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Abstract. A nonbinary Ford sequence is a de Bruijn sequence generated by sim-
ple rules that determine the priorities of what symbols are to be tried first, given
an initial word of size n which is the order of the sequence being generated. This
set of rules is generalized by the concept of a preference function of span n − 1,
which gives the priorities of what symbols to appear after a substring of size n− 1
is encountered. In this paper we characterize preference functions that generate full
de Bruijn sequences. More significantly, We establish that any preference function
that generates a de Bruijn sequence of order n also generates de Bruijn sequences
of all orders higher than n, thus making the Ford sequence no special case. Con-
sequently, we define the preference function complexity of a de Bruijn sequence to
be the least possible span of a preference function that generates this de Bruijn
sequence.

1. Introduction

Given a positive integer t > 1 and an alphabet A = {0, 1, . . . , t − 1} of size t, a
de Bruijn sequence of order n over the alphabet A is a sequence of symbols such
that every pattern of size n appears exactly once as a block of contiguous symbols.
For example, 00110 and 0011221020 are two de Bruijn sequences of order 2 over the
alphabets {0, 1} and {0, 1, 2} respectively. The existence of these sequences for any
finite size alphabet and any order is a well known fact [3].

For the binary alphabet, a classical but rather curious algorithm that generates a
de Bruijn sequence for any order n is called the “prefer-one” algorithm. It consists of
the following simple steps. Begin by writing n zeros. Then for k > n, write a one for
the kth bit of the sequence if the newly formed n-tuple has not previously appeared
in the sequence, otherwise write a zero. This is repeated, preferring one every step of
the way, until neither appending one nor zero puts a new n-tuple, at which time the
algorithm halts.

The prefer-one sequence is traced back to Martin [9]. But it has been rediscovered
by many authors, see Fredricksen [5] for an exposition.

The prefer-one algorithm is generalized to an alphabet of size t > 2 by preferring a
higher value over a lower value. That is, once the initial n zeros are written, the value
t− 1 is appended if the word formed by the n most recent symbols is new, otherwise
t− 2 is proposed, otherwise t− 3, etc. This sequence was proposed by Ford [4] and it

Key words and phrases. De Bruijn Sequence, Ford sequence, preference function, prefer-one al-
gorithm, linear complexity.
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0 → 2, 1, 0
1 → 2, 1, 0
2 → 2, 1, 0

0 → 1, 2, 0
1 → 1, 0, 2
2 → 2, 1, 0

0 → 1, 2, 0
1 → 2, 1, 0
2 → 0, 2, 1

0 → 3, 2, 1, 0
1 → 3, 2, 1, 0
2 → 3, 2, 1, 0
3 → 3, 2, 1, 0

0 → 1, 2, 3, 0
1 → 3, 1, 0, 2
2 → 0, 2, 1, 3
3 → 2, 3, 1, 0

0 → 3, 2, 1, 0
1 → 3, 2, 1, 0
2 → 0, 2, 3, 1
3 → 0, 2, 3, 1

Table 1. Some preference diagrams of de Bruijn sequences with al-
phabet sizes 3 and 4.

therefore bears his name. We will refer to this generalization as the “prefer-higher”
algorithm.

In this paper, we show that preferring higher values is not necessary to obtain full
de Bruijn sequences. In fact, a binary algorithm similar to the prefer-one was recently
proposed in [1]. This algorithm is called the prefer opposite as it proposes a bit that
is opposite to the bit most recently appended to the sequence. Although the prefer
opposite sequence is not a de Bruijn sequence, it only misses the constant word 1n. In
the non-binary case, other preferences can be constructed that yield full sequences.
For example, each diagram in Table 1 can generate a full de Bruijn sequence of
arbitrary order n that starts with the initial word 0n. Each row in a diagram displays
the digits to be proposed, in decreasing priority, when the rightmost digit of the
sequence being constructed is the digit that appears on the left side of the arrow of
that row. A proposed digit is accepted if the most recently formed word of size n has
not appeared earlier in the sequence, otherwise the next digit in that row is proposed.

It is worth noticing here that the upper and lower left diagrams give the same
decreasing preference regardless of the previous digit. Thus they display the prefer-
higher rules for alphabet sizes 3 and 4 respectively.

The following are respectively all the sequences of order 2 that are generated using
the diagrams in Table 1.

00221201100; 00110221200; 00120221100;
003323130221201100; 001320221103312300; 003020132233121100;
In the sequel it will be proven that these diagrams generate de Bruijn sequences

of all orders. More generally, we will characterize all such diagrams that produce full
sequences.

2. Main Results

The idea of generating a de Bruijn sequence by making preferences is formalized in
the concept of preference functions, defined in Golomb [6] who attributes it to Welsh.
In any de Bruijn sequence of order n, a word of size (n−1) appears exactly t times. A
preference function gives the priority list of what digits is to come first, second, third,
etc. after a word of size n− 1 appears in the sequence. Here is a precise definition.

Definition 2.1. A preference function P of span n−1 is a t-dimensional vector valued
function of n− 1 variables such that, for each choice of the vector a = (a1, . . . , an−1)
from the set An−1, the entries of the vector (P1(a), . . . , Pt(a)) form a permutation of
the elements of A.
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Definition 2.2. Given a preference function P , the least preference function induced
by P is a function g from An−1 to An−1 defined as

g(a1, . . . , an−1) = (a2, . . . , an−1, Pt(a1, . . . , an−1)).

The following process is given in Golomb [6] and it shows how a preference function
of span s− 1 is used to construct recursive periodic sequences of order s.

Definition 2.3. For any word (I1, . . . , In) and preference function P of span n− 1,
the following inductive definition determines a unique finite sequence {ai}:

1. a1 = I1, . . . , an = In.
2. If aN+1, . . . , aN+n−1 have been defined, then aN+n = Pi(aN+1, . . . , aN+n−1),

where i is the smallest integer such that the word

(aN+1, . . . , aN+n−1, Pi(aN+1, . . . , aN+n−1)

has not previously appeared as a segment of the sequence (provided that there
is such i).

3. Let L = L{ai} be the first value of N such that no i can be found to satisfy
item 2. Then aL+n−1 is the last digit of the sequence and L is called the cycle
period.

Conversely, we remark that any periodic sequence induces at least one preference
function whose corresponding sequence is the periodic sequence itself. To see this,
consider a periodic sequence S started at the word J1, . . . , Jn, where n is the smallest
word size such that every pattern of size n occurs at most once in S. Now consider
all occurrences (if any) of a pattern w of size n − 1 in a single period of S. Since
every pattern of size n occurs at most once, the number of occurrences r(w) of the
pattern w is bounded above by t. For i = 1 to r(w) let Pi(w) be the digit that occurs
right after the ith occurrence of w. If r(w) < t let Pr(w)+1(w), . . . ,Pt(w) be any
permutation of the digits which do not appear as entries of (P1(w), . . . ,Pr(w)).

By the above construction, it is evident that the preference function P along with
the initial word J1, . . . , Jn produces the sequence S. The next proposition follows
immediately by the above discussion.

Proposition 2.4. Fixing an initial word (I1, . . . , In), there is a one to one corre-

spondence between the set of de Bruijn sequences of order n and the set of preference

functions of span n − 1 which generate de Bruijn sequences of order n started at

(I1, . . . , In).

Given an arbitrary preference function, a natural question is whether or not this
preference function generates a full de Bruijn sequence. In this section, we take on
the problem of characterizing such complete preference functions.

For completeness, we now state two theorems, given in Golomb [6], which present
conditions on a preference function to produce a de Bruijn sequence.

Definition 2.5. For 0 ≤ r ≤ n− 1, we say that (x1, . . . , xn−1) has an r-overlap with
(I1, . . . , In) if (xn−r, . . . , xn−1) = (I1, . . . , Ir). Notice that any (n − 1)-digit word at
least has a zero overlap with (I1, . . . , In).

Theorem 16. (of Golomb’s Chapter VI) For any initial word (I1, . . . , In), if P is a
preference function of span n− 1 that satisfies Pt(x1, . . . , xn−1) = Ir+1, when r is the
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largest integer such that (x1, . . . , xn−1) has an r-overlap with (I1, . . . , In), then the
sequence generated by (I1, . . . , In) and P has length tn, i.e., it is a de Bruijn sequence
of order n.

While the previous theorem states a condition that guarantees that a preference
function of span n − 1 produces a de Bruijn sequence of order n, the next theorem
starts with a preference function that is known to generate a de Bruijn sequence of
order n− 1 and provides a way to construct a preference function of span n− 1 that
produces a de Bruijn sequence f order n. This recursive construction is stated and
proved for the binary case in Golomb [6], although it is claimed that the theorem can
be easily generalized to the non-binary case.

Theorem 17. (of Golomb’s Chapter VI) The following hypotheses are adopted:
1. Let (I1, . . . , In) be an arbitrary initial word.
2. Let P (x1, . . . , xn−2) = (P1, P2) be the preference function for the binary de Bruijn

sequence of order n−1, {bi}, and initial word (I1, . . . , In−1), such that P1(I1, . . . , In−2) =
1 + In−1 mod 2.

3. Let x1⊕F (x2, . . . , xn−1) be the feedback formula for {bi}. That is, bi = bi−n+1⊕
F (xi−n+2, . . . , xi−1) for all i

4. Let P ∗(x1, . . . , xn−1) = (P ∗

1 , P
∗

2 ) which satisfies P ∗

2 = 1⊕ P ∗

1 and

0 = [P ∗

1 (x1, . . . , xn−1)⊕1⊕x1⊕F (x2, . . . , xn−1)]×[x1⊕F (x2, . . . , xn−1)⊕P1(x2, . . . , xn−1)].

where the ⊕ is taken as addition modulo 2. It follows from these hypotheses that
the sequence {ai}, generated by (I1, . . . , In) and P ∗, is a de Bruijn sequence of order
n.

While the conditions stated in Theorem 17 indeed generate a complete binary
preference table, these conditions are in a sense artificially designed to make possible
the inductive proof given in Golomb [6]. In what follows we will show that, for any
alphabet size t, a preference function of span n − 1 is itself capable of generating
de Bruijn sequences of all orders larger than or equal to n. Before we do this we will
characterize preference functions of span n− 1 that generate de Bruijn sequences of
order n, i.e., complete preference functions.

A de Bruijn sequence of order n can be started with any of its words of size n.
Unless otherwise stated, in the rest of this paper we will only be concerned with an
initial word (I1, . . . , In) = 0n, i.e. the constant string of n zeros.

Definition 2.6. Let E be a finite set, let f be a function from E to itself and let
l ≥ 1 be an integer. By a cycle of length l induced by f we mean a sequence of
elements x1, . . . , xl such that f(xi) = xi+1 for i = 1 to l − 1 and f(xl) = x1.

We now state our first main result.

Theorem 2.7. Let P be a complete preference function of span n − 1 that corre-

sponds to a de Bruijn sequence started at the string 0n. Then the least preference

function g(x1, . . . , xn−1) has no cycles of any length except the self-loop (0n−1, 0n−1),
i.e. g(0n−1) = 0n−1, which must be a cycle of g.

Proof. Let S be the de Bruijn sequence starting with 0n and resulting from P . If
(0n−1, 0n−1) is not a cycle of g then Pt(0

n−1) = a 6= 0 and hence 0 has a higher
preference over a, that is Pi(0

n−1) = 0 for some i < t. Since S is a de Bruijn
sequence of order n, the word 0n−1a must be a substring. This means that the word
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(0n−1, Pi(0
n−1) = 0n must have been proposed and accepted earlier in the sequence.

So that 0n occurs twice in the sequence, which is a contradiction. Suppose now that
g has a cycle of length i, 1 ≤ i ≤ tn−1 − 1 other than the self loop at 0n−1. Namely,
suppose that for some y1, . . . , yi+n−1

g(y1, . . . , yn−1) = (y2, . . . , yn)(2.1)

g(y2, . . . , yn) = (y3, . . . , yn+1)
...

g(yi, . . . , yi+n−2) = (yi+1, . . . , yi+n−1).

where (yi+1, . . . , yi+n−1) = (y1, . . . , yn−1) but (yj, . . . , yj+n−2) 6= (yk, . . . , yk+n−2) for
all pairs (j,k) such that 1 ≤ j < k ≤ i+ 1 and (j, k) 6= (1, i+ 1).

Since S is a de Bruijn sequence of order n, (y1, . . . , yn) occurs in S. By definition
of g and the first equation in Display (2.1), yn = Pt(y1, . . . , yn−1). It follows that
all the words (y1, . . . , yn−1, z), z 6= yn must have occurred earlier in the sequence.
This implies that all the predecessors (y, y1, . . . , yn−1), for y ∈ A have occurred before
(y1, . . . , yn). In particular (yi, . . . , yi+n−1) = (yi, y1, . . . , yn−1) has occurred before
(y1, . . . , yn).

Now, g(yi, . . . , yi+n−2) = (yi+1, . . . , yi+n−1) is equivalent to Pt(yi, . . . , yi+n−2) =
yi+n−1. Using the above argument, we see that all the words (yi, . . . , yi+n−2, z), z 6=
yi+n−1, and therefore all their predecessors (y, yi, . . . , yi+n−2) must have occurred ear-
lier in the sequence. In particular, (yi−1, yi, . . . , yi+n−2) occurs before (yi, . . . , yi+n−1),
which was just shown to occur before (y1, . . . , yn). Repeating the same reasoning a
total of i times, we see that (y1, . . . , yn) must have occurred earlier in the sequence
S. That is, (y1, . . . , yn) occurs more than once in S, contradicting the assumption
that the latter is a de Bruijn sequence. This establishes that g has no cycles besides
(0n−1, 0n−1). �

It is important to remark here that in the above theorem, the initial word must
be 0n or–of course–a constant string in (in which case the self loop of g must be
(in−1, in−1)). Indeed, Table 2 displays a de Bruijn sequence of alphabet size 3 and
order 3 with its corresponding preference function. Noting that the initial word is 001,
we can see that the induced least preference function g has the cycle (00, 01, 10, 00).

00 → 0,2,1 10 → 1,2,0 20 → 1,0,2
01 → 1,2,0 11 → 0,1,2 21 → 2,1,0
02 → 0,1,2 12 → 1,2,0 22 → 2,0,1

Table 2. Preference rules for the sequence 00110121222010200021112022100.

The converse of Theorem 2.7 is also true. That is, if a given preference function of
span n−1 induces a least preference function g that has no cycles except the self loop
at 0n−1, then the preference function produces a de Bruijn cycle of order n started at
the word 0n. However, the next result is much stronger than this converse. We state
it after the following algorithm.

Algorithm P

Input: Two integers s > 1 and n ≥ s and a preference function P of span s− 1.
Output: a unique de Bruijn sequence S = {ai} of order n.
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1. a1 = 0, . . . , an = 0.
2. If aN+1, . . . , aN+n−1 have been defined, then aN+n = Pi(aN+n−s+1, . . . , aN+n−1),

where i is the smallest integer between 1 and t such that the word

(aN+1, . . . , aN+n−1, Pi(aN+n−s+1, . . . , aN+n−1)

has not previously appeared as a segment of the sequence (provided that there
are such i).

3. Let L = L{ai} be the smallest value of N such that no i can be found to
satisfy the condition in (2). Then aL+n−1 is the last digit of the sequence and
L is called the cycle period.

Theorem 2.8. Let P be a preference function of span s − 1 that induces a least

preference function g which admits no cycles except the self loop (0s−1, 0s−1). Then

for any integer n ≥ s the sequence given by Algorithm P is a de Bruijn sequence of

order n.

We observe that this theorem establishes that the Ford sequence is rather the norm
than the exception. For the Ford sequence, the permutation (t − 1, t − 2, . . . , 0)–
which is a de Bruijn sequence of order 1–generates de Bruijn sequences of all orders.
Using Theorem 2.8, given any de Bruijn sequence of order s, we can construct the
corresponding preference function of span s− 1 which in turn can generate a unique
de Bruijn sequence of any order higher than s. The proof of this theorem will be
given after a few lemmas are formulated and proved.

Lemma 2.9. The sequence S in Theorem 2.8 ends just after the word a0n−1 is en-

countered, for some a ∈ A, a 6= 0.

Proof. First, it is immediate by the construction in Algorithm P that a word of size
n occurs at most once in the constructed sequence. Suppose now that the algorithm
terminates just after the word (x1, . . . , xn) 6= a0n−1 is realized. That is, (x2, . . . , xn, y)
must have appeared earlier in the sequence for all y ∈ A. This implies that (x2, . . . , xn)
appeared t+1 times. Since (x2, . . . , xn) is not equal to 0n−1, it is not the initial block
of the sequence so that every time it appeared it was preceded by something. The
pigeon hole principle thus implies that there exists an element z ∈ A such that
(z, x2, . . . , xn) occurs twice in the sequence, which is a contradiction. �

Lemma 2.10. All words of the form b0n−1 occur in the sequence S of Theorem 2.8.

Proof. By Lemma 2.9 the sequence ends with the word a0n−1. The word 0n = 0n−10,
which already occurs in the beginning, can not be appended after a0n−1. Since
Pt(0

n−1) = 0, no other symbol z can be appended either. This implies that all
words of the form 0n−1z have occurred earlier in the sequence. It follows that all the
words of the form b0n−1, where b 6= 0 must occur in the sequence. �

Lemma 2.11. If X1 = (x1, . . . , xn) is a word that does not occur in S then neither

does the word X2 = (x2, . . . , xn, c), where c = Pt(xn−s+2, . . . , xn).

Proof. Suppose that X2 occurs in S. X2 can not be the zero string 0n because the
latter occurs as the first string. Hence X2 is preceded by some string. Since c =
Pt(xn−s+2, . . . , xn) has the least preference, it follows that all the words (x2, . . . , xn, z)
must have occurred earlier in the sequence. Therefore the set of all predecessors
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(y, x2, . . . , xn) must have occurred for all values of y. In particular, X1 = (x1, . . . , xn)
must have occurred, which is a contradiction. �

Proof. (of Theorem 2.8) Suppose that (x1, . . . , xn) is a pattern that does not appear
in S.

Case 1. Let us first suppose that (xn−s+2, . . . , xn) = 0s−1. Since (x1, . . . , xn) can
not be all zeros, there must exist an integer i, 1 ≤ i ≤ n− s+1 such that xi 6= 0 but
xj = 0 for all j, i+ 1 ≤ j ≤ n. Since g(0s−1) = 0s−1 it is clear that Pt(0

s−1) = 0. It
follows by applying Lemma 2.11 that (x2, . . . , xi, 0

n−i+1) does not occur in S. By the
same argument, applying Lemma 2.11 another (i − 2) times, we see that the word
xi, 0

n−1 does not occur. This contradicts Lemma 2.10.
Case 2. Suppose now that (xn−s+2, . . . , xn) 6= 0s−1. Then by Lemma 2.11 the word

(x2, . . . , xn, xn+1) does not appear either, where xn+1 = Pt(xn−s+2, . . . , xn). Moreover,
(xn−s+2, . . . , xn) 6= (xn−s+3, . . . , xn+1) for otherwise the least preference function g

would have a cycle of length 1 that is distinct from the self loop (0s−1, 0s−1), namely

(xn−s+1, . . . , xn, g(xn−s+1, . . . , xn)) = (xn−s+2, . . . , xn+1),

which can not be the case by the given.
If (xn−s+3, . . . , xn+1) = 0s−1, Case 1 above leads to a contradiction. So it is safe

to assume that this is not the case. We claim that, by applying this argument
repeatedly, we eventually get a word ending with 0s−1 that does not occur in S. To
see this note that, after i repetitions of Lemma 2.11–with i ≤ ts−1, we conclude that
the word (xn+i−s+2, . . . , xn+i) does not occur in S, where for j = n + 1 to n + i,
xj = Pt(xj−s+1, . . . , xj−1) and (xj−s+2, . . . , xj) 6= 0s−1. Since g(xj−s+1, . . . , xj−1) =
(xj−s+2, . . . , xj) and since g has no cycles of any length (namely, no cycles of length
1, 2, . . . , ts−1 − 1) other than the self loop at 0s−1, we see that (xj−s+1, . . . , xj) 6=
(xj′−s+2, . . . , xj′) for all j < j′ and n ≤ j, j′ ≤ n+ i. Otherwise, the sequence

(xj−s+1, . . . , xj), (xj−s+2, . . . , xj+1), · · · , (xj′−s+1, . . . , xj′)

would form a cycle of length j′ − j.
For any i such that 1 ≤ i ≤ ts−1 − 2, if the right tail (xn+i−s+2, . . . , xn+i) = 0s−1

then applying Case 1 leads to a contradiction. Suppose then that the right tail is
distinct from 0s−1 for all i = 1 to ts−1 − 2. Then, for i = ts−1 − 1, the facts that all
the words are distinct and that there are i+1 = ts−1 words imply that the last word
of size s − 1 is necessarily equal to 0s−1, thus leading to a contradiction, by Case 1.
This establishes the theorem. �

3. Preference Function Complexity

In the vast literature on de Bruijn sequences, there has been more than one method
to classify these sequences. One well known criterion for binary de Bruijn sequences is
the number of ones in the truth table of the corresponding feedback function, (namely,
the function F defined in the statement of item (3) in Theorem 17 above).

Also, de Bruijn sequences have been classified according to their linear complexity,
which is defined as the minimal span of a linear shift register that generates the
de Bruijn sequence. In other words, it is the minimal integer N such that there
exists a linear feedback function F = F (x2, . . . , xN) that can generate the de Bruijn
sequence.
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It was proven by Chan, Games and Key [2] that the linear complexity of a binary
de Bruijn sequence of order n is between 2n−1 + n and 2n − 1.

In this section, we use Theorem 2.8 to introduce a new notion of complexity of
de Bruijn sequences of any alphabet size that relates to the preference function which
generates the sequence. We thus obtain another classification of de Bruijn sequences
based on this complexity.

To fix ideas, we observe that, by Theorem 2.8, it is clear that an algorithm such
as the one that generates the Ford sequence (for general alphabet size t) is rather
the norm than the exception. For the latter algorithm, a preference function that
generates a de Bruijn sequence of order 1 also generates a de Bruijn sequence of any
order n larger than 1 when started with the initial word 0n.

Let us also observe that the preference function of the Ford sequence–with the
“prefer-higher” algorithm–is a constant function of span 0 that is given by P (x) =
(t − 1, t − 2, . . . , 0) for all x in A. See Table 1. The corresponding least preference
function is given by g(x) ≡ 0, which admits the only cycle g(0) = 0. In fact, the
two preference diagrams in the leftmost column of Table 1 have span zero while the
remaining diagrams have span one.

Definition 3.1. Given an order n de Bruijn sequence S that starts with the fixed
word 0n we define the preference function complexity comp0(S) as the smallest integer
s, 0 ≤ s ≤ n such that there exists a preference function of span s that generates the
sequence S with the initial word 0n.

The sixteen binary de Bruijn sequences of order four are given in Table 3 while their
corresponding preference functions are given in Table 4. Notice that sequence (3)–the
Ford sequence–does not depend on any of the previous three bits so it has preference
function span 0 while sequence (6) depends only on the previous two bits so it has
span 2. all other sequences have preference function span 3. Thus they have full
span. There are no sequences with span 1, due to the binary alphabet. Sequence (2)
comes close. In fact, changing the preference of ’111’ to 1 then 0 makes the preference
function depend only on the previous bit but this introduces a self loop 111 → 111 in
the corresponding least preference function so the resulting sequence misses the word
1111. Note that this sequence is the prefer opposite sequence mentioned earlier.

Proposition 3.2. The distribution of de Bruijn sequences of order n according to

their preference function complexity is given by N0(n) = (t− 1)!, N1(n) = ((t− 1)!)t ·

tt−2, and for i > 1 Ni(n) = ((t− 1)!)t
i

· tt
i
−i−1 − ((t− 1)!)t

i−1

· tt
i−1

−i where, for i = 0
to n− 1,

Ni(n) = card{S : S is a de Bruijn sequence of order n such that comp(S) = i}.

Proof. For i = 0 the order of preference does not depend on any of the previous digits,
in particular it does not depend on the immediately previous digit. Since the only
allowed cycle in the induced least preference function g of is the self loop from 0 to 0
it follows that g(i) = 0 for all digits i. The remaining t− 1 digits can be given any of
(t− 1)! orders of preference.

For i ≥ 1, it is evident that the complexity of a de Bruijn sequence of order i

does not exceed i − 1. Moreover, it is well known, see [8], that the total number of

de Bruijn sequences of order i is given by the formula M(t, i) = [(t− 1)!]t
i−1

· tt
i−1

−i.
Hence N1(1) is M(t, 1) minus the number of sequences of complexity 0.

8



1 0000100110101111000 9 0000101111001101000
2 0000101001101111000 10 0000101111010011000
3 0000111101100101000 11 0000101100111101000
4 0000111101011001000 12 0000110010111101000
5 0000100111101011000 13 0000111101001011000
6 0000101001111011000 14 0000110100101111000
7 0000110111100101000 15 0000101101001111000
8 0000110101111001000 16 0000111100101101000
Table 3. Binary de Bruijn sequences of order 4.

Similarly, Ni(i) is M(t, i) minus the number of sequences whose complexity is less
than i. Since Theorem 2.8 implies that every preference function of span i < n also
produces a de Bruijn sequence of order n, it follows that Ni(n) = Ni(i). �

We will say that two sequences {ai} and {bi} are equivalent if bi = σ(ai) for some
permutation σ of the alphabet A. Our last result relates to de Bruijn sequences with
complexity zero. Notice that while the binary case allows only one preference function
with zero span, higher values of t yield (t−1)! cases. The following proposition shows
that in fact all of these cases yield equivalent de Bruijn sequences.

Proposition 3.3. All de Bruijn sequences of preference function complexity zero are

equivalent, up to a permutation of the digits, to the Ford sequence.

Proof. Let Q be an arbitrary complete preference function of span zero. Evidently,
there exists a permutation σ such that Qi = (σ(t−1), . . . , σ(0)) for all i ∈ A. Let {bi}
be the sequence of order n—started at 0n—that corresponds to Q. Consider now the
sequence {ai} defined by ai = σ−1(bi), which is obviously a de Bruijn sequence. We
claim that {ai} is the Ford sequence of order n. To see this, let i1 < i2 < . . . < it be
the positions of a pattern x1, . . . , xn−2 in the sequence {ai}. It follows that i1, . . . , it
are the positions of the pattern σ(x1), . . . , σ(xn−2) in the sequence {bi}. By definition
of Q, the substrings

(bi1 , . . . , bi1+n−2), . . . , (bit , . . . , bit+n−2)

are followed respectively by σ(t− 1), . . . , σ(0). Therefore, the substrings

(ai1 , . . . , ai1+n−2), . . . , (ait , . . . , ait+n−2)

of {ai} are followed by t− 1, t− 2, . . . , 0.
Since this is true for any pattern (x1, . . . , xn−1), the proof is complete. �
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