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Abstract

An adjacent vertex distinguishing coloring of a graph G is a proper edge col-
oring of G such that any pair of adjacent vertices are incident with distinct
sets of colors. The minimum number of colors needed for an adjacent vertex
distinguishing coloring of G is denoted by χ′

a(G). In this paper, we prove that
χ′
a(G) 6 5

2(∆+ 2) for any graph G having maximum degree ∆ and no isolated
edges. This improves a result in [S. Akbari, H. Bidkhori, N. Nosrati, r-Strong
edge colorings of graphs, Discrete Math. 306 (2006), 3005-3010], which states
that χ′

a(G) 6 3∆ for any graph G without isolated edges.

Keywords: Adjacent vertex distinguishing coloring, maximum degree, edge-
partition
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1 Introduction

All graphs considered in this paper are finite and without self-loops or multiple edges.

In order to avoid trivialities, we also assume that every graph has no isolated vertices.
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Let V (G) and E(G) denote the vertex and the edge sets of G, respectively. Let NG(v)

denote the set of neighbors of v in G and dG(v) = |NG(v)| the degree of v in G. A

vertex v is called a k-vertex if dG(v) = k. Let ∆(G) and δ(G) denote the maximum

and minimum degree of a vertex in G, respectively. An edge k-coloring of a graph

G is a function φ : E(G) → {1, 2, . . . , k} such that any two incident edges receive

different colors. The chromatic index, denoted by χ′(G), of a graph G is the smallest

integer k such that G has an edge k-coloring. Given an edge k-coloring φ of G, we

use Cφ(v) to denote the set of colors assigned to edges incident to a vertex v. We

call Cφ = ∪v∈V (G)Cφ(v) the color set of φ. The coloring φ is called an adjacent vertex

distinguishing edge coloring if Cφ(u) 6= Cφ(v) for any pair of adjacent vertices u and

v. A graph G is normal if it contains no isolated edges. Clearly, G has an adjacent

vertex distinguishing edge coloring if and only if G is normal. The adjacent vertex

distinguishing chromatic index χ′
a(G) of a graph G is the smallest integer k such that

G has an adjacent vertex distinguishing edge k-coloring.

Zhang, Liu and Wang [20] first introduced and investigated the adjacent vertex

distinguishing edge coloring (adjacent strong edge coloring in their terminology) of

graphs. They proposed the following conjecture.

Conjecture 1 If a connected normal graph G is different from a 5-cycle and satisfies

|V (G)| > 3, then χ′
a(G) 6 ∆(G) + 2.

Balister et al. [4] confirmed Conjecture 1 for all normal graphs G that are bipartite

or satisfy ∆(G) = 3. In particular, we need the following statement in the sequel.

Theorem 1.1 For any normal graph G with ∆(G) 6 3, χ′
a(G) 6 5.

They further proved that χ′
a(G) 6 ∆(G) + O(log k), where k is the (vertex)

chromatic number of the normal graph G. It follows from Brooks’ Theorem that

χ′
a(G) 6 2∆(G) for G with sufficiently large ∆(G). Hatami [12] showed that every

normal graph G with ∆(G) > 1020 has χ′
a(G) 6 ∆(G) + 300 by the probabilistic

method. Edwards et al. [11] proved that χ′
a(G) 6 ∆(G) + 1 if G is a planar bipartite

normal graph with ∆(G) > 12. Wang and Wang [18] verified Conjecture 1 for a class

of graphs with small maximum average degree. Their results were further extended by

Hocquard and Montassier [13, 14]. Recently, it has been characterized in [19] which

of the two cases χ′
a(G) = ∆(G) and χ′

a(G) = ∆(G) + 1 holds for a K4-minor-free

normal graph G with ∆(G) > 5.
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An adjacent vertex distinguishing edge coloring of a graph G is a special case of

a vertex distinguishing edge coloring, which requires that every pair of vertices be

incident with distinct color sets. This more general notion was introduced by Burris

and Schelp [9], and independently by Horňák and Soták [15], and Černý et al. [10]

(under the name observability). The reader is referred to [2, 3, 5–8, 17] for relevant

results.

The aim of this paper is to improve the following upper bound obtained in [1].

Theorem 1.2 For any normal graph G, χ′
a(G) 6 3∆(G).

The proof of our main theorem in Section 2 is based on an edge-partition result.

The details will be supplied in the last section. In Section 3, the new upper bound is

further reduced for regular graphs.

2 An improved upper bound

For a graph G and any S ⊆ E(G), the edge-induced subgraph G[S] is the subgraph of

G whose edge set is S and whose vertex set consists of all end vertices of edges in S.

We only deal with subgraphs that are edge-induced subgraphs unless otherwise stated.

For a subgraphH ofG, we useH to denote the edge-induced subgraphG[E(G)\E(H)]

and call it the complement of H in G. An edge-partition of a graph G into subgraphs

G1, G2, . . . , Gm is a decomposition of G that satisfies V (G) = ∪m
i=1V (Gi), E(G) =

∪m
i=1E(Gi) and E(Gi) ∩ E(Gj) = ∅ for any pair i 6= j. Clearly, a subgraph H of

G together with its complement H constitute an edge-partition of G. This edge-

partition is said to be induced by the subgraph H . The proof of the following is

deferred to Section 4.

Theorem 2.1 Let G be a normal graph with ∆(G) > 6. Then there is an edge-

partition of G induced by a subgraph H such that the following conditions hold.

1. Both H and H are normal.

2. ∆(H) 6 3.

3. ∆(H) 6 ∆(G)− 2.

Theorem 2.2 Let G be a normal graph with ∆(G) > 4. Then there is an edge-

partition of G into subgraphs G0, G1, . . . , Gk, k 6 ⌊∆(G)/2⌋−2, such that the follow-

ing hold.
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1. Every Gi is a normal subgraph.

2. ∆(Gi) 6 3 for 1 6 i 6 k.

3. ∆(G0) 6 5.

Proof. The proof proceeds by induction on ∆(G). If ∆(G) 6 5, the result holds

trivially. Let G be a normal graph with ∆(G) > 6. By Theorem 2.1, there is an

edge-partition of G induced by a subgraph H such that both H and H are normal,

∆(H) 6 3 and ∆(H) 6 ∆(G)− 2. Clearly, ∆(H) > 3. If ∆(H) = 3, then ∆(G) = 6.

Let G0 = H and G1 = H . If ∆(H) > 4, by the induction hypothesis, there is an edge-

partition of H into subgraphs G0, G1, . . . , Gk, k 6 ⌊∆(H)/2⌋−2, such that properties

1, 2 and 3 hold. Now let Gk+1 = H . Then G0, G1, . . . , Gk, Gk+1 form an edge-partition

of G. Note that k + 1 6 ⌊∆(H)/2⌋ − 2 + 1 6 ⌊(∆(G) − 2)/2⌋ − 1 = ⌊∆(G)/2⌋ − 2

and we are done. �

Lemma 2.3 If a normal graph G has an edge-partition into two normal subgraphs

G1 and G2, then χ′
a(G) 6 χ′

a(G1) + χ′
a(G2).

Proof. For i = 1, 2, let φi be an adjacent vertex distinguishing edge coloring of Gi

satisfying |Cφi
| = χ′

a(Gi) and Cφ1
∩ Cφ2

= ∅. The union of φ1 and φ2 forms a proper

edge coloring φ of G with color set Cφ1
∪ Cφ2

. Let uv ∈ E(G) with dG(u) = dG(v).

Since E(G1) ∩ E(G2) = ∅, we may assume that uv ∈ E(G1) \ E(G2) with dG1
(u) >

dG1
(v). Since G1 is normal, uv is not an isolated edge of G1, i.e., dG1

(u) > 2. By

definition of φ1, there exists a c ∈ Cφ1
(u)\Cφ1

(v). Since Cφ1
∩Cφ2

= ∅, it follows that

c ∈ Cφ(u) \ Cφ(v), and hence Cφ(u) 6= Cφ(v). Consequently, χ′
a(G) 6 |Cφ1

∪ Cφ2
| =

|Cφ1
|+ |Cφ2

| = χ′
a(G1) + χ′

a(G2). �

Theorem 2.4 If G is a normal graph, then χ′
a(G) 6 5

2
(∆(G) + 2).

Proof. The result can be derived immediately from Theorem 1.1 when ∆(G) 6 3.

Now assume that ∆(G) > 4. By Theorem 2.2, there is an edge-partition of G into

subgraphs G0, G1, . . . , Gk, k 6 ⌊∆(G)/2⌋ − 2, such that properties 1, 2 and 3 hold.

Using Lemma 2.3 and Theorem 1.1 repeatedly, we have

χ′
a(G) 6 χ′

a(G0) + χ′
a(G1) + · · ·+ χ′

a(Gk)

6 χ′
a(G0) + 5k

6 χ′
a(G0) + 5(⌊∆(G)/2⌋ − 2).
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By Theorem 2.2, ∆(G0) 6 5. It follows from Theorem 1.2 that χ′
a(G) 6 15 +

5(⌊∆(G)/2⌋ − 2) 6 5
2
(∆(G) + 2). �

3 Regular graphs

Theorem 2.4 can be further improved for regular graphs. We first establish an aux-

iliary edge-partition lemma. We need the following well-known result of Vizing [16]

on chromatic index.

Theorem 3.1 For every graph G, χ′(G) 6 ∆(G) + 1.

Lemma 3.2 Let G be a regular graph of degree r > 5. Then there is an edge-partition

of G into normal subgraphs G1, G2, . . . , Gk such that one of the following conditions

holds.

1. If r ≡ 2 (mod 3), then k = (r + 1)/3 and ∆(Gi) 6 3 for 1 6 i 6 k.

2. If r ≡ 1 (mod 3), then k = (r − 1)/3, ∆(Gi) 6 4 for 1 6 i 6 2 and ∆(Gi) 6 3

for 3 6 i 6 k.

3. If r ≡ 0 (mod 3), then k = r/3 and ∆(G1) 6 4 and ∆(Gi) 6 3 for 2 6 i 6 k.

Proof. By Theorem 3.1, E(G) can be partitioned into r + 1 disjoint color classes

E1, E2, . . . , Er+1 such that each Ei is a matching of G. Let H be a subgraph of G

edge-induced by m, 3 6 m 6 r, of these color classes. Obviously, ∆(H) 6 m. For

any given vertex v of G, exactly one color is not used on any edge incident with v

since G is r-regular. Therefore dH(v) > 2, and hence H is a normal graph.

If r ≡ 2 (mod 3), let k = (r + 1)/3. Then we define G1 = G[E1 ∪ E2 ∪ E3],

G2 = G[E4 ∪ E5 ∪ E6], . . . , Gk = G[Er−1 ∪ Er ∪ Er+1]. Then G1, G2, . . . , Gk form an

edge-partition of G satisfying condition 1.

If r ≡ 1 (mod 3), let k = (r − 1)/3. Then we define G1 = G[E1 ∪ E2 ∪ E3 ∪ E4],

G2 = G[E5 ∪ E6 ∪ E7 ∪ E8], G3 = [E9 ∪ E10 ∪ E11], . . . , Gk = G[Er−1 ∪ Er ∪ Er+1].

Then G1, G2, . . . , Gk form an edge-partition of G satisfying condition 2.

If r ≡ 0 (mod 3), let k = r/3. Then we define G1 = G[E1 ∪ E2 ∪ E3 ∪ E4],

G2 = G[E5 ∪ E6 ∪ E7], G3 = [E8 ∪ E9 ∪ E10], . . . , Gk = G[Er−1 ∪ Er ∪ Er+1]. Then

G1, G2, . . . , Gk form an edge-partition of G satisfying condition 3. �

Theorem 3.3 Let G be a regular graph of degree r > 2. Then χ′
a(G) 6 (5r + 37)/3.
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Proof. If 2 6 r 6 4, the result follows from Theorems 1.1 and 1.2. Assume

that r > 5. By Lemma 3.2, there is an edge-partition of G into normal subgraphs

G1, G2, . . . , Gk such that one of the stated conditions 1, 2 or 3 holds.

If condition 1 holds, by Lemma 2.3, Theorems 1.1 and 1.2, we have χ′
a(G) 6

∑k

i=1 χ
′
a(Gi) 6 5k = 5(r + 1)/3 < (5r + 37)/3.

If condition 2 holds, then χ′
a(G) 6 χ′

a(G1) + χ′
a(G2) +

∑k

i=3 χ
′
a(Gi) 6 12 + 12 +

5(k − 2) = 5(r − 1)/3 + 14 = (5r + 37)/3.

If condition 3 holds, then χ′
a(G) 6 χ′

a(G1) +
∑k

i=2 χ
′
a(Gi) 6 12 + 5(k − 1) =

5r/3 + 7 < (5r + 37)/3. �

Note that the upper bound in Theorem 3.3 is better than the upper bound in

Theorem 2.4 when r > 14.

4 Proof of Theorem 2.1

We devote this section to a complete proof of Theorem 2.1.

Assume that G is a normal graph with ∆(G) > 6. We abbreviate ∆(G) and dG(v)

to ∆ and d(v), respectively. Let H(G) be the collection of subgraphs M of G that

satisfy the following conditions.

1. ∆(M) 6 3.

2. If d(v) = ∆, then dM(v) > 2.

3. If d(v) = ∆− 1, then dM(v) > 1.

We first show that H(G) 6= ∅. By Theorem 3.1, E(G) can be partitioned into

∆ + 1 disjoint color classes E1, E2, . . . , E∆+1 such that each Ei is a matching of G.

Let M = G[E1 ∪ E2 ∪ E3]. Then ∆(M) 6 3. For a ∆-vertex x of G, at most one

among E1, E2, E3 contains no edge incident with x. For a (∆ − 1)-vertex y of G, at

most two among E1, E2, E3 contain no edge incident with y. Thus M ∈ H(G).

For any M ∈ H(G), it is easy to see that ∆(M) 6 ∆ − 2. Now let I(M) and

I(M) denote the sets of isolated edges of M and M , respectively, and write i(M) =

|I(M)| and i(M) = |I(M)|. Among all subgraphs M that attain the minimum for

i(M) + i(M), we pick and fix an H that has minimum number of edges.

We are going to show that the edge-partition of G induced by this H satisfies

conditions 1, 2 and 3 of Theorem 2.1. If i(H) + i(H) = 0, then we are done. Now we

assume that i(H) + i(H) > 0.

We first classify some of the vertices of G into two types.
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A vertex v ∈ V (G) is classified as type-I if 1 6 dH(v) 6 2, d(v) > ∆ − 1, and for

every u ∈ NH(v), one of the following three conditions holds.

(1) dH(u) = 3.

(2) dH(u) = dH(u) = 2.

(3) dH(u) 6 1, dH(u) = 2, and, for the unique w ∈ NH(u) \ {v}, both dH(w) = 1

and dH(w) = 3.

Claim 1. Suppose that vv′ ∈ I(H) with d(v) > d(v′). Then d(v) = ∆− 1 and v is a

type-I vertex.

Proof. Since H ∈ H(G) and vv′ is an isolated edge ofH , dH(v) = 1 and d(v) 6 ∆−1.

If d(v) 6 ∆ − 2, then H ′ = H \ {vv′} ∈ H(G). Note that i(H ′) = i(H) − 1 and

i(H ′) 6 i(H) since vv′ 6∈ I(H ′). The subgraph H ′ contradicts the choice of H .

Consequently, d(v) = ∆− 1.

Assume to the contrary that v is not a type-I vertex. Then there exists a particular

u ∈ NH(v) that satisfies none of (1), (2) or (3). Thus, the following three statements

hold for this u.

(a) dH(u) 6= 3, and hence dH(u) 6 2.

(b) If dH(u) = 2, then dH(u) 6= 2.

(c) If dH(u) 6 1 and dH(u) = 2, then, for the unique w ∈ NH(u) \ {v}, dH(w) = 1

implies dH(w) 6= 3, and hence dH(w) 6 2.

Define H ′ = H ∪ {uv} for case (b) or when dH(w) 6= 1 for case (c). Define

H ′ = H ∪{uv, uw} when dH(w) = 1 for case (c). It is easy to check that H ′ ∈ H(G).

Since dH′(v) = d(v) − dH′(v) = (∆ − 1) − 2 > 2, no new isolated edge is created in

H ′. Yet i(H ′) = i(H)− 1. This contradicts the choice of H . �

A vertex u ∈ V (G) is classified as type-II if dH(u) = 3, or dH(u) = dH(u) = 2, and

for every v ∈ NH(u), one of the following two conditions holds.

(4) 1 6 dH(v) 6 2 and d(v) > ∆− 1.

(5) dH(v) = 2, d(v) < ∆−1, and, for the unique w ∈ NH(v)\{u}, both dH(w) = 1

and d(w) = ∆− 1.

Claim 2. Suppose that uu′ ∈ I(H) with d(u) > d(u′). Then dH(u) = 3 and u is a

type-II vertex.

Proof. Since uu′ is an isolated edge of H and G has no isolated edges, it follows

that dH(u) > 1. If dH(u) 6 2, then H ′ = H ∪ {uu′} ∈ H(G). Note that i(H ′) 6 i(H)
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and i(H ′) = i(H)− 1. The subgraph H ′ contradicts the choice of H . Consequently,

dH(u) = 3.

Assume to the contrary that u is not a type-II vertex. Then there exists a particular

v ∈ NH(u) that satisfies neither (4) nor (5). Thus, the following two statements hold

for this v.

(d) If 1 6 dH(v) 6 2, then d(v) < ∆− 1.

(e) If dH(v) = 2, d(v) < ∆− 1, then, for the unique w ∈ NH(v) \ {u}, dH(w) = 1

implies d(w) 6= ∆− 1, and hence d(w) < ∆− 1.

If dH(v) = 1 or dH(v) = 2 and dH(w) > 2, let H ′ = H \ {uv}. If dH(v) = 2 and

dH(w) = 1, let H ′ = H \ {uv, vw}. Thus, the subgraph H ′ ∈ H(G) and satisfies

i(H ′) 6 i(H) and i(H ′) = i(H)− 1, contradicting the choice of H . �

We observe that no vertex can be classified both as type-I and type-II since 1 6

dH(z) 6 2 and d(z) > ∆− 1 > 5 for a type-I vertex z, while dH(w) = 3 or dH(w) =

dH(w) = 2 for a type-II vertex w.

An H-chain emanating from a vertex u is a path from u to a v ∈ NH(u) when v

satisfies (4), or through v to the unique w ∈ NH(v) \ {u} when v satisfies (5). We

write u → x for an H-chain emanating from u and terminating at x. An H-chain

emanating from a vertex v is a path from v to a u ∈ NH(v) when u satisfies (1) or

(2), or through u to the unique w ∈ NH(u)\{v} when u satisfies (3). We write v  y

for an H-chain emanating from v and terminating at y. A path P of G is called an

alternating chain if P is a concatenation of H-chains and H-chains such that they

appear alternately and the terminating vertex of one chain is the emanating vertex

of the next chain.

Claim 3. If vv′ ∈ I(H) satisfies d(v) > d(v′), then the two ends of each H-chain or

H-chain of an alternating chain P beginning with v are of different types.

Proof. Let v0 = v. By Claim 1, v0 is a type-I vertex. By the definition of an

alternating chain, we may assume that P is v0  u1 → v1  · · · → vs−1  us or P is

v0  u1 → v1  · · · us → vs, where s > 1. It suffices to prove by induction that

v1, v2, . . . , vs are type-I vertices and u1, u2, . . . , us are type-II vertices. Equivalently,

for each 1 6 k 6 s, the following statements (A) and (B) are true.

(A) If v1, v2, . . . , vk−1 are type-I vertices and u1, u2, . . . , uk−1 are type-II vertices,

then uk is a type-II vertex.
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(B) If v1, v2, . . . , vk−1 are type-I vertices and u1, u2, . . . , uk are type-II vertices, then

vk is a type-I vertex.

In order to show (A), assume to the contrary that uk is not a type-II vertex. Since

vk−1  uk and vk−1 is a type-I vertex, dH(uk) = 3, or dH(uk) = dH(uk) = 2. Then

there exists a vertex x ∈ NH(uk) such that the following two statements hold for this

x.

(d′) If 1 6 dH(x) 6 2, then d(x) < ∆− 1.

(e′) If dH(x) = 2, d(x) < ∆− 1, then, for the unique y ∈ NH(x) \ {uk}, dH(y) = 1

implies d(y) < ∆− 1.

Since v0, v1, . . . , vk−1 are type-I vertices by the induction hypothesis, 1 6 dH(vi) 6

2 and d(vi) > ∆−1 for all 0 6 i 6 k−1. Since dH(x) = 3, or d(x) < ∆−1, it follows

that x /∈ {v0, v1, . . . , vk−1}. We next show that x /∈ {u1, u2, . . . , uk−1}.

Assume to the contrary that there is an index i (i < k) such that x = ui. Since

ui is a type-II vertex and uk ∈ NH(ui), it follows that dH(uk) 6 2. We have already

known that dH(uk) = 3, or dH(uk) = dH(uk) = 2. Hence, dH(uk) = 2 and d(uk) = 4.

Let z ∈ NH(uk) \ {ui}. Define

H ′ = (H ∪
i−1⋃

j=0

E(vj  uj+1)) \ (S ∪
i−1⋃

j=1

E(uj → vj)),

where S = {uiuk, ukz} if dH(z) = 1; or S = {uiuk} otherwise. It is straightforward to

check thatH ′ ∈ H(G) such that i(H ′) = i(H)−1 and i(H ′) = i(H), which contradicts

the choice of H .

Suppose that dH(x) = 1 or dH(x) = 2 and dH(y) > 1 in (e′). If dH(uk) = 3, then

let H ′ = H \ {xuk}. It is obvious that H ′ ∈ H(G). Since xuk is adjacent to an

edge in vk−1  uk, xuk can not be an isolated edge of H ′. Thus, i(H ′) = i(H) and

i(H ′) = i(H). However, |E(H ′)| = |E(H)| − 1, which contradicts the choice of H . If

dH(uk) = dH(uk) = 2, define

H ′ = (H ∪
k−1⋃

i=0

E(vi  ui+1)) \ (
k−1⋃

i=1

E(ui → vi) ∪ {xuk}).

Note that dH′(ui) = dH(ui) and dH′(vi) = dH(vi) for 1 6 i 6 k, dH′(v0) = dH(v0)+1 =

2, dH′(v0) = (∆−1)−2 > 3, and hence v′v0 /∈ I(H ′). It follows that i(H ′) = i(H)−1

and i(H ′) = i(H), which contradicts the choice of H .

Next consider the case dH(y) = 1 in (e′). Then y /∈ {v0, v1, . . . , vk−1} since d(y) <

∆−1; y /∈ {u1, u2, . . . , uk−1} for each type-II vertex ui (1 6 i 6 k−1) has dH(ui) > 2.
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Define

H ′ = (H ∪
k−1⋃

i=0

E(vi  ui+1)) \ (
k−1⋃

i=1

E(ui → vi) ∪ {xy, xuk}).

ThenH ′ ∈ H(G). Reasoning as before, we see that i(H ′) = i(H)−1 and i(H ′) = i(H),

which contradicts the choice of H .

To prove (B), assume to the contrary that vk is not a type-I vertex. Since uk → vk

and uk is a type-II vertex, 1 6 dH(vk) 6 2 and d(vk) > ∆ − 1. Then there exists a

vertex x ∈ NH(vk) such that the following three statements hold for this x.

(a′) dH(x) 6= 3, and hence dH(x) 6 2.

(b′) If dH(x) = 2, then dH(x) 6= 2.

(c′) If dH(x) 6 1 and dH(x) = 2, then, for the unique y ∈ NH(x) \ {vk}, dH(y) = 1

implies dH(y) 6 2.

Since u1, u2, . . . , uk are type-II vertices by the induction hypothesis, we see that for

1 6 i 6 k, either dH(ui) = 3 or dH(ui) = dH(ui) = 2. Therefore, x /∈ {u1, u2, . . . , uk}.

We next show that x /∈ {v0, v1, . . . , vk−1}. Assume to the contrary that there is an

index i (0 6 i 6 k− 1) such that x = vi. Since vi is a type-I vertex and vk ∈ NH(vi),

it follows that dH(vk) = 3 or dH(vk) = dH(vk) = 2. However, dH(vk) 6 2 and

d(vk) > ∆− 1 > 5 since uk → vk. We have reached a contradiction.

Now assume dH(y) = 1 in (c′). Then y /∈ {u1, u2, . . . , uk}. We also have y /∈

{v, v1, . . . , uk−1}, for otherwise it would imply dH(y) > 2. Define

H ′ = (H ∪ S ∪
k−1⋃

i=0

E(vi  ui+1)) \
k−1⋃

i=1

E(ui → vi),

where S = {xy, xvk} when dH(y) = 1 for case (c′); S = {xvk} for case (b′) or when

dH(y) 6= 1 for case (c′). It is easy to check that H ′ ∈ H(G) such that i(H ′) = i(H)−1

and i(H ′) = i(H). This contradicts the choice of H . �

Claim 4. If uu′ ∈ I(H) satisfies d(u) > d(u′), then the two ends of each H-chain or

H-chain of an alternating chain P beginning with u are of different types.

Proof. Let u1 = u which is a type-II vertex by Claim 2. By the definition of an

alternating chain, we may assume that P is u1 → v1  u2 → · · · us → vs or P is

u1 → v1  u2 → · · · → vs−1  us, where s > 1. Similar to the proof of Claim 3, we

may argue that, for each 1 6 k 6 s, the following statements (C) and (D) are true.

(C) If u1, u2 . . . , uk are type-II vertices and v1, v2, . . . , vk−1 are type-I vertices, then

vk is a type-I vertex.
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(D) If u1, u2 . . . , uk−1 are type-II vertices and v1, v2, . . . , vk−1 are type-I vertices,

then uk is a type-II vertex.

The proof of (B) in Claim 3 can be adapted to show the validity of (C). Here we

define

H ′ = (H ∪ S ∪
k−1⋃

i=1

E(vi  ui+1)) \
k−1⋃

i=1

E(ui → vi),

where S = {xy, xvk} if dH(y) = 1; S = {xvk} if dH(y) > 1.

The proof of (A) in Claim 3 can be adapted to show the validity of (D). Here we

define

H ′ = (H ∪
k−1⋃

i=1

E(vi  ui+1)) \ (S ∪
k−1⋃

i=1

E(ui → vi)),

where S = {xy, xuk} if dH(y) = 1; S = {xuk} if dH(y) > 1.

In both cases, dH′(u1) = 3 − 1 = 2 and dH′(u1) = 2. It is easy to check that

H ′ ∈ H(G) such that i(H ′) = i(H) and i(H ′) = i(H)−1. This contradicts the choice

of H . �

Now we are ready to derive contradictions from the assumption i(H) + i(H) > 0.

Case 1 i(H) > 0.

Suppose that v0v
′ ∈ I(H) with d(v0) > d(v′). Let C(v0) be the set of alternating

chains of G beginning with the vertex v0. By Claims 1 and 3, C(v0) is a nonempty

set. Let VI(P ) and VII(P ), respectively, be the sets of type-I vertices and type-II

vertices on an alternating path P ∈ C(v0). Define VI = ∪{VI(P ) | P ∈ C(v0)} and

VII = ∪{VII(P ) | P ∈ C(v0)}.

For any vertex w ∈ VII, if x ∈ NH(w), then either x ∈ VI, or dH(x) = 2 and the

unique vertex y ∈ NH(x) \ {w} satisfies that dH(y) = 1 and y ∈ VI. Thus

∑

z∈VI

dH(z) >
∑

w∈VII

dH(w).

Since each vertex of VI has degree at most two in H , and each vertex of VII has degree

at least two in H , we have

2|VI| >
∑

z∈VI

dH(z) >
∑

w∈VII

dH(w) > 2|VII|.

Thus, |VI| > |VII|.
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For any z ∈ VI, we have dH(z) 6 2 and d(z) > ∆ − 1, and hence dH(z) > ∆ − 3.

From dH(v0) = 1 and d(v0) = ∆− 1, we know dH(v0) = ∆− 2. Hence,

∑

z∈VI

dH(z) = dH(v0) +
∑

z∈VI\{v0}

dH(z) > |VI|(∆− 3) + 1.

For any w ∈ VII, we see that dH(w) = 3 or dH(w) = dH(w) = 2. Thus ∆ > 6 implies

∑

w∈VII

dH(w) 6 |VII|(∆− 3).

Then |VI| > |VII| implies ∑

w∈VII

dH(w) <
∑

z∈VI

dH(z).

However, for z ∈ VI and for each x ∈ NH(z), either x ∈ VII, or dH(x) = 2 and the

unique vertex y ∈ NH(x) \ {w} has dH(y) = 1 and y ∈ VII. We get a contradictory

consequence ∑

w∈VII

dH(w) >
∑

z∈VI

dH(z).

Case 2 i(H) > 0.

Suppose that u1u
′ ∈ I(H) with d(u1) > d(u′). Let D(u1) be the set of alternating

chains of G beginning with the vertex u1. By Claims 2 and 4, D(u1) is a nonempty

set. Let VI(P ) and VII(P ), respectively, be the sets of type-I vertices and type-II

vertices on an alternating path P ∈ D(u1). Define VI = ∪{VI(P ) | P ∈ D(u1)} and

VII = ∪{VII(P ) | P ∈ D(u1)}.

Similar to the proof of Case 1, we have that |VI| > |VII| and

|VI|(∆− 3) 6
∑

z∈VI

dH(z) 6
∑

w∈VII

dH(w).

However, since dH(u1) = 1 and ∆ > 6, we get

∑

w∈VII

dH(w) = dH(u1) +
∑

w∈VII\{u1
}

dH(w) < |VII|(∆− 3).

A contradiction is produced. This completes the proof of Theorem 2.1. �
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