
ar
X

iv
:1

00
6.

19
90

v2
 [

cs
.D

S]
 1

1
Ju

n
20

12

Minimizing a sum of submodular functions

Vladimir Kolmogorov
University College London

v.kolmogorov@cs.ucl.ac.uk

Abstract

We consider the problem of minimizing a function represented as a sum of submodular
terms. We assume each term allows an efficient computation of exchange capacities. This holds,
for example, for terms depending on a small number of variables, or for certain cardinality-
dependent terms.

A naive application of submodular minimization algorithms would not exploit the existence
of specialized exchange capacity subroutines for individual terms. To overcome this, we cast
the problem as a submodular flow (SFs) problem in an auxiliary graph in such a way that
applying most existing SF algorithms would rely only on these subroutines.

We then explore in more detail Iwata’s capacity scaling approach for submodular flows [18].
In particular, we show how to improve its complexity in the case when the function contains
cardinality-dependent terms.

1 Introduction

In this paper we consider the problem of minimizing an objective function of the following form:

f(S) =
∑

Q∈Q◦

fQ(S ∩Q) ∀S ⊆ V (1)

Here V is a set of nodes, Q◦ ⊆ 2V is a set of subsets of V , and fQ : 2Q → R are submodular
functions.

Function f is itself submodular, and thus can be minimized in polynomial time. The current
fastest strongly polynomial algorithms are those of Orlin [25] and Iwata-Orlin [21], which take
time O(n5EO + n6), where n = |V | and EO is the time to run the value oracle for f(S). The
fastest weakly polynomial algorithms are those of Iwata [19] and Iwata-Orlin [21] which run in
time O((n4EO + n5) logU) and O((n4EO + n5) log nU) respectively, where U is the maximum
absolute value of integer-valued function f .

However, applying a general-purpose submodular minimization algorithm may not be the most
efficient technique, since it does not exploit the special structure of f . It is often the case that
terms fQ have a special form that allow an efficient computation of exchange capacities, which
are defined in the next section. Roughly speaking, this means that we can efficiently minimize
function fQ(S) − z(S) for any vector z ∈ R

Q. (As usual, z(S) denotes
∑

i∈S zi.) The main goal
of this paper is to develop an algorithm that can exploit the existence of specialized exchange
capacities subroutines.

To achieve this goal, we use the framework of submodular flows (SF) introduced by Edmonds
and Giles [8]. We show that the problem of minimizing f can be cast as a particular SF instance
in an auxiliary graph, so that computing exchange capacities for the new problem is equivalent to
computing exchange capacities for individual terms fQ. Most existing algorithms for submodular

1

http://arxiv.org/abs/1006.1990v2

flows rely on the exchange capacity oracle, which gives the desired result. It should be said that
this reduction looks very natural, but to the best of our knowledge it has not appeared in the
literature before.

We then present a capacity scaling technique for solving the problem. Its complexity is O((n+∑
Q αQ)(n+

∑
Q βQ) logU) where U is an upper bound on function values and αQ, βQ depend on

the type of term fQ:

(a) If |Q| = 2 then (αQ, βQ) = (1, 1).

(b) If fQ(S) = g(|S|) then (αQ, βQ) = (|Q|, |Q|). Note, g(·) must be concave.

(c) If fQ(S) = g(|S ∩ Q′|, |S ∩ Q′′|) where Q′, Q′′ are disjoint subsets of Q then (αQ, βQ) =
(|Q|2, |Q|).

(d) For any other term fQ we have (αQ, βQ) = (|Q|2, |Q|2 + |Q| · hQ) where hQ is the time of the
exchange capacity oracle for the (scaled version of) fQ.

In (b) and (c) we assume that function g can be evaluated in O(1) time. For cases (c) and (d) we
use the scaling technique of Iwata [18].

For some classes of functions this complexity is currently the best known. Consider, for exam-
ple, a function with n variables, m = O(n) pairwise terms and k ≥ 1 cardinality-dependent terms
fQ with strictly concave functions g such that |Q| = Θ(n). The complexity of our capacity scaling
technique is O((kn)2 logU). The reduction to a submodular flow problems results in a problem
with N = O(kn) nodes; the submodular flow algorithm of Fujishige and Zhang [13] would then be
O((kn)3EO) (though a better analysis that takes into account the structure of the submodular flow
instance is likely to give an improvement on that). Finally, the reduction of [22] to the maxflow
problem, discussed below, would give a graph with n̂ = O(kn) nodes and m̂ = O(kn2) edges.
The algorithm of Goldberg and Rao [16] would then give O(min(n̂2/3, m̂1/2)m̂ log(n̂2/m̂) log Û) =
O(min(k5/3n8/3, k3/2n3) log k logU), which is worse than O((kn)2 logU) when k = o(n2). (Per-
haps more importantly, the reduction to a maxflow problem would need O(kn2) memory, while
the direct approach needs only O(kn).)

Applications Functions with terms of the form (a)-(c) have recently appeared in computer
vision applications. Terms (a) and (b) were used for the image segmentation problem [22, 28],
while terms (a) and (c) were used for co-segmenting two images containing a similar object [17].
(The latter work used terms of the form fQ(S) = −c · |S ∩Q′| · |S ∩Q′′| with c ≥ 0.)

Note, objective functions used in computer vision very often have form (1) where |Q| is quite
small (2,3,. . .). Terms fQ encode interactions between neighboring pixels. Currently, researchers
restrict themselves to functions that can be reduced to a minimum s-t cut problem (see discussion
in [29]), since minimizing general submodular functions is too expensive in practice. Our work
may remove such restriction.

Related work The problem of minimizing functions of the form (1) was studied by Cooper [5],
who formulated a linear program and showed that its optimal value coincides with the minimum
of f . The formulation that we will use closely resembles that in [5]. However, no polynomial-time
algorithm for solving this formulation was given in [5], and a connection to the submodular flow
problem problem was not discussed.

It is known that in certain cases the problem can be reduced to a minimum s-t cut problem in
a graph with auxiliary nodes. Billionnet and Minoux [2] showed that this can be done for functions
with cubic terms, i.e. when |Q| ≤ 3 for all terms fQ. Reductions for certain subclasses with higher
order terms were given by Freedman and Drineas [10], Kohli et al. [22] and Živný and Jeavons [30].
The resulting maxflow problem could be solved e.g. in O(min(n̂2/3, m̂1/2)m̂ log(n̂2/m̂) log Û) time
by the algorithm of Goldberg and Rao [16], where n̂, m̂ are the number of nodes and edges in the
constructed graph and Û is a bound on edge capacities.

2

On the negative side, Živný et al. [29] proved that some submodular terms with |Q| = 4 do
not admit such a reduction. Even if the reduction exists, it may result in a graph which would
be prohibitively large in practice. Consider, for example, terms of the form fQ(S) = g(|S|) where
g is concave. The reduction of Kohli et al. [22] adds b extra nodes and b|Q| extra edges for each
term fQ, where b is the number of breakpoints of the piecewise-linear concave function g. If g
is strictly concave (as in the application of [28]) then b = |Q| − 1, so there would be O(|Q|2)
edges. In contrast, our technique uses only O(|Q|) memory. The same holds for the function
fQ(S) = −c · |S ∩Q′| · |S ∩Q′′| used in [17].

Fujishige and Iwata [12] considered functions of the form f(S) + g
(∑

i∈S wi

)
on a distributive

lattice where f is submodular, g is concave and wi > 0. They showed that the minimization
problem is equivalent to a parametric problem: minimize function of the form f(S)+ cλ(S) for all
values of λ, where {cλ}λ is a certain family of non-increasing vectors in R

V . One of their results also
implies a concise characterization of the base polyhedron for submodular function fQ(S) = g(|S|);
we will use this characterization in section 5.2.

In parallel with our technical report [24], Stobbe and Krause [27] have investigated the problem
of minimizing functions of the form (1) with terms fQ(S) = g

(∑
i∈S wi

)
where wi ∈ [0, 1] and g

is concave. They presented an algorithm based on a Nesterov’s technique for smoothed convex
minimization applied to the Lovász extension of f , and showed some computational results. No
bound on the worst-case complexity was given.

2 Problem formulation

Let Q be the set obtained from Q◦ by removing all singleton subsets of the form {i}, i ∈ V . Thus,
|Q| ≥ 2 for all Q ∈ Q. Without loss of generality we assume that function f is given by

f(S) =
∑

i∈S

cit +
∑

i∈V−S

csi +
∑

Q∈Q

fQ(S ∩Q) (2)

where cit, csi are non-negative numbers and each term fQ satisfies the following condition:1

min
S⊆2Q

fQ(S) = fQ(∅) = fQ(Q) = 0 (3)

Base polyhedron and exchange capacities The base polyhedron [7] of fQ is defined as

B(fQ) = {ϕQ ∈ R
Q | ϕQ(S) ≤ fQ(S) ∀S ⊆ Q, ϕQ(Q) = fQ(Q) = 0} (4)

Given a vector ϕQ ∈ B(fQ) and distinct nodes i, j ∈ Q, the exchange capacity c̄Qij is the maximum
value of ǫ ≥ 0 such that the operation ϕQi := ϕQi+ ǫ, ϕQj := ϕQj − ǫ keeps ϕQ in B(fQ). Clearly,

c̄Qij = min
S⊆Q

{f̄Q(S) | i ∈ S ⊆ Q− {j}} , f̄Q(S) = fQ(S)− ϕQ(S) (5)

Computing c̄Qij is equivalent to minimizing a submodular function. This can be done in polynomial
time by a number of general-purpose submodular minimization algorithms. Furthermore, for many
choices of fQ there exist more efficient specialized techniques.

A remark on notation: in this paper we always use “bar” (c̄Qij , f̄Q, . . .) to indicate “residual”
values, i.e. values that take into account current flow.

Maximum flow formulation Let us construct a directed capacitated graph G = (N,A, c) as
follows. The set of nodes will be N = {s, t}∪V ∪Q∈QQ⋆ where s, t are the source and the sink and

1 If term fQ with fQ(∅) = 0 does not satisfy (3) then we can replace it with the sum ϕQ(S) + f̄Q(S) where
f̄Q(S) = fQ(S)−ϕQ(S) and ϕQ is a vector in the base polyhedron of fQ, which can be easily computed by a greedy
algorithm of Edmonds [7].

3

Q⋆ = {(Q, i) | i ∈ Q}. Set Q⋆ can be viewed as a unique copy of the set of nodes Q; in particular,
|Q⋆| = |Q|. For brevity, the pair (Q, i) will be written as Qi, so Q⋆ = {Qi | i ∈ Q}. The set of arcs
will be

A = {(i,Qi), (Qi, i) | i ∈ V,Qi ∈ N}
⋃

{(s, i), (i, s), (i, t), (t, i) | i ∈ V }

Arc capacities csi, cit are the same as in (2). Arcs to the source and from the sink have zero
capacity (cis = cti = 0), and all “internal” arcs have infinite capacity (ci,Qi = cQi,i = +∞).

A flow ϕ is a vector in R
A. For a subset Q ∈ Q we denote ϕQ ∈ R

Q to be the vector with
components ϕQi = ϕi,Qi. We also denote value(ϕ) =

∑
i∈V ϕsi to be the amount of flow sent from

the source. We will consider the following maximum flow problem:

max value(ϕ) s.t. (6a)

ϕuv = −ϕvu ∀(u, v) ∈ A (antisymmetry) (6b)

ϕa ≤ ca ∀a ∈ A (capacity constraints) (6c)∑

(u,i)∈A

ϕui = 0 ∀i ∈ V (flow conservation for V) (6d)

ϕQ ∈ B(fQ) ∀Q ∈ Q (base polyhedron constraints) (6e)

Note, if ϕ is feasible then we also have value(ϕ)=
∑

i∈V ϕit since
∑

i∈V ϕsi−
∑

i∈V ϕit =
∑

i∈V [ϕsi+
ϕti] = −

∑
i∈V

∑
Qi∈N ϕQi,i =

∑
Q∈Q

∑
i∈Q ϕi,Qi = 0.

The linear program (6) is very similar to that in [5], with some minor differences; for example,
the “balance” constraint ϕQ(Q) = 0 is not present in [5].

The rest of the paper is organized as follows. Section 3 gives a reduction of problem (6)
to a submodular flow problem, which leads to a number of algorithms for solving (6). Section 4
describes a pseudo-polynomial augmenting path algorithm, which is a specialization of the standard
augmenting path algorithm for submodular flows. By analyzing the algorithm we will prove that
the maximum of (6) coincides with the minimum of f . Section 5 presents a scaling version of the
augmenting path algorithm, while section 7 discusses some implementational issues and states the
complexity of the algorithm.

The reader may choose to skip the next section; familiarity with the submodular flow problem
will not be necessary for understanding the augmenting path algorithm.

3 Reduction to a submodular flow problem

We will consider a directed capacitated graph G′ = (N,A′, c) where A′ = A ∪ {(s, t), (t, s)} and
the capacities of the new arcs are cts = +∞, cst = 0. If ϕ ∈ R

A′

is a flow in G′ and u is a node in
N then ∂ϕ(u) =

∑
(v,u)∈A′ ϕvu will denote the amount of flow that comes into u. Concatenating

components ∂ϕ(u) for u ∈ N gives a vector ∂ϕ ∈ R
N .

Let us recall a definition of a submodular flow problem for a graph G′ [8, 15]. Assume that
each arc a ∈ A′ has a cost da, and let g : 2N → R be a submodular function with g(∅) = g(N) = 0.
Then the problem is defined as

max
∑

a∈A′

daϕa s.t. (7a)

ϕuv = −ϕvu ∀(u, v) ∈ A′ (7b)

ϕa ≤ ca ∀a ∈ A′ (7c)

∂ϕ ∈ B(g) (7d)

where B(g) is the base polyhedron of g:

B(g) = {z ∈ R
N | z(X) ≤ g(X) ∀X ⊆ N, z(N) = 0} (8)

4

In order to simulate problem (6), we set arc costs as follows: dts = 1 and da = 0 for all other
arcs a. Function g is defined by

g(X) =
∑

Q∈Q

fQ(X
Q)

where we introduced notation XQ = {i ∈ Q |Qi ∈ X}.

Proposition 1. Problems (6) and (7) are equivalent.

Proof. Suppose that ϕ ∈ R
A is a feasible flow for problem (6). Let us extend it to a flow in G′

by setting ϕts = value(ϕ), ϕst = −value(ϕ). Clearly, conditions (7b) and (7c) are satisfied. It is
also easy to check that z = ∂ϕ ∈ B(g). Indeed, we have zi = 0 for i ∈ V ∪ {s, t} and zQi = ϕQi

for Qi ∈ N . Conditions ϕQ ∈ B(fQ) then imply that z(N) = 0 and for any X ⊆ N there holds
z(X) =

∑
Q∈Q ϕQ(X

Q) ≤
∑

Q∈Q fQ(X
Q) = g(X). Thus, ϕ is a feasible flow for problem (7).

Furthermore, the values of objective functions of (6) and (7) coincide.
Conversely, suppose that ϕ ∈ R

A′

is a feasible flow for problem (7); let us show that its
restriction to A is feasible for problem (6). Conditions (6b) and (6c) follow from (7b) and (7c).
Denote z = ∂ϕ. If X is a subset of N with g(X) = g(N − X) = 0 then z ∈ B(g) implies
z(X) ≤ g(X) = 0 and −z(X) = z(N −X) ≤ g(N −X) = 0, so z(X) = 0. Applying this fact for
subset X = {i} yields (6d), and applying this fact for subset X = Q⋆ yields constraint ϕQ(Q) = 0,
which is a part of (6e). Finally, if S ⊆ Q then ϕQ(S) = z(S⋆) ≤ g(S⋆) = fQ(S) where we denoted
S⋆ = {Qi | i ∈ S}. Thus, ϕQ ∈ B(fQ).

Exchange capacities Most submodular flow algorithms rely on the following operation: given
a feasible flow ϕ ∈ R

A′

with z = ∂ϕ ∈ B(g) and distinct nodes u, v ∈ N , compute the exchange
capacity c̄uv = minX{ḡ(X) | u ∈ X ⊆ N − {v}} where ḡ(X) = g(X) − z(X). The proposition
below shows that computing these capacities is equivalent to computing exchange capacities c̄Qij

for individual terms fQ with respect to flow ϕ (given by eq. (5)).

Proposition 2. c̄uv = c̄Qij if (u, v) = (Qi,Qj) and c̄uv = 0 otherwise.

Proof. As shown above, zi = 0 for i ∈ V ∪ {s, t}, therefore z(X) =
∑

Q∈Q ϕQ(X
Q) for all subsets

X ⊆ N . This implies that

ḡ(X) =
∑

Q∈Q

f̄Q(X
Q) (9)

The fact that ϕQ ∈ B(fQ) also implies minS⊆Q f̄Q(S) = f̄Q(∅) = f̄Q(Q) = 0 for all Q ∈ Q.
Therefore, if (u, v) = (Qi,Qj) then the minimization problem minX{ḡ(X) |u ∈ X ⊆ N −{v}} has
a minimizer X ⊆ Q⋆, and thus c̄uv = minX{ḡ(X) | u ∈ X ⊆ Q⋆ − {v}} = c̄Qij. Now suppose that
(u, v) 6= (Qi,Qj). Let U ⊂ N be the “completion” of u: U = {u} if u ∈ V ∪ {s, t} and U = Q⋆

if u = Qi. There holds v /∈ U since we assumed that (u, v) 6= (Qi,Qj) and u, v are distinct. We
have ḡ(U) = 0, and thus c̄uv = 0.

Problem (7) is actually a maximum submodular flow problem, which is a special case of the
more general minimum cost submodular flow problem (see survey [15]). The former problem can
be solved in time O(|N |3h) by a push-relabel method of Fujishige and Zhang [13], where h is the
time of the exchange capacity oracle (see also [20], section 3.1). Clearly, for certain functions f this
complexity can be better than bounds O(n5EO + n6) and O((n4EO + n5) logU) for submodular
function minimization.

In our case h is the maximum time of oracles over individual terms. This appears to be a rather
crude way of estimating the complexity, as it does not take into account the structure of individual
terms. We conjecture that a more careful analysis of the algorithm can give a bound which better
illustrates contributions of individual terms. In the subsequent sections we will give an example
of such a bound for a capacity scaling augmenting path algorithm applied to problem (6).

5

4 Augmenting path algorithm

A shortest augmenting path algorithm for a problem equivalent to maximum submodular flows
was given by Fujishige [14]. We now describe its application to problem (6), and prove that the
value of the maximum flow coincides with the minimum of f . We will generalize the problem
slightly: we assume that capacities cis and cti are non-negative numbers which are not necessarily
zero. (We will need this in the next section.)

Given a flow ϕ, the residual capacity for arc a ∈ A is defined as c̄a = ca − ϕa. Similarly, we
define “residual functions” f̄Q by f̄Q(S) = fQ(S) − ϕQ(S) for S ⊆ Q. It can be seen that if ϕ
satisfies antisymmetry and conservation constraints (6b), (6d) then for any S ⊆ V there holds

f(S) = value(ϕ) +
∑

i∈S

c̄it +
∑

i∈V−S

c̄si +
∑

Q∈Q

f̄Q(S ∩Q) (10)

Indeed, subtracting (2) from (10) gives
∑

i∈V ϕsi−
∑

i∈S ϕit−
∑

i∈V−S ϕsi−
∑

Q∈Q

∑
i∈S∩Q ϕi,Qi =

∑
i∈S

[
ϕsi + ϕti +

∑
Qi∈N ϕQi,i

]
= 0. All residual values for a feasible ϕ are non-negative, so

equation (10) implies the weak duality relationship:

max{value(ϕ) | ϕ is feasible } ≤ min{f(S) | S ⊆ V } (11)

Given a feasible flow ϕ, let Ā be the following set of arcs:

Ā = {a ∈ A | c̄a > 0}
⋃

Q∈Q

ĀQ , ĀQ = {(Qi,Qj) | i, j ∈ Q, i 6= j, c̄Qij > 0} (12)

Proposition 3. If there is no path from s to t in (N, Ā) then the set S = {i ∈ V |i is reachable from
s in (N, Ā)} satisfies f(S) = value(ϕ), and therefore ϕ is a maximum flow and S is a minimizer
of f .

Proof. It suffices to show that every term in the RHS of (10) (except maybe for the first term
value(ϕ)) is zero. If i ∈ S then c̄it = 0, otherwise t would be reachable from s. If i ∈ V − S
then c̄si = 0, otherwise i would belong to S. Consider the term for subset Q ∈ Q, and denote
S′ = S ∩ Q. For each pair of nodes i ∈ S′, j ∈ Q − S′ function f̄Q must have a minimizer Sij

with i ∈ Sij ⊆ Q− {j}, otherwise we would have c̄Qij > 0 so node j could be reached from i via
arcs (i,Qi), (Qi,Qj), (Qj, j) ∈ Ā and thus j would be in S. The submodularity of f̄Q implies that
the set

⋃
i∈S′

⋂
j∈Q−S′ Sij is a minimizer of f̄Q as well. The latter set coincides with S′ = S ∩Q,

therefore f̄Q(S ∩Q) = 0.

Now suppose that there exists a path P from s to t; such a path is called an augmenting path.
Clearly, we can send some flow δ > 0 along the path2 so that the flow would remain feasible and
value(ϕ) would increase by δ. This leads to

Proposition 4 (Strong duality). The value of the maximum flow in (6) coincides with the mini-
mum of f .

Proof. Let ϕ be a maximum flow. There can be no augmenting path for ϕ, otherwise ϕ would not
be maximal. The claim now follows from proposition 3.

From now on, we assume that all capacities csi, cit and values fQ(S) for S ⊆ Q are integers
bounded by constant U . A maximum flow can then be computed in pseudo-polynomial time by
the following augmenting path algorithm:

2 Sending flow δ along arc (u, v) ∈ A denotes the operation ϕuv := ϕuv + δ, ϕvu := ϕvu − δ. Sending flow δ along
arc (Qi,Qj) ∈ ĀQ does not change ϕ.

6

S0 Set ϕa = 0 for all arcs a.

S1 Construct set of arcs Ā as in (12).

S2 Find a shortest path P from s to t in (N, Ā); if no such P exists, terminate.

S3 Send 1 unit of flow along P and go to step 1.

Note, it is well-known that for integer-valued submodular flow problems sending 1 unit of flow
along a shortest augmenting path preserves flow feasibility [14]. In our case we can relax slightly
the requirement that P is shortest; we only need P to be minimal:

Definition 5. Let P be a simple (i.e. node-disjoint) path in (N, Ā). We call P minimal (with
respect to (N, Ā)) if the following property holds: if (Qi,Qj), (Qi′, Qj′) are two distinct arcs in
the path (occurring in this order) then Ā does not have arc (Qi,Qj′).

Clearly, any shortest augmenting path from s to t is minimal. In section 4.1 below we prove
that sending one unit of flow from s to t along a minimal path preserves flow feasibility.

It is not difficult to show that sets ĀQ are transitive, i.e. (i, j), (j, k) ∈ ĀQ implies (i, k) ∈ ĀQ

(see section 4.1). Thus, if P is minimal then (Qi,Qj) ∈ P implies that the previous arc in P is
(i,Qi) and the next arc is (Qj, j). The operation of sending flow through these three arcs will be
referred to as “sending flow from i to j via Q”.

4.1 Correctness of the augmenting path algorithm

First, let us show the set ĀQ defined in (12) is transitive, i.e. if i, j, k are distinct nodes in Q then
(Qi,Qj), (Qj,Qk) ∈ ĀQ implies (Qi,Qk) ∈ ĀQ. Suppose not, then c̄Qik = 0. This means that
f̄Q(S) = 0 for some subset S with i ∈ S ⊆ Q − {k}. If j ∈ S then c̄Qjk = 0 and (Qj,Qk) /∈ ĀQ,
and if j /∈ S then c̄Qij = 0 and (Qi,Qj) /∈ ĀQ - a contradiction.

Assume that the problem is integer-valued. It is straightforward to check that sending one
unit of flow along a minimal path in (N, Ā) from s to t preserves antisymmetry (6b), capacity (6c)
and flow conservation (6d) constraints. We now prove that if P is a minimal path in (N, Ā)
whose endpoints belong to V then sending one unit of flow along P preserves base polyhedron
constraints (6e). Note, P is not an augmenting path: it does not go from s to t. However, the
operation of sending flow along P and the minimality of P are still well-defined.

We use induction on the length of P . If P is empty then the claim is trivial. Suppose P is
not empty; since P is minimal and ĀQ are transitive, P must have the form P = P1P2 where
P1 = ((i,Qi), (Qi,Qj), (Qj, j)) and i, j are distinct nodes in Q ∈ Q. Since (Qi,Qj) ∈ ĀQ, sending
one unit of flow along P1 preserves base polyhedron constraints. We prove below that after sending
this flow, path P2 remains a minimal path in (N, Ā); the claim will then follow by the induction
hypothesis.

Clearly, we need to consider only arcs in ĀQ - subsets ĀQ′ for Q′ ∈ Q− {Q} are not affected.

Let us denote f̂Q to be the residual function after sending the flow and ÂQ to be the corresponding

set of arcs. We have f̂Q(S) = fQ(S)− [i ∈ S] + [j /∈ S] for S ⊆ Q, where [·] is the Iverson bracket:
it is 1 if its argument is true, and 0 otherwise. We need to show two facts:

(a) if (Qk,Ql) ∈ P2 then (Qk,Ql) remains in ÂQ;

(b) if (Qk,Ql) and (Qk′, Ql′) are two distinct arcs in P2 occuring in this order then arc (Qk,Ql′)
still does not belong to ÂQ.

Proof of claim (a) For a set S ⊆ Q denote [S] = ([i ∈ S], [j ∈ S], [k ∈ S], [l ∈ S]).
If the claim is false then there exists S with [S] = (?, ?, 1, 0) and f̂Q(S) = 0. Since (Qk,Ql)∈ ĀQ be-

fore sending the flow, we must have f̄Q(S)= f̂Q(S)+ [i ∈ S]− [j /∈ S]>0, therefore [S] = (1, 0, 1, 0)

7

S0 For each Q ∈ Q set ϕQ :=AdjustFlow∆Q(ϕQ) to make sure that ϕQ ∈ B(f∆
Q). Ad-

just other flow components so that ϕ satisfies antisymmetry and flow conservation
constraints:

• Set ϕQi,i := −ϕi,Qi for all Qi ∈ N .

• For each node i ∈ V compute δ =
∑

(u,i)∈A ϕui; if δ > 0, send δ units of flow
back to the source via arc (i, s), otherwise send −δ units of flow from the sink
via arc (t, i).

S1 Construct set of arcs Ā∆ as follows:

Ā∆ = {(u, v) ∈ A | c̄uv ≥ ⌈∆⌉}
⋃

Q∈Q

Ā∆
Q (13)

S2 Find minimal path P in (N, Ā∆); if no such path exists, terminate.

S3 Send ⌈∆⌉ units of flow along P and go to step S1.

Figure 1: ∆-phase. Definitions of function f∆
Q , procedure AdjustFlow∆Q(ϕ) and set Ā∆ for dif-

ferent types of terms fQ are given in sections 5.1-5.3.

and f̄Q(S) = 1. By minimality of P arc (Qi,Ql) was not in ĀQ before sending the flow, therefore
there exists another set S′ with [S′] = (1, ?, ?, 0) and f̄Q(S

′) = 0. Since (Qi,Qj), (Qk,Ql) ∈ ĀQ

we must have [S′] = (1, 1, 0, 0).
By submodularity f̄Q(S ∩ S′) + f̄Q(S ∪ S′) ≤ f̄Q(S) + f̄Q(S

′) = 1, so one of the sets S ∩ S′,
S ∪ S′ is a minimizer of f̄ . We have [S ∩ S′] = (1, 0, 0, 0) and [S ∪ S′] = (1, 1, 1, 0), so either
(Qi,Qj) /∈ ĀQ or (Qk,Ql) /∈ ĀQ - a contradiction.

Proof of claim (b) For a set S ⊆ Q denote [S] = ([i ∈ S], [j ∈ S], [k ∈ S], [l ∈ S], [k′ ∈
S], [l′ ∈ S]). Arcs (Qi,Ql′) and (Qk,Ql′) are not in ĀQ before sending the flow, therefore there
exist sets S and S′ with [S] = (1, ?, ?, ?, ?, 0), [S] = (?, ?, 1, ?, ?, 0) and f̄Q(S) = f̄Q(S

′) = 0. We
have (Qi,Qj), (Qk,Ql), (Qk′ , Ql′) ∈ ĀQ, therefore [S] = (1, 1, ?, ?, 0, 0), [S′] = (?, ?, 1, 1, 0, 0).

Consider set S′′ = S ∪ S′ with [S′′] = (1, 1, 1, 1, 0, 0). Sets S and S′ are minimizers of a
submodular function f̄ , and thus so is S′′. We have f̂Q(S

′′) = f̄Q(S
′′) − [i ∈ S′′] + [j /∈ S′′] =

0− 1 + 1 = 0, which implies the claim.

5 Capacity scaling algorithm

We now apply a scaling technique to get a weakly-polynomial algorithm. As usual, the algorithm
works in phases. Each phase is associated with a number ∆ = 2l, l = −1, 0, 1, 2, . . .; we call it a
∆-phase. To initialize, we set ∆ = 2⌈log2 U⌉ and ϕa = 0 for all arcs a ∈ A. After completing the
∆-phase we divide ∆ by 2 and proceed to the next phase (or terminate, if ∆ = 1/2). The ∆-phase
is described in Figure 1. This description uses the following yet undefined objects:

• f∆
Q is a submodular function. When ∆ = 1

2 , function f∆
Q coincides with fQ.

• AdjustFlow∆Q(ϕQ) is a procedure that outputs a vector in B(f∆
Q) whose components are

integer multiples of ⌈∆⌉.

• Ā∆
Q is a subset of arcs of the form (Qi,Qj) where i, j are distinct nodes in Q. Set Ā∆

Q is

transitive, i.e. (Qi,Qj), (Qj,Qk) ∈ Ā∆
Q for distinct i, j, k ∈ Q implies (Qi,Qk) ∈ Ā∆

Q . When

∆ = 1
2 , set Ā

∆
Q coincides with the set ĀQ defined in (12).

8

Definitions of these three objects will depend on the type of term fQ; different cases are considered
in sections 5.1-5.3. Set Ā∆

Q will be defined in such a way that each augmentation keeps flow ϕQ in

B(f∆
Q).
It is clear that each ∆-phase maintains the following invariants: (i) components of flow ϕ are

integer multiples of ⌈∆⌉; (ii) ϕ is a feasible ∆-flow, i.e. it satisfies antisymmetry (6b), capacity
(6c), flow conservation constraints (6d), as well as base polyhedron constraints ϕQ ∈ B(f∆

Q). (We
assume that capacities cis, cti are infinite, so that sending flow to the source or from the sink in
step S0 is always feasible). To estimate the complexity, we will use values αQ (to be defined in
sections 5.1-5.3) that satisfy

f̄∆
Q (S) +

∑

i∈Q

|ϕQi − ϕ◦
Qi| ≤ αQ · ⌈∆⌉ (14)

where ϕ◦ is the flow in the beginning of ∆-phase, S is the set of nodes in Q reachable from s
in the graph (N, Ā2∆) constructed with respect to flow ϕ◦, ϕ = AdjustFlow∆Q(ϕ

◦) and f̄∆
Q (S) =

f∆
Q (S) − ϕQ(S). Values αQ can be used for estimating the number of augmentations (a proof is
given in section 6.1):

Proposition 6. Each ∆-phase terminates after at most 2n +
∑

Q∈Q αQ augmentations, and so
the whole algorithm performs O((2n +

∑
Q∈Q αQ) logU) augmentations.

To complete the description of the algorithm, we need to provide constructions for different
types of terms fQ. In sections 5.1-5.3 below we consider three types: pairwise terms, cardinality-
dependent terms and general terms.

5.1 Pairwise terms

First, we consider the case when |Q| = 2, which occurs very frequently in applications (see e.g. [3]
for a survey of applications in computer vision). We define f∆

Q = fQ for all ∆. This means that

procedure AdjustFlow∆Q(ϕQ) can simply return ϕQ - it is guaranteed to belong toB(f∆
Q) = B(f2∆

Q).

Let Q = {i, j}. Constraint ϕQ ∈ B(f∆
Q) can be written as

ϕQi ≤ fQ({i}) ϕQj ≤ fQ({j}) ϕQi + ϕQj = 0 (15)

The set of arcs Ā∆
Q is constructed as follows: we add arc (i, j) if c̄Qij = f̄Q({i}) ≥ ⌈∆⌉, and arc

(j, i) if c̄Qji = f̄Q({j}) ≥ ⌈∆⌉. Clearly, we can always push ⌈∆⌉ units of flow through the added
arcs - constraints (15) will be preserved.

It is easy to see that we can take αQ = 2. Indeed, let S be the set used in eq. (14). Since
ϕ = ϕ◦, we need to show that f̄Q(S) ≤ 2⌈∆⌉. If S = {i} then (Qi,Qj) /∈ Ā2∆, therefore
f̄Q(S) ≤ ⌈2∆⌉−1 ≤ 2⌈∆⌉. The case S = {j} is similar. If S is empty or equals Q then f̄Q(S) = 0.

5.2 Cardinality-dependent terms

Let us now assume that fQ(S) for S ⊆ Q depends only on |S|. Thus, fQ(S) = g(|S|) where
g is a concave function. As above, we define f∆

Q = fQ for all ∆, and accordingly procedure

AdjustFlow(ϕQ) simply returns ϕQ. Below we describe how to construct set Ā∆
Q.

For integer numbers a ≤ b let [a..b] be the set of integers in [a, b]. We can assume that g(·)
is defined only on [0..m] where m = |Q|. We denote z = ϕQ, so zi = ϕi,Qi = −ϕQi,i for i ∈ Q.
For a vector z ∈ R

Q we also denote (z1, . . . , zm) to be the sequence of values of zi sorted in the
non-increasing order. Thus, zk is the k-th largest number among values zi, i ∈ Q. For a node
i ∈ Q define

L(i) = min{k ∈ [1..m] | zk = zi} , R(i) = max{k ∈ [1..m] | zk = zi}

9

Let us define “residual” function ḡ(·) by ḡ(k) = min{f̄Q(S) | S ⊆ Q, |S| = k} for k ∈ [0..m].
We have

ḡ(k) = g(k) −max{z(S) | S ⊆ Q, |S| = k} = g(k)−

k∑

k′=1

zk
′

(16)

Clearly, constraint z ∈ B(fQ) is equivalent to the following conditions: (i) function ḡ(·) is non-
negative, i.e. ḡ(k) ≥ 0 for all k ∈ [0..m]; (ii) z(Q) = 0. This characterization of B(fQ) was given
in [12, sec. 3].

Recall that sending flow ⌈∆⌉ from i to j via Q denotes the following operation: zi := zi +
⌈∆⌉, zj := zj−⌈∆⌉. Next, we describe the effect of this operation on function ḡ(·). Three cases are
possible (we assume that we are in a ∆-phase, so all components of vector z are integer multiples
of ⌈∆⌉):

• zi ≤ zj − 2⌈∆⌉. The change in the sequence (z1, . . . , zm) is

(. . . , 0,−⌈∆⌉, 0, . . . , 0,+⌈∆⌉, 0, . . .)

where −⌈∆⌉ is in the position R(j) and +⌈∆⌉ is in the position L(i). Therefore, the effect
of the operation is that all values ḡ(k) for k ∈ [R(j)..L(i) − 1] are increased by ⌈∆⌉.

• zi = zj − ⌈∆⌉. The values zi and zj are swapped, therefore the sequence (z1, . . . , zm) and
function ḡ(·) do not change.

• zi ≥ zj . The change in the sequence (z1, . . . , zm) is

(. . . , 0,+⌈∆⌉, 0, . . . , 0,−⌈∆⌉, 0, . . .)

where +⌈∆⌉ is in the position L(i) and −⌈∆⌉ is in the position R(j). Therefore, all values
ḡ(k) for k ∈ [L(i)..R(j) − 1] are decreased by ⌈∆⌉.

In the first two cases function ḡ(·) cannot become negative, thus sending ⌈∆⌉ units of flow from
i to j via Q is always possible if zi < zj . Accordingly, we add arcs (i, j) to Ā∆

Q for all pairs of nodes
i, j ∈ Q with zi < zj . If zi ≥ zj then we can send flow if and only if mink∈[L(i)..R(j)−1] ḡ(k) ≥ ⌈∆⌉.
However, if we add all arcs that satisfy this constraint then sending ⌈∆⌉ units of flow through
multiple arcs of Q along a minimal path could make some values ḡ(k) negative. To prevent this,
we add to Ā∆

Q those arcs (i, j) with zi ≥ zj that satisfy the following constraint:

min
k∈[L(i)..R(j)−1]

ḡ(k) ≥ 3∆/2 (17)

The proposition below shows the correctness of this construction, and gives a bound on αQ. A
proof is given in section 6.2.

Proposition 7. (a) Set Ā∆
Q is transitive. (b) Sending ⌈∆⌉ units of flow through a minimal path

P in (N, Ā∆) preserves constraint ϕQ = z ∈ B(fQ). (c) Eq. (14) is satisfied by αQ = 3(m− 1).

5.3 General submodular terms

For general terms we can use the technique of Iwata [18]. f∆
Q is defined as

f∆
Q (S) = ∆ · ⌊fQ(S)/∆⌋ + ⌊∆⌋ · b(S) ∀S ⊆ Q (18)

where b(S) = |S| · |Q− S|. As shown in [18], this function is submodular. The set Ā∆
Q includes all

arcs (Qi,Qj) that have non-zero residual capacity with respect to function f̄∆
Q (S) = f∆

Q − ϕQ(S).

Clearly, values of f∆
Q (S) are integer multiples of ⌈∆⌉, so results in section 4 imply that pushing

⌈∆⌉ of flow through a minimal path in (N, Ā∆) preserves constraint ϕQ ∈ B(f∆
Q).

10

Procedure AdjustFlow∆Q(ϕ
◦
Q) works as follows. First, define vector ϕ′

Q by ϕ′
Qi = ϕ◦

Qi −m⌈∆⌉
where m = |Q|. Vector ϕ′

Q belongs to submodular polyhedron

P (f∆
Q) = {ϕQ ∈ R

Q | ϕQ(S) ≤ f∆
Q (S) ∀S ⊆ Q} (19)

Indeed, for any S ⊆ Q we have ϕ′
Q(S) = ϕ◦

Q(S) − m⌈∆⌉ · |S| ≤ f2∆
Q (S) − m⌈∆⌉ · |S| ≤ f∆

Q (S).

Since ϕ′
Q ∈ P (f∆

Q), there exists vector ϕQ ∈ B(f∆
Q) with ϕ′

Q ≥ ϕQ, which can be found by
a greedy algorithm starting from ϕ′

Q [11, Theorem 3.19]. This ϕQ is taken as the output of

AdjustFlow∆Q(ϕ
◦
Q).

It can be seen that αQ = O(m2). This follows from three facts: (1) f̄2∆
Q (S) = 0 where S is the

set used in eq. (14) and f̄2∆
Q is the residual function with respect to flow ϕ◦; (2) |f2∆

Q (S)−f∆
Q (S)| =

O(m2⌈∆⌉); (3)
∑

i∈Q |ϕi−ϕ◦
i | ≤ m2⌈∆⌉+

∑
i∈Q |ϕQi−ϕ′

Qi| = m2⌈∆⌉+ϕQ(Q)−ϕ′
Q(Q) = 2m2⌈∆⌉.

Note, procedure AdjustFlow∆Q(ϕQ) used in [18] is slightly more complicated; in particular it

takes into account set S used in (14). However, both techniques lead to αQ = O(m2).

6 Capacity scaling algorithm: proofs

In this section we give proofs of propositions 6 and 7.

6.1 Proof of proposition 6

Let ϕ◦ be the input flow to the ∆-phase, S to be the set of nodes in V reachable from s in (N, Ā2∆)
and ϕ = AdjustFlow(ϕ◦). Let c̄si, c̄it and f̄∆

Q be residual capacities and functions with respect to
flow ϕ, and c̄◦si, c̄

◦
it be residual capacities with respect to flow ϕ◦. When the previous 2∆-phase

terminated, there were no augmenting paths from s to t in (N, Ā2∆), hence Ā2∆ cannot have arcs
(i, t) for i ∈ S and (s, i) for i ∈ V − S. Therefore, c̄◦ti ≤ ⌈2∆⌉ − 1 for i ∈ S and c̄◦is ≤ ⌈2∆⌉ − 1 for
i ∈ V − S. Define

f∆(S) = value(ϕ) +
∑

i∈S

c̄it +
∑

i∈V−S

c̄si +
∑

Q∈Q

f̄∆
Q (S ∩Q) (20)

Each augmentation in the ∆-phase preserves this equality (assuming that c̄si, c̄it and f̄∆
Q are up-

dated accordingly). All residual values stay non-negative, therefore the number of augmentations
cannot exceed

(
f∆(S)− value(ϕ)

)
/⌈∆⌉. Using (20) and the definition of step S0, we can write

f∆(S)− value(ϕ) ≤
∑

i∈S

c̄◦it +
∑

i∈V−S

c̄◦si +
∑

Q∈Q


f̄∆

Q (S ∩Q) +
∑

i∈Q

|ϕQi − ϕ◦
Qi|




≤ n · (⌈2∆⌉ − 1) +
∑

Q∈Q

αQ · ⌈∆⌉ ≤


2n+

∑

Q∈Q

αQ


 · ⌈∆⌉

6.2 Proof of proposition 7

Proof of part (a) Let i, i′, i′′ be distinct nodes in Q and (Qi,Qi′), (Qi′, Qi′′) ∈ Ā∆
Q. If

zi < zi′′ then obviously (Qi,Qi′′) ∈ Ā∆
Q. Suppose zi ≥ zi′′ ; in order to show (Qi,Qi′′) ∈ Ā∆

Q,
we need to prove that mink∈[L(i)..R(i′′)−1] ḡ(k) ≥ 3∆/2. Value zi′ falls in one of the three intervals
[zi,+∞), (−∞, zi′′], (zi′′ , zi). These three cases are considered below.

• zi′ ≥ zi ≥ zi′′ . Since arc (Qi′, Qi′′) belongs Ā∆
Q and zi′ ≥ zi′′ , we must have

min
k∈[L(i′)..R(i′′)−1]

ḡ(k) ≥ 3∆/2

11

The claim then follows from the fact that L(i) ≥ L(i′) and so [L(i)..R(i′′)− 1] ⊆ [L(i′)..R(i′′)− 1].

• zi ≥ zi′′ ≥ zi′ . Since arc (Qi,Qi′) belongs to Ā∆
Q and zi ≥ zi′ , we must have

min
k∈[L(i)..R(i′)−1]

ḡ(k) ≥ 3∆/2

The claim then follows from the fact that R(i′) ≥ R(i′′) and so [L(i)..R(i′′)− 1] ⊆ [L(i)..R(i′)− 1].

• zi > zi′ > zi′′ . We must have

min
k∈[L(i)..R(i′)−1]

ḡ(k) ≥ 3∆/2 min
k∈[L(i′)..R(i′′)−1]

ḡ(k) ≥ 3∆/2

The claim the follows from the fact that R(i′) ≥ L(i′) so [L(i)..R(i′)− 1]∪[L(i′)..R(i′′)− 1] =
[L(i)..R(i′′)− 1].

Proof of part (b) The transitivity of Ā∆
Q and minimality of P implies that if (Qi,Qj) ∈ P then

the previous and the next arcs of P are respectively (i,Qi) and (Qj, j). The triple of consecutive
arcs (i,Qi), (Qi,Qj), (Qj, j) will be denoted as (i, j), and we will refer to it also as an “arc”. Let
PQ = (i1, j1), . . . , (id, jd) be the sequence of all such arcs of P (given in the order that they appear
in P). Due to the minimality of P all 2d nodes involved must be distinct. It suffices to prove the
proposition in the case when zi ≥ zj for all arcs (i, j) in this sequence. Indeed, if there are arcs
(i, j) with zi < zj then we can push flow through them afterwards - as discussed in section 5.2,
this cannot violate the base polyhedron constraint.

We thus assume that zi ≥ zj for arcs (i, j) ∈ PQ. Let (i, j) and (i′, j′) be two consecutive arcs
in the sequence. We claim that zj > zi′ . Indeed, since path P is minimal, arc (Qi,Qj′) is not in
Ā∆

Q. If zi′ > zj then (Qj,Qi′) ∈ Ā∆
Q , so by transitivity we have (Qi,Qj′) ∈ Ā∆

Q - contradiction.

If zi′ = zj then (Qi,Qi′) ∈ Ā∆
Q (since (Qi,Qj) ∈ Ā∆

Q and zi′ = zj), so by transitivity we have

(Qi,Qj′) ∈ Ā∆
Q - contradiction.

We showed that zi1 ≥ zj1 > . . . > zid ≥ zjd . This implies that L(i1) < R(j1) < . . . < L(id) <

R(jd). Now consider k ∈ [0..m]; we need to show that ĝ(k) = g(k) −
∑k

k′=1 ẑ
k ≥ 0 where ẑ is the

vector after sending ⌈∆⌉ units of flow through P and ĝ(·) is the corresponding residual function.
It follows from the definition of zk that Q can be partitioned into two disjoint subsets S, T with

k and m− k nodes, respectively, such that zi ≥ zk ≥ zj for any i ∈ S, j ∈ T . Let us introduce the
following terminology. Arc (i, j) in PQ will be called left-exterior if zi ≥ zj ≥ zk + ⌈∆⌉ (and thus
i, j ∈ S), and right-exterior if zk − ⌈∆⌉ ≥ zi ≥ zj (and thus i, j ∈ T). Clearly, after the update
we have ẑi > ẑj ≥ zk for left-exterior arcs (i, j) and zk ≥ ẑi > ẑj for right-exterior arcs (i, j).
An arc in PQ is called exterior if it is either left-exterior or right-exterior, and interior otherwise.
Note that an interior arc (i, j) must satisfy zi ≥ zk ≥ zj , which is equivalent to the condition
k ∈ [L(i)..R(j)]. This implies that PQ can have at most one interior arc.

We now consider three possible cases.

• All arcs in PQ are exterior. Then after the update we have ẑi ≥ zk ≥ ẑj for any i ∈ S, j ∈ T ,
so S contains k nodes i with the largest values of ẑi. This implies that ĝ(k) = g(k) − ẑ(S).
Since each arc (i, j) in PQ either has both endpoints in S or both endpoints in T , we have
ẑ(S) = z(S), so ĝ(k) = ḡ(k) ≥ 0.

• PQ has an interior arc (u, v) with k ∈ [L(u)..R(v) − 1]; thus, ḡ(k) ≥ 3∆/2 since (Qu,Qv) ∈
Ā∆

Q. We can assume without loss of generality that u ∈ S and v ∈ T . (Sets S and T could
have been chosen in this way since L(u) ≤ k and R(v) > k). After the update we have
ẑi ≥ zk ≥ ẑj for any i ∈ S, j ∈ T , so S contains k nodes i with the largest values of ẑi. This
implies that ĝ(k) = g(k)− ẑ(S). Arc (u, v) is the only one in the sequence which has exactly
one endpoint (namely u) in S. Therefore, ẑ(S) = z(S) + ⌈∆⌉ (where “+⌈∆⌉” term comes
from the update ẑu = zu + ⌈∆⌉), so ĝ(k) = ḡ(k)− ⌈∆⌉ ≥ 3∆/2 − ⌈∆⌉ ≥ 0.

12

• PQ has an interior arc (u, v) with R(v) = k. We must have u, v ∈ S and zu ≥ zv = zk. After
the update we have ẑv = zk − ⌈∆⌉ and ẑi ≥ zk ≥ ẑj for any i ∈ S − {v}, j ∈ T . Let (u′, v′)
be the arc in PQ that immediately follows (u, v); if (u, v) is the last arc in PQ then we say
that (u′, v′) does not exist. Two cases are possible:

– Arc (u′, v′) does not exist or zk − 2⌈∆⌉ ≥ zu′ . Then ẑv = zk − ⌈∆⌉ ≥ zj for any
j ∈ T . Thus, S contains k nodes i with the largest values of ẑi. This implies that
ĝ(k) = g(k) − ẑ(S). Since each arc (i, j) in PQ either has both endpoints in S or both
endpoints in T , we have ẑ(S) = z(S), so ĝ(k) = ḡ(k) ≥ 0.

– Arc (u′, v′) exists and zu′ = zk −⌈∆⌉; thus, L(u′) = R(v)+ 1 = k+1, zk+1 = zk −⌈∆⌉.
After the update ẑv = zk − ⌈∆⌉, ẑu′ = zk, so the set S′ = (S − {v}) ∪ {u′} contains k
nodes i with the largest values of ẑi. This implies that ĝ(k) = g(k) − ẑ(S′). We have
ẑ(S′) = ẑ(S) + [ẑu′ − ẑv] = z(S) + ⌈∆⌉, so ĝ(k) = ḡ(k) − ⌈∆⌉. We now need to show
that ḡ(k) ≥ ⌈∆⌉.

Conditions (Qu,Qv), (Qu′, Qv′) ∈ Ā∆
Q imply that ḡ(k − 1) ≥ ⌈3∆/2⌉ and ḡ(k + 1) ≥

⌈3∆/2⌉. We can write

ḡ(k)− ḡ(k − 1) = [g(k) − g(k − 1)]− zk

ḡ(k + 1)− ḡ(k) = [g(k + 1)− g(k)] − zk+1

Since g(·) is concave, we have g(k) − g(k − 1) ≥ g(k + 1)− g(k). Thus,

ḡ(k)− ḡ(k − 1) + zk ≥ ḡ(k + 1)− ḡ(k) + zk+1

2ḡ(k) ≥ ḡ(k − 1) + ḡ(k + 1)− [zk − zk+1]

≥ ⌈3∆/2⌉ + ⌈3∆/2⌉ − ⌈∆⌉ ≥ 3⌈∆⌉ − ⌈∆⌉ = 2⌈∆⌉

Proof of part (c) Let S be the set used in eq. (14), and denote T = Q−S, k = |S|. We assume
that S 6= ∅ and S 6= Q, otherwise the LHS in eq. (14) would be 0. Let i be a node in S with
the minimum value of zi and j be a node in T with the maximum value of zj . Since there was no
augmenting path upon termination of the previous 2∆-phase, set Ā2∆

Q cannot have arc (Qi,Qj).

Therefore, zi ≥ zj and ḡ(k̄) ≤ ⌊3∆⌋ for some k̄ ∈ [L(i)..R(j) − 1]. The choice of i, j and condition
zi ≥ zj imply that min{zi′ | zi′ ∈ S} ≥ max{zj′ | zj′ ∈ T}, hence f̄Q(S) = ḡ(|S|) = ḡ(k). Thus,
we need to show that ḡ(k) ≤ αQ · ⌈∆⌉ where αQ = 3(m − 1). If k̄ = k then the claim is obvious.
Suppose that k̄ 6= k. Two cases are possible:

• k̄ > k. We have k + 1 < k̄ + 1 ≤ R(j), so zk+1 ≥ zR(j) = zj . We cannot have zk+1 > zj
since in this case there would be at least k + 1 nodes j′ ∈ Q with zj′ > zj ; by the choice of
j these nodes would belong to S, so we would have |S| ≥ k + 1 - contradiction. Thus, we

must have zk+1 = zk+2 = . . . = zR(j). This implies that function p(k′) =
∑k′

k′′=1 z
k′′ is linear

in [k..R(j)]. We have ḡ(k′) = g(k′)− p(k′) where g(·) is a concave function, therefore ḡ(·) is
also concave in [k..R(j)]. There holds k̄ ∈ [k + 1..R(j) − 1], thus

ḡ(k̄) ≥
R(j) − k̄

R(j) − k
· ḡ(k) +

k̄ − k

R(j)− k
· ḡ(R(j))

We have ḡ(k̄) ≤ ⌊3∆⌋ and ḡ(R(j)) ≥ 0, therefore ḡ(k) ≤ R(j)−k

R(j)−k̄
⌊3∆⌋ ≤ (m − 1) · ⌊3∆⌋ ≤

αQ · ⌈∆⌉.

• k̄ < k. We have L(i) ≤ k̄ < k, so zi = zL(i) ≥ zk. We cannot have zi > zk since in this
case there would be at least m − k + 1 nodes i′ ∈ Q with zi > zi′ ; by the choice of i these

13

nodes would belong to T , so we would have |T | ≥ m− k + 1 - contradiction. Thus, we must

have zL(i) = . . . = zk−1 = zk. This implies that function p(k′) =
∑k′

k′′=1 z
k′′ is linear in

[L(i) − 1..k]. We have ḡ(k′) = g(k′)− p(k′) where g(·) is a concave function, therefore ḡ(·) is
also concave in [L(i)− 1..k]. There holds k̄ ∈ [L(i)..k − 1], ḡ(k̄) ≤ ⌊3∆⌋ and ḡ(L(i)− 1) ≥ 0,

so similar to the previous case we conclude that ḡ(k) ≤ k−(L(j)−1)

k̄−(L(j)−1)
⌊3∆⌋ ≤ (m− 1) · ⌊3∆⌋ ≤

αQ · ⌈∆⌉.

7 Efficient implementation

We now discuss how implement steps S1 and S2 of the algorithm, i.e. how to find a minimal
augmenting path. Set Ā∆ contains O(n +

∑
Q |Q|2) arcs, so a naive computation would take

O(n +
∑

Q |Q|2) time. However, this can be easily improved: it can be seen that an explicit

construction of Ā∆ is not required.
We will use a breadth-first search (BFS) for computing a shortest path from s to t in (N, Ā∆).

Each node Qi ∈ N will have flag REACHED(Qi), which is set to false at the beginning of BFS.
We assume that each term fQ supports operation GetNeighbors∆Q(Qi) for a node Qi ∈ N with
REACHED(Qi) = false. This operation is defined as follows:

• Compute S = {Qj ∈ N | (Qi,Qj) ∈ Ā∆
Q, REACHED(Qj) = false}.

• Set REACHED(Qj) := true for Qj ∈ S ∪ {Qi}.

• Return S as a linked list.

Flags REACHED(Qi) will not be modified by any other operation (except that they are reset to
false at the beginning of BFS).

It is straightforward to implement the BFS procedure using operations
GetNeighbors∆Q(Qi). The running time of one augmentation (steps S1-S3) will then be O(n +∑

Q∈Q βQ) where βQ for a fixed Q ∈ Q is the combined time taken by calls to GetNeighbors∆Q(Qi),
plus the time for sending flow through Q in step S3 (which may update internal structures for Q).
In sections 7.1-7.2 below we show how to implement GetNeighbors∆Q(Qi) so that βQ = O(|Q|) in
the following cases:

Case 1 fQ(S) = g(|S|) for S ⊆ Q.

Case 2 fQ(S) = g(|S ∩Q′|, |S ∩Q′′|) where Q′, Q′′ are disjoint subsets of Q.
The second case relies on the algorithm of Aggarwal et al. [1] which computes row minima of a
totally monotone matrix in linear time. For a general submodular term fQ a naive implementation
of GetNeighbors∆Q(Qi) would make |Q| − 1 calls to the exchange capacity oracle for f∆

Q , giving

βQ = O(|Q|2hQ) where hQ is the oracle’s complexity. However, the set {(Qi,Qj) | (Qi,Qj) ∈ Ā∆
Q}

can alternatively be obtained from the minimal minimizer in argmin{f̄∆
Q (S) | i ∈ S ⊆ Q}. It

is natural to assume that computing such minimal minimizer also takes time hQ. Under this
assumption βQ = O(|Q|2 + |Q| · hQ). Combined with proposition 6, this leads to the overall
complexity stated in the introduction.

7.1 Implementation of GetNeighbors∆Q(Qi) for Case 1

Assume that fQ(S) = g(|S|) for S ⊆ Q where g is concave. We use the same notation as in
section 5.2.

First, let us describe the data structure for Q. Nodes i ∈ Q will be grouped into “supernodes”
according to their value of zi. The set of supernodes is denoted as Q̃. The cardinality of Q̃ equals
the number of unique values in the set {zi | i ∈ Q}. At each supernode u ∈ Q̃ we store values

14

zu = zi, L(u) = L(i), R(u) = R(i) where i is a node contained in u. We treat supernode u as
the set u = {Qi | i ∈ Q, zi = zu}. Supernodes u sorted by their values of zu will be stored in a
doubly-linked list. Each u ∈ Q̃ also have a pointer to a doubly-linked list of nodes in u, and each
node Qi ∈ N will have a pointer to u ∈ Q̃ with Qi ∈ u. Finally, we maintain residual function ḡ(·)
as an array of size O(m). It is easy to see that after each augmentation this data structure can be
dynamically updated in O(m) time.

For each supernode u we maintain flag REACHED(u) =
∧

i∈u REACHED(Qi); at the beginning of
the BFS it is set to false. Procedure GetNeighbors∆Q(Qi) is defined as follows:

GetNeighbors∆Q(Qi)

• Set REACHED(Qi) := true and S := ∅. Determine supernode u with Qi ∈ u.

• If REACHED(u) is true then stop, otherwise set REACHED(u) := true and continue.

• If mink∈[L(u)..R(u)−1] ḡ(k) ≥ 3∆/2 call Add(u).

• If u has left neighbor u− with zu− > zu call Add(u−) and ProcessLeft(u−).

• If u has right neighbor u+ with zu > zu+ and mink∈[L(u)..R(u+)−1] ḡ(k) ≥ 3∆/2 call Add(u+)
and ProcessRight(u+).

ProcessLeft(u)

• If REACHED(u) is true then stop, otherwise set REACHED(u) := true and continue.

• If u has left neighbor u− with zu− > zu call Add(u−) and ProcessLeft(u−).

ProcessRight(u)

• If REACHED(u) is true then stop, otherwise set REACHED(u) := true and continue.

• If u has right neighbor u+ with zu > zu+ and mink∈[L(u)..R(u+)−1] ḡ(k) ≥ 3∆/2 call Add(u+)
and ProcessRight(u+).

Add(u)

• For each node Qi ∈ u with REACHED(Qi) = false set REACHED(Qi) := true and add Qi to
S.

The correctness of this procedure should be clear. Note, ProcessLeft(u) and
ProcessRight(u) are only called when some node Qi ∈ u has been reached by BFS. If REACHED(u)
is true then all nodes that can be reached from Qi (and from other nodes in u) via arcs in Ā∆

Q have
already been added, which justifies statement “If REACHED(u) is true then stop”. Steps following
this statement will be executed at most once for each supernode u, therefore each node, supernode
and element of array ḡ(·) is accessed at most constant number of times during a single BFS search.
Thus, βQ = O(m).

7.2 Implementation of GetNeighbors∆Q(Qi) for Case 2

We now assume that fQ(S) = g(|S ∩Q′|, |S ∩Q′′|) for S ⊆ Q where Q′, Q′′ are disjoint subsets of
Q. Without loss of generality we can assume that Q = Q′ ∪ Q′′. Denote m′ = |Q′|, m′′ = |Q′′|,
m = |Q| = m′ +m′′. Let y ∈ R

Q′

and z ∈ R
Q′′

be vectors with yi = ϕQi for i ∈ Q′ and zj = ϕQj

for i ∈ Q′′. We define sequences (y1, . . . , ym
′

) and (z1, . . . , zm
′′

) similar to the case above; yk and
zk are the k-th largest numbers among values yi and zi, respectively. Indexes L(i) and R(i) are
also defined as in section 5.2; we have 1 ≤ L(i) ≤ R(i) ≤ m′ for i ∈ Q′ and 1 ≤ L(j) ≤ R(j) ≤ m′′

15

for j ∈ Q′′. Let ḡ(k′, k′′) = min{f̄Q(S) | |S ∩Q′| = k′, |S ∩Q′′| = k′′} be the “residual function”.
We have

ḡ(k′, k′′) = g(k′, k′′)−
k′∑

k=1

yk −
k′′∑

k=1

zk

It can be seen that ḡ(·, ·) is aMonge matrix [4], i.e. for any 0 ≤ k′1 < k′2 ≤ m′ and 0 ≤ k′′1 < k′′2 ≤ m′′

there holds ḡ(k′1, k
′′
1)+ḡ(k′2, k

′′
2) ≤ ḡ(k′1, k

′′
2)+ḡ(k′2, k

′′
1). This follows from f̄Q(S

′∩S′′)+f̄Q(S
′∪S′′) ≤

f̄Q(S
′) + f̄Q(S

′′) where S′ contains first k′1 nodes of Q′ and first k′′2 nodes of Q′′, and S′′ contains
first k′2 nodes of Q

′ and first k′′1 nodes of Q′′. (We assume that nodes in Q′ and Q′′ are sorted so that
components yi and zi are non-increasing.) For a row k′ ∈ [0..m′] let k′′(k′) ∈ [0..m′′] be the column
that contains the leftmost minimum entry in row k′. Thus, k′′(k′) = min{k′′ ∈ [0..m′′] | ḡ(k′, k′′) =
mink′′ ḡ(k

′, k′′)}. It is known [4] that Monge matrices aremonotone, i.e. k′′(0) ≤ k′′(1) ≤ . . . k′′(m′).
Furthermore, they are totally monotone, i.e. every submatrix is monotone. As shown by Aggarwal
et al. [1], indexes k′′(0), . . . , k′′(m′) for a totally monotone matrix can be computed in O(m) time.

We can describe data structures for implementing GetNeighbors∆Q(Qi). Nodes in i ∈ Q′ will be
grouped into supernodes according to the values yi analogously to case 1. A similar data structure
will be used for nodes in Q′′. We will maintain an array of cumulative sums

∑k′

k=1 y
k for k′ ∈ [0..m′]

and
∑k′′

k=1 z
k for k′′ ∈ [0..m′′], which will allow computing ḡ(k′, k′′) in O(1) time. At the beginning

of each BFS we will compute indexes k′′(k′) for k′ ∈ [0..m′] using the algorithm in [1] and also
indexes k′(k′′) = min{k′ ∈ [0..m′] | ḡ(k′, k′′) = mink′ ḡ(k

′, k′′)} for each column k′′ ∈ [0..m′′].
Arcs in Ā∆

Q can be split into four groups Ā00, Ā01, Ā10, Ā11 where Āαβ = {(Qi,Qj) ∈ Ā∆
Q | [i ∈

Q′] = α, [j ∈ Q′′] = β} and [·] is the Iverson bracket: it is 1 if its argument is true, and 0 otherwise.
Consider the version of GetNeighbors∆Q(Qi) that processes only arcs in a specific group, rather

than all arcs in Ā∆
Q. It suffices to show how to implement such procedure for each of the four

groups; these procedures will be called sequentially.
First, consider arcs in Ā11. Using the same argumentation as in section 5.2 we conclude that

sending flow from a node Qi to another node Qj (i, j ∈ Q′) is possible if and only if one of the
two conditions hold: (a) yi < yj; (b) yi ≥ yj and mink′∈[L(i)..R(j)−1] ḡ

′(k′) ≥ 1 where we defined

ḡ′(k′) = mink′′ ḡ(k
′, k′′). Thus, the set Ā11 is constructed completely analogously to the set Ā∆

Q

in section 5.2 except that function ḡ is replaced with ḡ′ and threshold 3∆/2 is replaced with 1.
Accordingly, we can use an obvious adaptation of the procedure for the case 1. Note, ḡ′(k′) can
be evaluated in O(1) time using arrays of indexes k′′(k′) and cumulative sums for vectors y and z.
Arcs in Ā00 can be handled in a similar way. It remains to show how to handle arcs in Ā10 (the
set Ā01 will follow by symmetry).

Consider nodes i ∈ Q′, j ∈ Q′′. Sending ⌈∆⌉ units of flow from i to j via Q, i.e. the operation
yi := yi + ⌈∆⌉, zj := zj − ⌈∆⌉, affects function ḡ(·, ·) as follows: values ḡ(k′, k′′) for (k′, k′′) ∈
[L(i)..m′] × [1..R(j) − 1] are decreased by ⌈∆⌉ and values ḡ(k′, k′′) for (k′, k′′) ∈ [1..L(i) − 1] ×
[R(j)..m′′] are increased by ⌈∆⌉. Thus, sending flow is possible if and only if

min
{
ḡ(k′, k′′) | (k′, k′′) ∈ K(L(i), R(j))

}
> 0 , K(a, b) = [a..m′]× [0..b− 1]

There holds K(a, b1) ⊂ K(a, b2) for b1 < b2, therefore the set of arcs in Ā10 from Qi have the form
{(Qi,Qj) | R(j) ≤ b(L(i))} where

b(a) = max

{
b ∈ [1..m′′]

∣∣∣ min
(k′,k′′)∈K(a,b)

ḡ(k′, k′′) > 0

}
a ∈ [1..m′] (21)

(If the set in (21) is empty then we assume that b(a) = 0.) We compute indexes b(a) at the
beginning of BFS in linear time using the following recursion:

b(m′) = k′′(m′) (since mink′′ ḡ(m
′, k′′) = ḡ(m′,m′′) = 0)

b(a) =

{
b(a+ 1) if ḡ(a, k′′(a)) > 0

min{b(a+ 1), k′′(a)} if ḡ(a, k′′(a)) = 0
∀a ∈ [1..m′ − 1]

16

Note that 0 ≤ b(1) ≤ . . . ≤ b(m′) ≤ m′′. Procedure GetNeighbors∆Q(Qi), i ∈ Q′ for the set of

arcs Ā10 is implemented as follows. First, we locate the rightmost supernode v ⊆ Q′′ satisfying
R(v) ≤ b(L(i)). (Pointers to these supernodes for each supernode u ⊆ Q′ can be computed at the
beginning of BFS.) We then call procedure Add(v), which is defined as in the case 1, and procedure
ProcessLeft10(v) defined as follows:

ProcessLeft10(v)

• If REACHED(v) is true then stop, otherwise set REACHED(v) := true and continue.

• If v has left neighbor v− with zv− > zv call Add(v−) and ProcessLeft10(v
−).

8 Conclusions and future work

Submodular functions play a central role in combinatorial optimization. Although they can be
optimized in polynomial time, general-purpose submodular optimization algorithms are not very
practical as they have a very high complexity (e.g. O((n4EO+ n5) logU)). Therefore, identifying
subclasses that can be optimized efficiently is important. So far, only two generic subclasses have
been identified: minimum s-t cut functions and symmetric submodular functions [26]. We argue
that the class studied in this paper forms another generic subclass. Surprisingly, it has received
very little attention in the literature. We hope that this paper will motivate a systematic study of
algorithms for such functions.

To our knowledge, our boundO((n+
∑

Q αQ)(n+
∑

Q βQ) logU) is the first one for minimization
problem (1) that shows contributions of individual terms. It is quite likely, however, that it can
be improved further. Indeed, the capacity scaling algorithm of Iwata [18] that we built on is not
a state-of-the-art. In the future we plan to investigate applications of alternative submodular flow
algorithms, such as the capacity scaling algorithm of Fleischer et al. [9] that improves on [18], or
the push-relabel method of Fujishige and Zhang [13].

Another direction of future research is a practical implementation of presented technique for
the case of cardinality-dependent terms. Even though the algorithm’s complexity may not be
optimal, we conjecture that due its simplicity it may lead to a very competitive code. We draw
on our experience with an augmenting path algorithm for the standard maxflow problem [3]. Our
implementation (written jointly with Y. Boykov) does not have a polynomial complexity, but it
was shown to outperform several other techniques on computer vision problems [3].

To conclude, we would like to mention that functions of the form (1) with high-order terms
have recently appeared in computer vision applications [22, 23, 28, 17, 6]. So far, researchers
restricted themselves to functionals that can be transformed to pairwise terms by introducing
auxiliary variables. Hopefully, this work will remove such restriction, and will extend the set of
practically tractable functionals.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, 1987.

[2] A. Billionnet and M. Minoux. Maximizing a supermodular pseudo-boolean function: a polynomial
algorithm for supermodular cubic functions. Discrete Applied Mathematics, 12(1):1–11, 1985.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy
minimization in vision. PAMI, 23(11):1124–1137, September 2004.

[4] Rainer E. Burkard, Bettina Klinz, and Rdiger Rudolf. Perspectives of Monge properties in optimization.
Discrete Applied Mathematics, 70(2):95–161, 1996.

17

[5] Martin C. Cooper. Minimization of locally defined submodular functions by optimal soft arc consis-
tency. Constraints, 13(4):437–458, 2008.

[6] Andrew Delong, Anton Osokin, Hossam Isack, and Yuri Boykov. Fast approximate energy minimization
with label costs. In CVPR, parges 2173–2180, 2010.

[7] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani, N. Sauer,
and J. Schönheim, editors, Combinatorial Structures and Their Applications, volume 17, pages 69–87.
Gordon and Breach, 1970.

[8] Jack Edmonds and Rick Giles. A min-max relation for submodular functions on graphs. Annals of
Discrete Mathematics, 1:185–204, 1977.

[9] L. Fleischer, S. Iwata, and S. T. McCormick. A faster capacity scaling algorithm for submodular flow.
Mathematical Programming, 92:119–139, 2002.

[10] D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possible. In CVPR,
pages 939–946, 2005.

[11] S. Fujishige. Submodular Functions and Optimization. North-Holland, 1991.

[12] S. Fujishige and S. Iwata. Minimizing a submodular function arising from a concave function. Discrete
Applied Mathematics, 92(2-3):211–215, 1999.

[13] S. Fujishige and X. Zhang. New algorithms for the intersection problem of submodular systems. Japan
J. Indust. Appl. Math., 9:369–382, 1992.

[14] Satoru Fujishige. Algorithms for solving the independent-flow problems. J. Oper. Res. Soc. Japan,
21:189–204, 1978.

[15] Satoru Fujishige and Satoru Iwata. Algorithms for submodular flows. IEICE Trans. Inf. & Syst.,
E83-D(3):322–329, 2000.

[16] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM, 45(5):783–797,
1998.

[17] Dorit S. Hochbaum and Vikas Singh. An efficient algorithm for co-segmentation. In ICCV, pages
269–276, 2009.

[18] S. Iwata. A capacity scaling algorithm for convex cost submodular flows. Math. Programming,
76(2):299–308, 1997.

[19] S. Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput., 32(4):833–
840, 2003.

[20] Satoru Iwata, S. Thomas McCormick, and Maiko Shigeno. A fast cost scaling algorithm for submodular
flow. Information Processing Letters, 74(3-4):123–128, 2000.

[21] Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for submodular function mini-
mization. In SODA, pages 1230–1237, 2009.

[22] P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency.
International Journal of Computer Vision, 82(3):302–324, 2009.

[23] Pushmeet Kohli, M. Pawan Kumar, and Philip H.S. Torr. P3 & beyond: Move making algorithms for
solving higher order functions. PAMI, 31(9):1645–1656, 2009.

[24] Vladimir Kolmogorov. Minimizing a sum of submodular functions. Tech. rep., arXiv:1006.1990v1,
June 2010.

[25] James B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.
Mathematical Programming, 118(2):237–251, 2009.

[26] Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical Programming, 82(1-
2):3–12, 1998.

[27] Peter Stobbe and Andreas Krause. Efficient Minimization of Decomposable Submodular Functions. In
Proc. Neural Information Processing Systems (NIPS), pages 2208–2216, 2010.

18

http://arxiv.org/abs/1006.1990

[28] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization of segmentation and
appearance models. In ICCV, pages 755–762, 2009.

[29] Stanislav Živný, David A. Cohen, and Peter G. Jeavons. The expressive power of binary submodular
functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.

[30] Stanislav Živný and Peter G. Jeavons. Classes of submodular constraints expressible by graph cuts.
Constraints, 15(3):430–45, 2010.

19

	1 Introduction
	2 Problem formulation
	3 Reduction to a submodular flow problem
	4 Augmenting path algorithm
	4.1 Correctness of the augmenting path algorithm

	5 Capacity scaling algorithm
	5.1 Pairwise terms
	5.2 Cardinality-dependent terms
	5.3 General submodular terms

	6 Capacity scaling algorithm: proofs
	6.1 Proof of proposition ??
	6.2 Proof of proposition ??

	7 Efficient implementation
	7.1 Implementation of GetNeighborsQ(Qi) for Case 1
	7.2 Implementation of GetNeighborsQ(Qi) for Case 2

	8 Conclusions and future work

