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Abstract

An adjacent vertex distinguishing coloring of a graph G is a proper edge col-
oring of GG such that any pair of adjacent vertices are incident with distinct
sets of colors. The minimum number of colors needed for an adjacent vertex
distinguishing coloring of G is denoted by X/, (G). In this paper, we prove that
XL (G) < %(A + 2) for any graph G having maximum degree A and no isolated
edges. This improves a result in [S. Akbari, H. Bidkhori, N. Nosrati, r-Strong
edge colorings of graphs, Discrete Math. 306 (2006), 3005-3010], which states
that x/,(G) < 3A for any graph G without isolated edges.
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1 Introduction

All graphs considered in this paper are finite and without self-loops or multiple edges.

In order to avoid trivialities, we also assume that every graph has no isolated vertices.
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Let V(G) and E(G) denote the vertex and the edge sets of G, respectively. Let Ng(v)
denote the set of neighbors of v in G and dg(v) = |Ng(v)| the degree of v in G. A
vertex v is called a k-vertex if dg(v) = k. Let A(G) and 6(G) denote the maximum
and minimum degree of a vertex in (G, respectively. An edge k-coloring of a graph
G is a function ¢ : E(G) — {1,2,...,k} such that any two incident edges receive
different colors. The chromatic indez, denoted by x'(G), of a graph G is the smallest
integer k£ such that G has an edge k-coloring. Given an edge k-coloring ¢ of G, we
use Cy(v) to denote the set of colors assigned to edges incident to a vertex v. We
call Cy = Uyev(q)Cy(v) the color set of ¢. The coloring ¢ is called an adjacent vertex
distinguishing edge coloring if Cy(u) # Cy(v) for any pair of adjacent vertices u and
v. A graph G is normal if it contains no isolated edges. Clearly, G has an adjacent
vertex distinguishing edge coloring if and only if G is normal. The adjacent vertex
distinguishing chromatic index x,,(G) of a graph G is the smallest integer k such that
G has an adjacent vertex distinguishing edge k-coloring.

Zhang, Liu and Wang [20] first introduced and investigated the adjacent vertex
distinguishing edge coloring (adjacent strong edge coloring in their terminology) of

graphs. They proposed the following conjecture.

Conjecture 1 If a connected normal graph G is different from a 5-cycle and satisfies
V(G)| = 3, then v,(G) < A(G) +2.

Balister et al. [4] confirmed Conjecture [l for all normal graphs G that are bipartite

or satisfy A(G) = 3. In particular, we need the following statement in the sequel.
Theorem 1.1 For any normal graph G with A(G) < 3, x,(G) < 5.

They further proved that x.(G) < A(G) + O(logk), where k is the (vertex)
chromatic number of the normal graph G. It follows from Brooks’ Theorem that
X, (G) < 2A(G) for G with sufficiently large A(G). Hatami [12] showed that every
normal graph G with A(G) > 10 has x,(G) < A(G) + 300 by the probabilistic
method. Edwards et al. [T1] proved that ¥/ (G) < A(G) + 1 if G is a planar bipartite
normal graph with A(G) > 12. Wang and Wang [I8] verified Conjecture [l for a class
of graphs with small maximum average degree. Their results were further extended by
Hocquard and Montassier [13,[14]. Recently, it has been characterized in [19] which
of the two cases \,(G) = A(G) and x,(G) = A(G) + 1 holds for a K,-minor-free
normal graph G with A(G) > 5.



An adjacent vertex distinguishing edge coloring of a graph G is a special case of
a vertex distinguishing edge coloring, which requires that every pair of vertices be
incident with distinct color sets. This more general notion was introduced by Burris
and Schelp [9], and independently by Horiidk and Sotéak [I5], and Cerny et al. [10]
(under the name observability). The reader is referred to [2L3,5H8[17] for relevant
results.

The aim of this paper is to improve the following upper bound obtained in [1J.
Theorem 1.2 For any normal graph G, x,(G) < 3A(G).

The proof of our main theorem in Section 2 is based on an edge-partition result.
The details will be supplied in the last section. In Section 3, the new upper bound is

further reduced for regular graphs.

2 An improved upper bound

For a graph G and any S C E(G), the edge-induced subgraph G[S] is the subgraph of
GG whose edge set is S and whose vertex set consists of all end vertices of edges in S.
We only deal with subgraphs that are edge-induced subgraphs unless otherwise stated.
For a subgraph H of G, we use H to denote the edge-induced subgraph G[E(G)\E(H)]
and call it the complement of H in G. An edge-partition of a graph G into subgraphs
G1,Gy, ..., Gy, is a decomposition of G that satisfies V(G) = U™, V(G;), E(G) =
U, E(G;) and E(G;) N E(G;) = 0 for any pair ¢ # j. Clearly, a subgraph H of
G together with its complement H constitute an edge-partition of G. This edge-
partition is said to be induced by the subgraph H. The proof of the following is

deferred to Section 4.

Theorem 2.1 Let G be a normal graph with A(G) > 6. Then there is an edge-
partition of G induced by a subgraph H such that the following conditions hold.

1. Both H and H are normal.
2. A(H) < 3.
3. A(H) < AG) —2.

Theorem 2.2 Let G be a normal graph with A(G) > 4. Then there is an edge-
partition of G into subgraphs Go, Gy, ..., Gk, k < |A(G)/2] —2, such that the follow-
ing hold.



1. Fvery G; is a normal subgraph.
2. A(G;) <3 for1 <i<k.
3. A(Gp) < 5.

Proof. The proof proceeds by induction on A(G). If A(G) < 5, the result holds
trivially. Let G be a normal graph with A(G) > 6. By Theorem 21| there is an
edge-partition of G induced by a subgraph H such that both H and H are normal,
A(H) <3 and A(H) < A(G) — 2. Clearly, A(H) > 3. If A(H) = 3, then A(G) = 6.
Let Go = H and G; = H. If A(H) > 4, by the induction hypothesis, there is an edge-
partition of H into subgraphs Go, G1,. .., Gy, k < |A(H)/2] —2, such that properties
1,2 and 3 hold. Now let Gy 1 = H. Then Gg, Gy, . .., G, Gyq form an edge-partition
of G. Note that k+1 < [A(H)/2] —2+1 < [(A(G) —2)/2] —1 = [A(G)/2] — 2

and we are done. [}

Lemma 2.3 If a normal graph G has an edge-partition into two normal subgraphs
G1 and Ga, then X, (G) < x4 (G1) + X, (G2).

Proof. For i = 1,2, let ¢; be an adjacent vertex distinguishing edge coloring of G;

satisfying |Cy,| = x4 (G;) and Cy, N Cy, = 0. The union of ¢; and ¢, forms a proper
edge coloring ¢ of G with color set Cy, U Cyp,. Let uv € E(G) with dg(u) = dg(v).
Since E(G1) N E(Gy) = 0, we may assume that uwv € E(Gy) \ F(G3) with dg, (u) >
dg,(v). Since G; is normal, wv is not an isolated edge of Gy, i.e., dg,(u) > 2. By
definition of ¢y, there exists a ¢ € Cy, (u) \ Cyg, (v). Since Cy, NCy, = 0, it follows that
c € Cy(u) \ Cy(v), and hence Cy(u) # Cy(v). Consequently, x,(G) < |Cy, U Cy,| =

|Coil + 1Cs] = Xa(G1) + Xa(G2)- u
Theorem 2.4 If G is a normal graph, then x,(G) < 2(A(G) +2).

Proof. The result can be derived immediately from Theorem [[LT] when A(G) < 3.
Now assume that A(G) > 4. By Theorem 2.2, there is an edge-partition of G into
subgraphs Go, G1,...,Gg, kK < |A(G)/2] — 2, such that properties 1, 2 and 3 hold.
Using Lemma [2.3] and Theorem [L.1] repeatedly, we have

Xa(G) Xa(Go) + X0 (G1) + - + x4, (Gr)

< /
< Xa(Go) + 5k
< /



By Theorem 2.2 A(Gy) < 5. It follows from Theorem that x,(G) < 15 +
5(LA(G) /2] —2) < 3(A(G) + 2). |

3 Regular graphs

Theorem [2.4] can be further improved for regular graphs. We first establish an aux-
iliary edge-partition lemma. We need the following well-known result of Vizing [16]

on chromatic index.
Theorem 3.1 For every graph G, X'(G) < A(G) + 1.

Lemma 3.2 Let G be a regular graph of degree r = 5. Then there is an edge-partition
of G into normal subgraphs G, G, ..., Gy such that one of the following conditions
holds.

1. If r=2 (mod 3), then k= (r+1)/3 and A(G;) <3 for 1 <i< k.

2. Ifr =1 (mod 3), then k = (r —1)/3, A(G;) <4 for 1 <i<2 and A(G;) <3
for3 <1< k.

3. If r=0 (mod 3), then k =1r/3 and A(G1) < 4 and A(G;) < 3 for 2 <i < k.

Proof. By Theorem B E(G) can be partitioned into r 4 1 disjoint color classes
Ei, FEs, ..., E. 1 such that each E; is a matching of G. Let H be a subgraph of G
edge-induced by m, 3 < m < r, of these color classes. Obviously, A(H) < m. For
any given vertex v of GG, exactly one color is not used on any edge incident with v
since G is r-regular. Therefore dy(v) > 2, and hence H is a normal graph.

If r =2 (mod 3), let k = (r+1)/3. Then we define G; = G[E; U Ey U E3],
Go=G[E,UEsUEg], ..., Gy =G[E,_1UE,.UE,4]. Then G1,Gj,...,Gy form an
edge-partition of G satisfying condition 1.

If r =1 (mod 3), let k = (r — 1)/3. Then we define G; = G[E; U Ey U E3 U Ey,
Go = G|Es UFEgU E;UEg], G3 = [EgU EygUEy, ..., Gy = G[E,_1 UE, UE,4].
Then G1, G, ..., Gy form an edge-partition of GG satisfying condition 2.

If r =0 (mod 3), let & = r/3. Then we define G; = G[E} U Ey U E3 U Ey,
Gy = G[Es U EgU E;|, G3 = [EsU EqU Eygl, ..., G, = G|E,_1 U E, U E,;1]. Then
Gy, Gy, . .., G form an edge-partition of G satisfying condition 3. [ |

Theorem 3.3 Let G be a reqular graph of degree r > 2. Then X (G) < (5r + 37)/3.

bt



Proof. If 2 < r < 4, the result follows from Theorems [[I] and Assume
that » > 5. By Lemma B.2] there is an edge-partition of G' into normal subgraphs
G1,Gs, ..., Gy such that one of the stated conditions 1, 2 or 3 holds.

If condition 1 holds, by Lemma 23] Theorems [[LT] and [L2, we have x/(G) <
S XA(Gy) < Bk =5(r+1)/3 < (57 + 37)/3.

If condition 2 holds, then X, (G) < x4(G1) + X4(Ga) + S2F o X4(Gi) < 12+ 12 +
5(k—2)=5(r—1)/3+14 = (5r+37)/3.

If condition 3 holds, then x.(G) < X4(G1) + S5, xA(Gy) < 12+ 5(k — 1) =
5r/3+ 7 < (5r 4+ 37)/3. [ |

Note that the upper bound in Theorem [B.3] is better than the upper bound in
Theorem 2.4 when r > 14.

4 Proof of Theorem [2.7]

We devote this section to a complete proof of Theorem 2.1

Assume that G is a normal graph with A(G) > 6. We abbreviate A(G) and dg(v)
to A and d(v), respectively. Let H(G) be the collection of subgraphs M of G that
satisfy the following conditions.

1. A(M) < 3.

2. If d(v) = A, then dy(v) > 2.

3. If d(v) = A — 1, then dy(v) > 1.

We first show that H(G) # (0. By Theorem B F(G) can be partitioned into
A + 1 disjoint color classes Ey, Fs, ..., Eayq such that each F; is a matching of G.
Let M = G[E; U Ey U E3]. Then A(M) < 3. For a A-vertex x of G, at most one
among F1, Fy, F3 contains no edge incident with x. For a (A — 1)-vertex y of G, at
most two among F1, Ey, F3 contain no edge incident with y. Thus M € H(G).

For any M € H(G), it is easy to see that A(M) < A — 2. Now let (M) and
I(M) denote the sets of isolated edges of M and M, respectively, and write i(M) =
|I(M)| and i(M) = |I(M)|. Among all subgraphs M that attain the minimum for
i(M) +4(M), we pick and fix an H that has minimum number of edges.

We are going to show that the edge-partition of G induced by this H satisfies
conditions 1, 2 and 3 of Theorem 2.1 If i(H) +i(H) = 0, then we are done. Now we

assume that i(H) + i(H) > 0.

We first classify some of the vertices of G into two types.

6



A vertex v € V(G) is classified as type-1if 1 < dy(v) < 2, d(v) > A — 1, and for
every u € Ny (v), one of the following three conditions holds.

(1) duw) =3.

(2) duw) = d () = 2.

(3) dy(u) < 1, dg(u) = 2, and, for the unique w € Ng(u) \ {v}, both dg(w) =1
and dy(w) =3

Claim 1. Suppose that vv' € I(H) with d(v) > d(v"). Then d(v) = A —1 and v is a
type-1 vertez.

Proof. Since H € H(G) and vv' is an isolated edge of H, dy(v) = 1 and d(v) < A—1.
If div) < A —2, then H = H \ {vv'} € H(G). Note that i(H') = i(H) — 1 and
i(H') < i(H) since vv' € I(H'). The subgraph H' contradicts the choice of H.
Consequently, d(v) = A — 1.

Assume to the contrary that v is not a type-I vertex. Then there exists a particular
u € Ny (v) that satisfies none of (1), (2) or (3). Thus, the following three statements
hold for this u.

(a) dg(u) # 3, and hence dy(u) < 2.

(b) If dp(u) = 2, then dg(u) # 2.

(¢) If dg(u) < 1 and dy(u) = 2, then, for the unique w € Ng(u) \ {v}, dg(w) =
implies dy(w) # 3, and hence dy(w) < 2.

Define H' = H U {uv} for case (b) or when dg(w) # 1 for case (c). Define
H' = HU{uv,uw} when dg(w) = 1 for case (c). It is easy to check that H' € H(G).
Since dgr(v) = d(v) — dp(v) = (A — 1) — 2 > 2, no new isolated edge is created in
H'. Yet i(H') = i(H) — 1. This contradicts the choice of H. [

A vertex u € V(Q) is classified as type-II if dy(u) = 3, or dy(u) = dg(u) = 2, and
for every v € Ng(u), one of the following two conditions holds.

(4)1<dy(v) <2andd(v) > A—1.

(5) dy(v) =2, d(v) < A—1, and, for the unique w € Ny (v)\ {u}, both dy(w) =1
and d(w) = A — 1.

Claim 2. Suppose that uvu' € I(H) with d(u) > d(v'). Then dg(u) = 3 and u is a
type-11 vertez.

Proof. Since wu' is an isolated edge of H and G has no isolated edges, it follows

that dg(u) > 1. If dg(u) < 2, then H' = HU {uu'} € H(G). Note that i(H’) < i(H)
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and i(H') = i(H) — 1. The subgraph H’ contradicts the choice of H. Consequently,
dy(u) = 3.

Assume to the contrary that u is not a type-II vertex. Then there exists a particular
v € Ny (u) that satisfies neither (4) nor (5). Thus, the following two statements hold
for this v.

(d) If 1 < dy(v) <2, then d(v) < A —1.

(e) If dy(v) =2, d(v) < A — 1, then, for the unique w € Ng(v) \ {u}, dg(w) =1
implies d(w) # A — 1, and hence d(w) < A — 1.

If dg(v) =1or dy(v) =2 and dy(w) > 2, let H = H \ {uwv}. If dg(v) = 2 and
dy(w) = 1, let H = H \ {uv,vw}. Thus, the subgraph H' € H(G) and satisfies
i(H'") < i(H) and i(H') = i(H) — 1, contradicting the choice of H. [ |

We observe that no vertex can be classified both as type-I and type-II since 1 <
dp(z) <2 and d(z) > A —1 > 5 for a type-I vertex z, while dy(w) = 3 or dy(w) =
di(w) = 2 for a type-1I vertex w.

An H-chain emanating from a vertex w is a path from u to a v € Ny (u) when v
satisfies (4), or through v to the unique w € Ny (v) \ {u} when v satisfies (5). We
write © — x for an H-chain emanating from u and terminating at x. An H-chain
emanating from a vertex v is a path from v to a u € Ng(v) when u satisfies (1) or
(2), or through u to the unique w € N (u)\ {v} when u satisfies (3). We write v ~ y
for an H-chain emanating from v and terminating at y. A path P of G is called an
alternating chain if P is a concatenation of H-chains and H-chains such that they
appear alternately and the terminating vertex of one chain is the emanating vertex

of the next chain.

Claim 3. If vv' € I(H) satisfies d(v) > d(v'), then the two ends of each H-chain or

H-chain of an alternating chain P beginning with v are of different types.

Proof. Let vp = v. By Claim 1, vy is a type-I vertex. By the definition of an
alternating chain, we may assume that P is vg ~> w1 — vy ~ - -+ = v,_1 ~> ug or P is
Vg ~ Up —> V1 ~ -+~ Uy — Vg, Where s > 1. It suffices to prove by induction that
vy, Vg, ..., Vs are type-I vertices and uy, us, ..., us are type-II vertices. Equivalently,
for each 1 < k < s, the following statements (A) and (B) are true.

(A) If vy, v9,...,u5_1 are type-1 vertices and uy,us,...,ux_1 are type-II vertices,

then wuy is a type-II vertex.



(B) If vy, v9, . .., v_1 are type-1 vertices and wuy, ug, . . ., ux are type-1I vertices, then
v is a type-I vertex.

In order to show (A), assume to the contrary that wuy is not a type-II vertex. Since
Ug—1 ~ ug and vg_q is a type-I vertex, dy(uy) = 3, or dy(ux) = dg(ur) = 2. Then
there exists a vertex z € Ny (uy) such that the following two statements hold for this
x.

(d') If 1 <dg(z) <2, then d(z) < A—1.

(e) If dy(x) =2, d(z) < A — 1, then, for the unique y € Ny (z) \ {ux}, du(y) =1
implies d(y) < A — 1.

Since vy, vy, . . ., Vk_1 are type-I vertices by the induction hypothesis, 1 < dy(v;) <
2and d(v;)) > A—1forall 0 <i < k—1. Since dy(x) = 3, or d(z) < A—1, it follows
that = ¢ {vg,v1,...,vk_1}. We next show that = ¢ {uy,us, ..., ur_1}.

Assume to the contrary that there is an index i (i < k) such that z = u;. Since
u; is a type-1I vertex and uy € Ng(u;), it follows that dy(ug) < 2. We have already
known that dg(ug) = 3, or dy(uy) = di(ur) = 2. Hence, dy(ug) = 2 and d(uy) = 4.
Let z € Ng(ux) \ {u;}. Define

i—1

i—1
H' = (HU|JE(v; ~ ujs1)) \ (SU [ E(u; = vy)),
j=0 J=1
where S = {u;ug, upz} if dy(z) = 1; or S = {wui } otherwise. It is straightforward to
check that H' € H(G) such that i(H') = i(H)—1and i(H') = i(H), which contradicts
the choice of H.

Suppose that dgy(z) =1 or dy(z) = 2 and dy(y) > 1 in (¢/). If dy(ux) = 3, then
let H = H \ {zug}. It is obvious that H' € H(G). Since xuy is adjacent to an
edge in v, ~ uy, Tug can not be an isolated edge of H'. Thus, i(H') = i(H) and
i(H') = i(H). However, |E(H')| = |E(H)| — 1, which contradicts the choice of H. If
dp(uy) = dg(ug) = 2, define

H =(HU L_J E(v; ~ uii1)) \ (L_J E(u; — v;) U{zu}).

Note that dy: (u;) = dy(u;) and dg(v;) = dg(v;) for 1 <i < k, dy/(vg) = d
2, dgi(vg) = (A—1)—2 > 3, and hence v'vy ¢ I(H’). It follows that i(H’)
and i(H') = i(H), which contradicts the choice of H.

Next consider the case dy(y) =1 in (¢/). Then y ¢ {vg,v1,...,vr_1} since d(y)
A—1;y & {uy,ug,...,ur_1} for each type-1II vertex u; (1 <i < k—1) has dy(u;) > 2.

m(vo)+1
—i(H)—

—_
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Define
k-1

H =(HU UE(UZ ~ 1))\ (U E(u; — v;) U{zy, zug}).

i=1
Then H' € H(G). Reasoning as before, we see that i(H') = i(H)—1 and i(H') = i(H),
which contradicts the choice of H.

To prove (B), assume to the contrary that vy is not a type-I vertex. Since uy — vy,
and uy, is a type-1I vertex, 1 < dy(vg) < 2 and d(vg) > A — 1. Then there exists a
vertex z € Ny (vg) such that the following three statements hold for this x.

(a") dy(x) # 3, and hence dy(x) < 2.

(b’) If dg(z) = 2, then di(x) # 2.

() If dy(x) < 1 and dy(x) = 2, then, for the unique y € Nz (z) \ {vi}, dg(y) =1
implies dy(y) < 2.

Since uq, us, . . ., uy are type-I1I vertices by the induction hypothesis, we see that for
1 < i < k, either dy(u;) = 3 or dy(u;) = dg(u;) = 2. Therefore, x & {uq, us, ..., ux}.

We next show that x ¢ {vg,v1,...,v,_1}. Assume to the contrary that there is an
index i (0 < ¢ < k— 1) such that = v;. Since v; is a type-I vertex and v, € Nz (v;),
it follows that dy(vy) = 3 or dy(vk) = dg(vy) = 2. However, dy(vy) < 2 and
d(vg) = A —1 > 5 since uy — v,. We have reached a contradiction.

Now assume di(y) = 1 in (/). Then y ¢ {uy,us,...,ux}. We also have y ¢
{v,v1,...,up_1}, for otherwise it would imply d3(y) > 2. Define

k—1 k—1
H = (HUSU|JE@ ~ u)\ | E(ui = vy),
=0 =1

where S = {xy, zvx} when dg(y) = 1 for case (¢'); S = {xv,} for case (b’) or when
dg(y) # 1 for case (/). It is easy to check that H' € H(G) such that i(H') = i(H)—1
and i(H') = i(H). This contradicts the choice of H. |

Claim 4. If uu’ € I(H) satisfies d(u) > d(u'), then the two ends of each H-chain or

H-chain of an alternating chain P beginning with u are of different types.

Proof. Let u; = u which is a type-II vertex by Claim 2. By the definition of an
alternating chain, we may assume that P is u; — vy ~» ug — - -+ ~» ugs — vg or P is
Ul —> V] ~> Uy —> +++ —> Vs_1 ~ U, Where s > 1. Similar to the proof of Claim 3, we
may argue that, for each 1 < k < s, the following statements (C) and (D) are true.
(C) If uy, us . .., u are type-1I vertices and vy, v, . . ., vp_1 are type-I vertices, then

v is a type-I vertex.
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(D) If uy,us...,up_1 are type-II vertices and vy, vo,...,vp_1 are type-I vertices,
then uy is a type-II vertex.
The proof of (B) in Claim 3 can be adapted to show the validity of (C). Here we

define
k-1 k—1

H, = (HUSU U E(’UZ ~ Uz‘+1)) \ U E(uz — 'Ui)a

i=1 i=1
where S = {zy, zv} if dg(y) = 1; S = {zv } if dg(y) > 1.

The proof of (A) in Claim 3 can be adapted to show the validity of (D). Here we
define

k—1

H' = (0 B~ ) \ (50 [ Bl = w),

i=1
where S = {zy, vu} if dg(y) = 1; S = {zug} if dg(y) > 1.

In both cases, dg/(u1) = 3 —1 = 2 and dgr(u1) = 2. It is easy to check that
H' € H(G) such that i(H') = i(H) and i(H') = i(H) — 1. This contradicts the choice
of H. [ |

Now we are ready to derive contradictions from the assumption ¢(H) +i(H) > 0.
Case 1 i(H) > 0.

Suppose that vgv" € I(H) with d(vy) > d(v"). Let C(vg) be the set of alternating
chains of G beginning with the vertex vy. By Claims 1 and 3, C(vp) is a nonempty
set. Let Vi(P) and Vii(P), respectively, be the sets of type-I vertices and type-1I
vertices on an alternating path P € C(vg). Define Vi = U{Vi(P) | P € C(vp)} and
Vit = U{Vu(P) | P € C(v)}-

For any vertex w € Vi, if € Ny(w), then either x € Vi, or dy(z) = 2 and the
unique vertex y € Ny (x) \ {w} satisfies that dy(y) =1 and y € V. Thus

> du(z) = ) dy(w).

Since each vertex of V] has degree at most two in H, and each vertex of Vi has degree

at least two in H, we have

Vil 2> du(z) 2 Y du(w) > 2|Val.

zeV] weVir

Thusa |‘/I| 2 H/iI|
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For any z € Vi, we have dy(z) < 2 and d(z) > A — 1, and hence dj(z) > A — 3.
From dg(vg) = 1 and d(vg) = A — 1, we know dy(vg) = A — 2. Hence,

Y dg(z) =dglv) + ) dglz) > [Vil(A=3) + 1.

zeVt 2eVi\{vy }
For any w € Vij, we see that dy(w) = 3 or dy(w) = dg(w) = 2. Thus A > 6 implies
> dp(w) < [Vil(A - 3).
weVi
Then |Vi| > [Vi1] implies

> dg(w) <Y dg(2)

weVIr z€VL
However, for z € 1§ and for each © € Ny (2), either x € Vi1, or di(z) = 2 and the
unique vertex y € Ng(z) \ {w} has diz(y) = 1 and y € Vj1. We get a contradictory

> dg(w) =D dg(2)

weVIT zeVT

consequence

Case 2 i(H) > 0.

Suppose that uyu’ € I(H) with d(u;) > d(u'). Let D(u;) be the set of alternating
chains of G beginning with the vertex u;. By Claims 2 and 4, D(uy) is a nonempty
set. Let Vi(P) and Vii(P), respectively, be the sets of type-I vertices and type-II
vertices on an alternating path P € D(u;). Define Vi = U{Vi(P) | P € D(uy)} and
Vit = U{Vu(P) | P € D(u)}-

Similar to the proof of Case 1, we have that |Vi| > |Vi1| and

VII(A =3) <D dg(z) < ) dylw)
ZEVY weVn
However, since dj(u;) =1 and A > 6, we get

S d(w) = dg(w) + Y dy(w) < [Val(A = 3)

weVir wEVH\{ul}

A contradiction is produced. This completes the proof of Theorem 2.11 [ |
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