there are no F -alternating paths with decline more than one, we infer that dF (v) = dF (a
′)

for all vertices v ∈ A on P \ {a′′}. Hence, for all vertices v ∈ A on P (a′′ included), we
have dF ′(v) = dF ′(a′). For the purpose of contradiction let us suppose there is a violating F ′-
alternating path P ′ from â to ã. Since F ′ and F differ only on P , we infer that P ′ must intersect
P in some vertex of A. This readily implies that dF ′(â) ≤ dF ′(a′)+ 1 and dF ′(ã) ≥ dF ′(a′)− 1.
Since P ′ is violating, we infer that in fact dF ′(â) = dF ′(a′) + 1 and dF ′(ã) = dF ′(a′) − 1 so
that the decline of P ′ with respect to F ′ is exactly 2. Now, we can easily find that there is an
F -alternating path from a′′ to ã in G whose decline equals 2, which is a contradiction with F
being a minimum g-quasi-matching.

From Theorem 17 and previous discussion, we infer that the augmented Hungarian method
presented in this paper can be applied to the on-line problem of constructing an optimal quasi-
matching of B with the set A fixed, when the vertices of B either appear or disappear one at
a time. Each on-line step assures optimality of the current quasi-matching in O(g(v)|E(G)|)
steps. Moreover, a similar approach could be used for on-line setting, where the vertices of A
can appear or disappear. When a vertex of A of F -degree d is removed, its F -neighbors from B
loose the degree with respect to a quasi-matching, which can be iteratively recovered, resulting
in a patching algorithm of complexity O(d|E(G)|). On the other hand, when an A-vertex of
G-degree d is added, up to d vertices can be assigned to it, again resulting in a O(d|E(G)|)
algorithm per on-line step. These (rather technical) issues are treated in greater detail in a
sequel paper [4], which is oriented towards the mentioned application.

Note that our adaptation of Hungarian method is, when reduced to semi-matchings and
only addition of b-vertices, the same as in [8]. However, our proof of correctness differs in that
we explicitly maintain minimality of the constructed semi-matching (in fact, even an arbitrary
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g-quasi-matching), after each addition (or removal) of a vertex. Furthermore, the set of possible
alternating paths with decline at least two is in our approach narrowed to the vertex that is
added to or removed from the graph, resulting in an efficient on-line version of the algorithm.

5 Generalized Hall’s marriage theorem

In this section, we present a solution to Problem 2 by characterizing bipartite graphs A + B
with given f : A → N and g : B → N that admit an f, g-quasi-matching. The result is a vast
generalization of Hall’s theorem.

A network N = (V,A) is a digraph with a nonnegative capacity c(e) on each edge e, and
with two distinguished vertices: source s and sink t (usually, s has only outgoing, and t has
only ingoing arcs). A flow g assigns a value fl(e) to each edge e. A flow fl is feasible if for each
edge e, 0 ≤ fl(e) ≤ c(e) and the conservation (Kirchhoff’s) law is fulfilled: for every vertex
v ∈ V (N) \ {s, t},

∑

vx∈A(N)

fl(vx) =
∑

xv∈A(N)

fl(xv).

The value of a flow fl is
∑

sx∈A(N) fl(sx), which is equal to
∑

xt∈A(N) fl(xt). The famous

Ford-Fulkerson (or max-flow min-cut) theorem states that the maximum value of a feasible
flow in N coincides with the minimum capacity of a cut in N . (Where cut is the set of arcs
from S to T in a S, T partition of N (i.e. s ∈ S, t ∈ T ), and its capacity is the sum of the
c-values of its edges). More on this well-known problem and theorem can be found for instance
in [10, 11]. One of the several proofs of the famous Hall’s marriage theorem uses the max-flow
min-cut theorem, and in our generalization of Hall’s theorem, we will follow similar lines.

Definition 18 Let G = A + B be a bipartite graph, f : A → N an availability function, and
Y ⊆ B. For x ∈ A, let dY (x) = |{y ∈ Y : xy ∈ E(G)}|, that is the number of neighbors of x
from Y . For X ⊂ A, let f(X,Y ) =

∑

x∈X min{f(x), dY (x)} denote the relative availability of
X with respect to f and Y . In particular, for x ∈ X, we write f({x}, Y ) as f(x, Y ) (which is
the least of f(x) and dY (x)).

Intuitively, the relative availability of X with respect to f and Y presents the maximum
number of edges going from X that can be used to cover Y .

Theorem 19 Let G = A+B be a bipartite graph, with A = {a1, . . . , am}, B = {b1, . . . , bn}, a
mapping f : A → N, and g : B → N. Then G has an f, g-quasi-matching of A+ B if and only
if for every Y ⊆ B,

f(N(Y ), Y ) ≥ g(Y ). (2)

Proof. Suppose there is a subset Y ⊂ B such that
∑

u∈N(Y ) f(u, Y ) = f(N(Y ), Y ) < g(Y ) =
∑

v∈Y g(v). Let F be an arbitrary g-quasi-matching of B in G. The vertices of Y altogether
must have at least g(Y ) F -neighbors. As the relative availability of their neighbors N(Y ) is
less than g(Y ), we derive by the pigeon-hole principle that there will be a vertex u ∈ N(Y )
such that dF (u) > f(u). Hence F is not an f, g-quasi-matching, which readily implies (since F
was arbitrarily chosen) that no f, g-quasi-matching exists.

For the converse, let f(N(Y ), Y ) ≥ g(Y ) hold for all Y ⊆ B. We introduce two additional
vertices: a that is connected to all vertices ai ∈ A, and b, connected to all bj ∈ B. Construct
a digraph G′, by choosing a direction of all edges from G as follows: from a to each ai ∈ A,
from vertices of A to their neighbors in B, and from each bj to b. Next, construct a network
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out of the digraph G′, by setting flow capacities c : E(G′) → N as follows: c(aai) = f(ai),
c(aibj) = 1 (for aibj ∈ E(G)), and c(bjb) = g(bj). Note that there exists a flow of size g(B) in
G′ if and only if there exists an f, g-quasi-matching of A + B. By max-flow min-cut theorem,
the maximum flow value coincides with the minimum cut capacity in the network G′.

Let C be a minimum cut in the network, and let Z be the set of vertices from B for which
bjb ∈ C. Let Y = B \ Z. Since C is a cut, for every vertex bj ∈ Y and every neighbor ai
of bj, we have either aibj ∈ C or aai ∈ C (since C is minimum, we may assume that both
does not happen). Denote by K the set of vertices ai from N(Y ) such that aai ∈ C and let
L = N(Y ) \K. For bj ∈ Y , let mj denote the number of its neighbors in L (which coincides
with the number of its incident edges that are from C). Note that

∑

j,bj∈Y

mj =
∑

ai∈L

dY (ai) ≥ f(L, Y ).

Now,

|C| = g(Z) + f(K) +
∑

j,bj∈Y

mj

≥ g(Z) + f(K,Y ) + f(L, Y )

≥ g(Z) + f(N(Y ), Y )

≥ g(Z) + g(Y ) = g(B)

where in the last inequality (2) is used. The result now readily follows.

The theorem has several corollaries. We state the most obvious. First, if f is not involved,
i.e. if f(u) = d(u) for all u ∈ A, then f(N(Y ), Y ) =

∑

u∈N(Y ) dY (u) =
∑

v∈Y d(v), and (2)

turns into a much simpler condition
∑

v∈Y d(v) ≥ g(Y ) for every Y ⊆ B.
If we want that each vertex in A covers only one vertex from B, that is f(u) = 1 for all

u ∈ A, we get f(N(Y ), Y ) =
∑

u∈N(Y ) 1 = |N(Y )|, and the condition (2) reads |N(Y )| ≥ g(Y )

for every Y ⊆ B. If, in addition, g(v) = 1 for all v ∈ B, we get |N(Y )| ≥ |Y | for all Y ⊆ B
which is exactly Hall’s condition. On the other hand, this implies that A + B has a perfect
matching of vertices from B. Thus Hall’s theorem is a corollary of Theorem 19.

One of the common formulations of Hall’s theorem is in terms of systems of distinct repre-
sentatives. Let us formulate also Theorem 19 in this sense.

Let A = {A1, . . . , Am} be a family of sets, with S = ∪m
i=1Ai = {b1, . . . , bn}, and let there

be mappings f : A → N, and g : S → N. We say that the family A has a (lower) system of
f, g-representatives if to every set Ai ∈ A we associate at most f(Ai) representatives from S,
and every vertex bj ∈ S is a representative of at least g(bj) sets from A. In this terminology,
Theorem 19 reads as follows.

Corollary 20 A family of sets A has a lower system of f, g-representatives if and only if for
every subset Y ⊆ S we have

∑

Ai∈A

min{f(Ai), |Ai ∩ Y |} ≥
∑

bj∈Y

g(bj).

By duality, since the interpretation of the roles of sets and vertices in Theorem 19 can be
reversed, we have another corollary expressed in similar terms. Let B = {B1, . . . , Bn} be a
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family of sets, with S = ∪n
j=1Bj = {a1, . . . , am}, and let there be mappings f : S → N, and

g : B → N. We say that the family B has an upper system of f, g-representatives if to every
set Bj ∈ B, we associate at least g(Bj) representatives from S, and every vertex ai ∈ S is a
representative of at most f(ai) sets from B. In this terminology, we infer from Theorem 19:

Corollary 21 A family of sets B has an upper system of f, g-representatives if and only if for
every subfamily Y ⊆ B we have

∑

ai∈S

min{f(ai), |Y (ai)|} ≥
∑

Bj∈Y

g(Bj),

where Y (ai) = {Bj ∈ Y : ai ∈ Bj} (i.e. |Y (ai)| is the number of sets from the family Y that
contain ai).

From the above corollaries, one can easily find formulations when one or both of the map-
pings f, g is not involved or is constant (say, equal to 1). The resulting formulations are mostly
easier and nicer as the above and could also be applicable.
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