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Abstract

Mixed fault diameter of a graph G, D(a,b)(G), is the maximal diameter of G after
deletion of any a vertices and any b edges. Special cases are the (vertex) fault
diameter DV

a = D(a,0) and the edge fault diameter DE
a = D(0,a). Let G be a Cartesian

graph bundle with fibre F over the base graph B. We show that
(1) DV

a+b+1(G) ≤ DV
a (F )+DV

b (B) when the graphs F and B are kF -connected and

kB-connected, 0 < a < kF , 0 < b < kB , and provided that D(a−1,1)(F ) ≤ DV
a (F )

and D(b−1,1)(B) ≤ DV
b (B) and

(2) DE
a+b+1(G) ≤ DE

a (F ) + DE
b (B) when the graphs F and B are kF -edge con-

nected and kB-edge connected, 0 ≤ a < kF , 0 ≤ b < kB , and provided that
DE

a (F ) ≥ 2 and DE
b (B) ≥ 2.
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1 Introduction

The concept of fault diameter of Cartesian product graphs was first described
in [20], but the upper bound was wrong, as shown by Xu, Xu and Hou who
provided a small counter example and corrected the mistake [27]. More pre-
cisely, denote by DV

a (G) the fault diameter of a graph G, a maximum diameter
of G after deletion of any a vertices, and G✷H the Cartesian product of graphs
G and H . Xu, Xu and Hou proved [27]

DV
a+b+1(G✷H) ≤ DV

a (G) +DV
b (H) + 1

while the claimed bound in [20] was DV
a (G) + DV

b (H). (Our notation here
slightly differs from notation used in [20] and [27].) The result was later gen-
eralized to graph bundles in [2] and generalized graph products (as defined by
[9]) in [28]. Here we show that in most cases of Cartesian graph bundles the
bound can indeed be improved to the one claimed in [20].

Methods used involve the theory of mixed connectivity and recent results on
mixed fault diameters [6,14,15,16]. For completeness, we also give the analo-
gous improved upper bound for edge fault diameter.

The rest of the paper is organized as follows. In the next section we recall that
the graph products and graph bundles often appear as practical interconnec-
tion network topologies because of some attractive properties they have. In
Section 3 we provide general definitions, in particular of the connectivities.
Section 4 introduces graph bundles and recalls relevant previous results. The
improved bounds are proved in Section 5.

2 Motivation - interconnection networks

Graph products and bundles belong to a class of frequently studied intercon-
nection network topologies. For example meshes, tori, hypercubes and some of
their generalizations are Cartesian products. It is less known that some other
well-known interconnection network topologies are Cartesian graph bundles,
for example twisted hypercubes [10,13] and multiplicative circulant graphs
[25].

In the design of large interconnection networks several factors have to be taken
into account. A usual constraint is that each processor can be connected to
a limited number of other processors and that the delays in communication
must not be too long. Furthermore, an interconnection network should be fault
tolerant, because practical communication networks are exposed to failures of
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network components. Both failures of nodes and failures of connections be-
tween them happen and it is desirable that a network is robust in the sense
that a limited number of failures does not break down the whole system. A
lot of work has been done on various aspects of network fault tolerance, see
for example the survey [9] and the more recent papers [18,26,29]. In particular
the fault diameter with faulty vertices, which was first studied in [20], and the
edge fault diameter have been determined for many important networks re-
cently [2,3,4,5,11,12,21,27]. Usually either only edge faults or only vertex faults
are considered, while the case when both edges and vertices may be faulty is
studied rarely. For example, [18,26] consider Hamiltonian properties assuming
a combination of vertex and edge faults. In recent work on fault diameter of
Cartesian graph products and bundles [2,3,4,5], analogous results were found
for both fault diameter and edge fault diameter. However, the proofs for vertex
and edge faults are independent, and our effort to see how results in one case
may imply the others was not successful. A natural question is whether it is
possible to design a uniform theory that covers simultaneous faults of vertices
and edges. Some basic results on edge, vertex and mixed fault diameters for
general graphs appear in [6]. In order to study the fault diameters of graph
products and bundles under mixed faults, it is important to understand gen-
eralized connectivities. Mixed connectivity which generalizes both vertex and
edge connectivity, and some basic observations for any connected graph are
given in [14]. We are not aware of any earlier work on mixed connectivity. A
closely related notion is the connectivity pairs of a graph [8], but after Mader
[22] showed the claimed proof of generalized Menger’s theorem is not valid,
work on connectivity pairs seems to be very rare.

Upper bounds for the mixed fault diameter of Cartesian graph bundles are
given in [15,16] that in some case also improve previously known results on
vertex and edge fault diameters on these classes of Cartesian graph bundles
[2,5]. However results in [15] address only the number of faults given by the
connectivity of the fibre (plus one vertex), while the connectivity of the graph
bundle can be much higher when the connectivity of the base graph is sub-
stantial, and results in [16] address only the number of faults given by the
connectivity of the base graph (plus one vertex), while the connectivity of
the graph bundle can be much higher when the connectivity of the fibre is
substantial. An upper bound for the mixed fault diameter that would take
into account both types of faults remains to be an interesting open research
problem.

3 Preliminaries

A simple graph G = (V,E) is determined by a vertex set V = V (G) and a set
E = E(G) of (unordered) pairs of vertices, called edges. As usual, we will use
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the short notation uv for edge {u, v}. For an edge e = uv we call u and v its
endpoints. It is sometimes convenient to consider the union of elements of a
graph, S(G) = V (G) ∪ E(G). Given X ⊆ S(G) then S(G) \X is a subset of
elements of G. However, note that in general S(G)\X may not induce a graph.
As we need notation for subgraphs with some missing (faulty) elements, we
formally define G \X , the subgraph of G after deletion of X , as follows:

Definition 3.1 Let X ⊆ S(G), and X = XE ∪ XV , where XE ⊆ E(G) and
XV ⊆ V (G). Then G \ X is the subgraph of (V (G), E(G) \ XE) induced on
vertex set V (G) \XV .

A walk between vertices x and y is a sequence of vertices and edges v0, e1, v1,
e2, v2, . . . , vk−1, ek, vk where x = v0, y = vk, and ei = vi−1vi for each i. A
walk with all vertices distinct is called a path, and the vertices v0 and vk are
called the endpoints of the path. The length of a path P , denoted by ℓ(P ), is
the number of edges in P . The distance between vertices x and y, denoted by
dG(x, y), is the length of a shortest path between x and y in G. If there is no
path between x and y we write dG(x, y) = ∞. The diameter of a connected
graph G, D(G), is the maximum distance between any two vertices in G. A
path P in G, defined by a sequence x = v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = y
can alternatively be seen as a subgraph of G with V (P ) = {v0, v1, v2, . . . , vk}
and E(P ) = {e1, e2, . . . , ek}. Note that the reverse sequence gives rise to the
same subgraph. Hence we use P for a path either from x to y or from y to
x. A graph is connected if there is a path between each pair of vertices, and
is disconnected otherwise. In particular, K1 is by definition disconnected. The
connectivity (or vertex connectivity) κ(G) of a connected graph G, other than a
complete graph, is the smallest number of vertices whose removal disconnects
G. For complete graphs is κ(Kn) = n − 1. We say that G is k-connected (or
k-vertex connected) for any 0 < k ≤ κ(G). The edge connectivity λ(G) of a
connected graph G, is the smallest number of edges whose removal disconnects
G. A graph G is said to be k-edge connected for any 0 < k ≤ λ(G). It is well
known that (see, for example, [1], page 224) κ(G) ≤ λ(G) ≤ δG, where δG is
smallest vertex degree of G. Thus if a graph G is k-connected, then it is also
k-edge connected. The reverse does not hold in general.

The mixed connectivity generalizes both vertex and edge connectivity [14,15].
Note that the definition used in [15] and here slightly differs from the definition
used in a previous work [14].

Definition 3.2 Let G be any connected graph. A graph G is (p, q)+connected,
if G remains connected after removal of any p vertices and any q edges.

We wish to remark that the mixed connectivity studied here is closely re-
lated to connectivity pairs as defined in [8]. Briefly speaking, a connectivity
pair of a graph is an ordered pair (k, ℓ) of two integers such that there is
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some set of k vertices and ℓ edges whose removal disconnects the graph and
there is no set of k − 1 vertices and ℓ edges or of k vertices and ℓ − 1 edges
with this property. Clearly (k, ℓ) is a connectivity pair of G exactly when:
(1) G is (k − 1, ℓ)+connected, (2) G is (k, ℓ − 1)+connected, and (3) G is
not (k, ℓ)+connected. In fact, as shown in [14], (2) implies (1), so (k, ℓ) is a
connectivity pair exactly when (2) and (3) hold.

From the definition we easily observe that any connected graph G is (0, 0)+
connected, (p, 0)+connected for any p < κ(G) and (0, q)+connected for any
q < λ(G). In our notation (i, 0)+connected is the same as (i + 1)-connected,
i.e. the graph remains connected after removal of any i vertices. Similarly,
(0, j)+connected means (j + 1)-edge connected, i.e. the graph remains con-
nected after removal of any j edges.

Clearly, if G is a (p, q)+connected graph, then G is (p′, q′)+connected for
any p′ ≤ p and any q′ ≤ q. Furthermore, for any connected graph G with
k < κ(G) faulty vertices, at least k edges are not working. Roughly speak-
ing, graph G remains connected if any faulty vertex in G is replaced with
a faulty edge. It is known [14] that if a graph G is (p, q)+connected and
p > 0, then G is (p − 1, q + 1)+connected. Hence for p > 0 we have a chain
of implications: (p, q)+connected =⇒ (p − 1, q + 1)+connected =⇒ . . . =⇒
(1, p + q − 1)+connected =⇒ (0, p + q)+connected, which generalizes the
well-known proposition that any k-connected graph is also k-edge connected.
Therefore, a graph G is (p, q)+connected if and only if p < κ(G) and p+ q <
λ(G).

Note that by our definition the complete graph Kn, n ≥ 2, is (n − 2, 0)+
connected, and hence (i, j)+connected for any i + j ≤ n − 2. Graph K2 is
(0, 0)+connected, and mixed connectivity of K1 is not defined.

If for a graph G κ(G) = λ(G) = k, then G is (i, j)+connected exactly
when i + j < k. However, if 2 ≤ κ(G) < λ(G), the question whether G is
(i, j)+connected for 1 ≤ i < κ(G) ≤ i+ j < λ(G) is not trivial. The example
below shows that in general the knowledge of κ(G) and λ(G) is not enough to
decide whether G is (i, j)+connected.

Example 3.3 For graphs on Fig. 1 we have κ(G1) = κ(G2) = 2 and λ(G1) =
λ(G2) = 3. Both graphs are (1, 0)+connected =⇒ (0, 1)+connected, and (0, 2)+
connected. Graph G1 is not (1, 1)+connected, while graph G2 is.

Fig. 1. Graphs G1 and G2 from Example 3.3.
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Definition 3.4 Let G be a k-edge connected graph and 0 ≤ a < k. The a-edge
fault diameter of G is

DE
a (G) = max {D(G \X) | X ⊆ E(G), |X| = a}.

Definition 3.5 Let G be a k-connected graph and 0 ≤ a < k. The a-fault
diameter (or a-vertex fault diameter) of G is

DV
a (G) = max {D(G \X) | X ⊆ V (G), |X| = a}.

Note that DE
a (G) is the largest diameter among the diameters of subgraphs of

G with a edges deleted, and DV
a (G) is the largest diameter over all subgraphs

of G with a vertices deleted. In particular, DE
0 (G) = DV

0 (G) = D(G), the
diameter of G. For p ≥ κ(G) and for q ≥ λ(G) we set DV

p (G) = ∞, DE
q (G) =

∞, as some of the subgraphs are not vertex connected or edge connected,
respectively.

It is known [6] that for any connected graph G the inequalities below hold.

(1) D(G) = DE
0 (G) ≤ DE

1 (G) ≤ DE
2 (G) ≤ . . . ≤ DE

λ(G)−1(G) < ∞.

(2) D(G) = DV
0 (G) ≤ DV

1 (G) ≤ DV
2 (G) ≤ . . . ≤ DV

κ(G)−1(G) < ∞.

Definition 3.6 Let G be a (p, q)+connected graph. The (p, q)-mixed fault dia-
meter of G is

D(p,q)(G) = max {D(G \ (X ∪ Y )) | X ⊆ V (G), Y ⊆ E(G), |X| = p, |Y | = q}.

Note that by Definition 3.6 the endpoints of edges of set Y can be in X . In this
case we may get the same subgraph of G by deleting p vertices and fewer than
q edges. It is however not difficult to see that the diameter of such subgraph is
smaller than or equal to the diameter of some subgraph of G where exactly p
vertices and exactly q edges are deleted. So the condition that the endpoints
of edges of set Y are not in X need not to be included in Definition 3.6. The
mixed fault diameter D(p,q)(G) is the largest diameter among the diameters
of all subgraphs obtained from G by deleting p vertices and q edges, hence
D(0,0)(G) = D(G), D(0,a)(G) = DE

a (G) and D(a,0)(G) = DV
a (G).

Let HV
a = {G\X | X ⊆ V (G), |X| = a} and HE

b = {G\X | X ⊆ E(G), |X| =
b}. It is easy to see that

(1) max {DE
b (H) | H ∈ HV

a } = D(a,b)(G),
(2) max {DV

a (H) | H ∈ HE
b } = D(a,b)(G).

In previous work [6] on vertex, edge and mixed fault diameters of connected
graphs the following theorem has been proved.
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Theorem 3.7 Let G be (p, q)+connected graph and p > 0.

• If q > 0, then DE
p+q(G) ≤ D(1,p+q−1)(G) ≤ . . . ≤ D(p,q)(G).

• If q = 0, then DE
p (G) ≤ D(1,p−1)(G) ≤ . . . ≤ D(p−1,1)(G) ≤ DV

p (G) + 1.

Note that for (p+ 1)-connected graph G, p > 0, we have either

DE
p (G) ≤ D(1,p−1)(G) ≤ . . . ≤ D(p−1,1)(G) ≤ DV

p (G)

or
DE

p (G) ≤ D(1,p−1)(G) ≤ . . . ≤ D(p−1,1)(G) = DV
p (G) + 1.

For example, complete graphs, complete bipartite graphs, and cycles are graphs
with D(p−1,1)(G) = DV

p (G)+1 for all meaningful of values of p. More examples
of both types of graphs can be found in [6].

4 Fault diameters of Cartesian graph bundles

Cartesian graph bundles are a generalization of Cartesian graph products,
first studied in [23,24]. Let G1 and G2 be graphs. The Cartesian product of
graphs G1 and G2, G = G1✷G2, is defined on the vertex set V (G1)× V (G2).
Vertices (u1, v1) and (u2, v2) are adjacent if either u1u2 ∈ E(G1) and v1 = v2
or v1v2 ∈ E(G2) and u1 = u2. For further reading on graph products we
recommend [17].

Definition 4.1 Let B and F be graphs. A graph G is a Cartesian graph
bundle with fibre F over the base graph B if there is a graph map p : G → B
such that for each vertex v ∈ V (B), p−1({v}) is isomorphic to F , and for each
edge e = uv ∈ E(B), p−1({e}) is isomorphic to F✷K2.

More precisely, the mapping p : G → B maps graph elements of G to graph
elements of B, i.e. p : V (G) ∪ E(G) → V (B) ∪ E(B). In particular, here
we also assume that the vertices of G are mapped to vertices of B and the
edges of G are mapped either to vertices or to edges of B. We say an edge
e ∈ E(G) is degenerate if p(e) is a vertex. Otherwise we call it nondegenerate.
The mapping p will also be called the projection (of the bundle G to its base
B). Note that each edge e = uv ∈ E(B) naturally induces an isomorphism
ϕe : p−1({u}) → p−1({v}) between two fibres. It may be interesting to note
that while it is well-known that a graph can have only one representation as
a product (up to isomorphism and up to the order of factors) [17], there may
be many different graph bundle representations of the same graph [32]. Here
we assume that the bundle representation is given. Note that in some cases
finding a representation of G as a graph bundle can be found in polynomial
time [19,30,31,32,33,34]. For example, one of the easy classes are the Cartesian
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graph bundles over triangle-free base [19]. Note that a graph bundle over a
tree T (as a base graph) with fibre F is isomorphic to the Cartesian product
T✷F (not difficult to see, appears already in [23]), i.e. we can assume that all
isomorphisms ϕe are identities. For a later reference note that for any path
P ⊆ B, p−1(P ) is a Cartesian graph bundle over the path P , and one can
define coordinates in the product P✷F in a natural way.

In recent work on fault diameter of Cartesian graph products and bundles
[2,3,4,5], analogous results were found for both fault diameter and edge fault
diameter.

Theorem 4.2 [2] Let F and B be kF -connected and kB-connected graphs,
respectively, 0 ≤ a < kF , 0 ≤ b < kB, and G a Cartesian bundle with fibre F
over the base graph B. Then

DV
a+b+1(G) ≤ DV

a (F ) +DV
b (B) + 1.

Theorem 4.3 [5] Let F and B be kF -edge connected and kB-edge connected
graphs, respectively, 0 ≤ a < kF , 0 ≤ b < kB, and G a Cartesian bundle with
fibre F over the base graph B. Then

DE
a+b+1(G) ≤ DE

a (F ) +DE
b (B) + 1.

Before writing a theorem on bounds for the mixed fault diameter we recall a
theorem on mixed connectivity.

Theorem 4.4 [14] Let G be a Cartesian graph bundle with fibre F over the
base graph B, graph F be (pF , qF )+connected and graph B be (pB, qB)+connec-
ted. Then Cartesian graph bundle G is (pF + pB + 1, qF + qB)+connected.

In recent work [15,16], an upper bound for the mixed fault diameter of Carte-
sian graph bundles, D(p+1,q)(G), in terms of mixed fault diameter of the fibre
and diameter of the base graph and in terms of diameter of the fibre and
mixed fault diameter of the base graph, respectively, is given.

Theorem 4.5 [15] Let G be a Cartesian graph bundle with fibre F over the
base graph B, where graph F is (p, q)+connected, p + q > 0, and B is a
connected graph with diameter D(B) > 1. Then we have:

• If q > 0, then D(p+1,q)(G) ≤ D(p,q)(F ) +D(B).
• If q = 0, then DV

p+1(G) ≤ max{DV
p (F ),D(p−1,1)(F )}+D(B).

Theorem 4.5 improves results 4.2 and 4.3 for a > 0 and b = 0.
Let G be a Cartesian graph bundle with fibre F over the connected base graph
B with diameter D(B) > 1, and let a > 0. If graph F is (a+1)-connected, i.e.
(a, 0)+connected, then by theorem 4.5 we have an upper bound for the vertex
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fault diameter DV
a+1(G) ≤ DV

a (F ) + D(B) + 1 for any graph F . Similarly,
DV

a+1(G) ≤ DV
a (F ) +D(B) if D(a−1,1)(F ) ≤ DV

a (F ) holds.
If graph F is (a+ 1)-edge connected, i.e. (0, a)+connected, then by theorems
3.7 and 4.5 we have an upper bound for the edge fault diameter DE

a+1(G) ≤
D(1,a)(G) ≤ DE

a (F ) +D(B).

Theorem 4.6 [16] Let G be a Cartesian graph bundle with fibre F over the
base graph B, graph F be a connected graph with diameter D(F ) > 1, and
graph B be (p, q)+connected, p+ q > 0. Then we have:

• If q > 0, then D(p+1,q)(G) ≤ D(F ) +D(p,q)(B).
• If q = 0, then DV

p+1(G) ≤ D(F ) + max{DV
p (B),D(p−1,1)(B)}.

Theorem 4.6 improves results 4.2 and 4.3 for a = 0 and b > 0.
Let G be a Cartesian graph bundle with fibre F over the base graph B, graph
F be a connected graph with diameter D(F ) > 1, and let b > 0. If graph B
is (b + 1)-connected, i.e. (b, 0)+connected, then by Theorem 4.6 we have an
upper bound for the vertex fault diameter DV

b+1(G) ≤ D(F ) +DV
b (B) + 1 for

any graph B. Similarly, DV
b+1(G) ≤ D(F ) + DV

b (B) if D(b−1,1)(B) ≤ DV
b (B)

holds.
If graph B is (b+ 1)-edge connected, i.e. (0, b)+connected, then by theorems
3.7 and 4.5 we have an upper bound for the edge fault diameter DE

b+1(G) ≤
D(1,b)(G) ≤ D(F ) +DE

b (B).

In the case when a = b = 0 the fault diameter is determined exactly.

Proposition 4.7 [15] Let G be a Cartesian graph bundle with fibre F over
the base graph B, and graphs F and B be connected graphs with diameters
D(F ) > 1 and D(B) > 1. Then

DV
1 (G) = DE

1 (G) = D(G) = D(F ) +D(B).

In other words, the diameter of a nontrivial Cartesian graph bundle does not
change when one element is faulty.

Here we improve results of theorems 4.2 and 4.3 for positive a and b.

5 The results - improved bounds

Before stating and proving the main theorems, we introduce some notation
used in this section.
Let G be a Cartesian graph bundle with fibre F over the base graph B.
The fibre of vertex x ∈ V (G) is denoted by Fx, formally, Fx = p−1({p(x)}).
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We will also use notation F (u) for the fibre of the vertex u ∈ V (B), i.e.
F (u) = p−1({u}). Note that Fx = F (p(x)). We will also use shorter notation
x ∈ F (u) for x ∈ V (F (u)).
Let u, v ∈ V (B) be distinct vertices, and Q be a path from u to v in B, and
x ∈ F (u). Then the lift of the path Q to the vertex x ∈ V (G), Q̃x, is the path
from x ∈ F (u) to a vertex in F (v), such that p(Q̃x) = Q and ℓ(Q̃x) = ℓ(Q).
Let x, x′ ∈ F (u). Then Q̃x and Q̃x′ have different endpoints in F (v) and are
disjoint paths if and only if x 6= x′. In fact, two lifts Q̃x and Q̃x′ are either
disjoint Q̃x ∩ Q̃x′ = ∅ or equal, Q̃x = Q̃x′ . We will also use notation Q̃ for lifts
of path Q to any vertex in F (u).
Let Q be a path from u to v and e = uw ∈ E(Q). We will use notation Q \ e
for the subpath from w to v, i.e. Q \ e = Q \ {u, e} = Q \ {u}.
Let G be a graph and X ⊆ S(G) be a set of elements of G. A path P from a
vertex x to a vertex y avoids X in G, if S(P )∩X = ∅, and it internally avoids
X , if (S(P ) \ {x, y}) ∩X = ∅.

5.1 Vertex fault diameter of Cartesian graph bundles

Theorem 5.1 Let G be a Cartesian graph bundle with fibre F over the base
graph B, graphs F and B be kF -connected and kB-connected, respectively, and
let 0 < a < kF , 0 < b < kB. If for fault diameters of graphs F and B,
D(a−1,1)(F ) ≤ DV

a (F ) and D(b−1,1)(B) ≤ DV
b (B) hold then

DV
a+b+1(G) ≤ DV

a (F ) +DV
b (B).

Proof. Let G be a Cartesian graph bundle with fibre F over the base graph
B, graph F be (a + 1)-connected, a > 0, graph B be (b + 1)-connected,
b > 0, and let D(a−1,1)(F ) ≤ DV

a (F ), D(b−1,1)(B) ≤ DV
b (B). Then DV

a (F ) ≥ 2,
DV

b (B) ≥ 2, and Cartesian bundle G is (a+ b+ 2)-connected. Let X ⊆ V (G)
be a set of faulty vertices, |X| = a + b + 1, and let x, y ∈ V (G) \ X be two
distinct nonfaulty vertices in G. We shall consider the distance dG\X(x, y).

• Suppose first that x and y are in the same fibre, i.e. p(x) = p(y).
If |X ∩ V (Fx)| ≤ a, then dG\X(x, y) ≤ DV

a (F ).
If |X ∩ V (Fx)| > a, then outside of fibre Fx there are at most b faulty
vertices. As graph B is (b+ 1)-connected, there are at least b+ 1 neighbors
of vertex p(x) in B. Therefore there exist a neighbor v of vertex p(x) in

B, such that |X ∩ F (v)| = 0, and there is a path x → x′ P
→ y′ → y,

which avoids X , where x′, y′ ∈ F (v) and ℓ(P ) ≤ D(F ). Thus dG\X(x, y) ≤
1 +D(F ) + 1 ≤ DV

a (F ) +DV
b (B).

• Now assume that x and y are in distinct fibres, i.e. p(x) 6= p(y). Let XB =
{v ∈ V (B) \ {p(x), p(y)}; |X ∩ F (v)| > 0}. We distinguish two cases.
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(1) If |XB| ≥ b, then letX ′
B ⊆ XB be an arbitrary subset ofXB with |X ′

B| = b.
The subgraph B \X ′

B is a connected graph and there exists a path Q in
B \X ′

B from p(x) to p(y) with ℓ(Q) ≤ DV
b (B). In p−1(Q) = F✷Q there

are at most a+ 1 faulty vertices. Let x′ ∈ Fy be the endpoint of the path
Q̃x, the lift of Q. We distinguish two cases.
(a) If x′ = y, then Q̃x is a path from x to y in G. If Q̃x avoids X , then

dG\X(x, y) ≤ ℓ(Q) ≤ DV
b (B). If Q̃x does not avoid X , then there

are at most a faulty vertices outside of the path Q̃x in F✷Q. As the
graph F is (a + 1)-connected, there are at least a + 1 neighbors of
x in Fx. Since there are more neighbors than faulty vertices (outside
of Q̃x in F✷Q), there exists a neighbor v ∈ V (Fx) of x, such that
the lift Q̃v avoids X . The endpoint of the path Q̃v in fibre Fy is a
neighbor of y, therefore dG\X(x, y) ≤ 1+ℓ(Q)+1 ≤ DV

a (F )+DV
b (B).

(b) Let x′ 6= y. If |V (Fx) ∩X| = a + 1 or |V (Fy) ∩X| = a + 1, then
obviously dG\X(x, y) ≤ ℓ(Q) +D(F ) ≤ DV

b (B) +DV
a (F ).

Now assume |V (Fx) ∩X| ≤ a and |V (Fy) ∩X| ≤ a. If Q̃x or Q̃y

avoids X , then dG\X(x, y) ≤ ℓ(Q) + DV
a (F ) ≤ DV

b (B) + DV
a (F ).

Suppose that paths Q̃x and Q̃y do not avoid X . Then there are at
most a − 1 faulty vertices outside of paths Q̃x and Q̃y in F✷Q. Let

X ′ ⊆ V (Fy) be defined as X ′ = {v ∈ V (Fy) \ {x
′, y},

∣

∣

∣Q̃v ∩X
∣

∣

∣ > 0}.

Then |X ′| ≤ a−1. There is a path P from x′ to y in Fy \X
′ of length

ℓ(P ) ≤ DV
a−1(F ) ≤ DV

a (F ). Note that the path P internally avoids X .
If x′ and y are not adjacent, then ℓ(P ) ≥ 2. For the neighbor v′ of x′

on the path P , e′ = x′v′ ⊂ P , the lift Q̃v′ avoids X . Let v ∈ V (Fx) be

the endpoint of the lift Q̃v′ . Then the path x → v
Q̃
→ v′

P\e′

→ y avoids
X , therefore dG\X(x, y) ≤ 1 + ℓ(Q) +DV

a (F )− 1 ≤ DV
a (F ) +DV

b (B).
If x′ and y are adjacent, then remove from Fy the set of vertices X ′

and the edge e = x′y. There is a path P ′ from x′ to y in Fy \ (X
′ ∪

{e}) of length 2 ≤ ℓ(P ′) ≤ D(a−1,1)(F ), that internally avoids X . As

before, for the neighbor w′ of x′ on the path P ′ the lift Q̃w′ avoids X .
Therefore dG\X(x, y) ≤ 1+ℓ(Q)+D(a−1,1)(F )−1 ≤ DV

a (F )+DV
b (B).

(2) If |XB| < b, then the subgraph B \XB is (at least) 2-connected, thus also
2-edge connected. If the vertex p(y) is not a neighbor of p(x), then there is
a path Q from p(x) to p(y) in B with 2 ≤ ℓ(Q) ≤ DV

b−1(B) ≤ DV
b (B) that

internally avoidsXB. Let v ∈ V (Q) be a neighbor of p(x), e′ = p(x)v. Then

there is a path x → x′ P
→ y′

Q̃\e′

→ y, which avoids X , where x′, y′ ∈ F (v) and
ℓ(P ) ≤ D(F ). Thus dG\X(x, y) ≤ 1+D(F )+DV

b (B)−1 ≤ DV
a (F )+DV

b (B).
If e = p(x)p(y) ∈ E(B), then B \ (XB ∪ {e}) is a connected graph and
there is a path Q′ from p(x) to p(y) with 2 ≤ ℓ(Q′) ≤ D(b−1,1)(B) that
internally avoids XB. Similarly as before we have dG\X(x, y) ≤ 1+D(F )+
D(b−1,1)(B)− 1 ≤ DV

a (F ) +DV
b (B). ✷
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Theorem 5.1 improves Theorem 4.2 on the class of Cartesian graph bundles for
which both, the fiber and the base graph, are at least 2-connected. Theorem
5.1 also improves result of [27] on the Cartesian graph products with at least
2-connected factors. The next example shows that the bound of Theorem 5.1
is tight.

Example 5.2 Let F = B = K4 \ {e}. Then graph F is 2-connected and
DE

1 (F ) = DV
1 (F ) = 2. The vertex fault diameter of Cartesian graph product

F✷F on Fig. 2 is DV
3 (F✷F ) = DV

1 (F ) +DV
1 (F ) = 4.

Fig. 2. Cartesian graph product of two factors K4 \ {e}.

Example 5.3 Cycle C4 is 2-connected graph and DE
1 (C4) = DV

1 (C4) + 1 = 3.
The vertex fault diameter of Cartesian graph bundle G with fibre C4 over base
graph C4 on Fig. 3 is DV

3 (G) = DV
1 (C4) +DV

1 (C4) + 1 = 5.

\[

\[
\[

\[

Fig. 3. Twisted torus: Cartesian graph bundle with fibre C4 over base C4.

It is less known that graph bundles also appear as computer topologies. A
well known example is the twisted torus on Fig. 3. Cartesian graph bundle
with fibre C4 over base C4 is the ILLIAC IV architecture [7], a famous super-
computer that inspired some modern multicomputer architectures. It may be
interesting to note that the original design was a graph bundle with fibre C8

over base C8, but due to high cost a smaller version was build [35].

5.2 Edge fault diameter of Cartesian graph bundles

Let G be a k-edge connected graph and 0 ≤ a < k. Note that if a > 0 then
DE

a (G) ≥ 2 for any graph G. More precisely, DE
a (G) ≥ 2 if a > 0 or (a = 0

and G is not a complete graph). Furthermore, DE
a (G) = 1 if and only if a = 0

and G is a complete graph.
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Theorem 5.4 Let G be a Cartesian graph bundle with fibre F over the base
graph B, graphs F and B be kF -edge connected and kB-edge connected, respec-
tively, and let 0 ≤ a < kF , 0 ≤ b < kB. If for edge fault diameters of graphs
F and B, DE

a (F ) ≥ 2 and DE
b (B) ≥ 2 hold then

DE
a+b+1(G) ≤ DE

a (F ) +DE
b (B).

Proof. Let G be a Cartesian graph bundle with fibre F over the base graph
B, the graph F be (a + 1)-edge connected, DE

a (F ) ≥ 2, and the graph B be
(b+1)-edge connected, DE

b (B) ≥ 2. Then the Cartesian bundle G is (a+b+2)-
edge connected. Let Y ⊆ E(G) be the set of faulty edges, |Y | = a + b + 1.
Denote the set of degenerate edges in Y by YD, and the set of nondegenerate
edges by YN , Y = YN ∪YD, p(YD) ⊆ V (B), p(YN) ⊆ E(B). Let x, y ∈ V (G) be
two arbitrary distinct vertices in G. We shall consider the distance dG\Y (x, y).

• Suppose first that x and y are in the same fibre, i.e. p(x) = p(y).
If |YD ∩ E(Fx)| ≤ a, then dG\Y (x, y) ≤ DE

a (F ).
If |YD ∩ E(Fx)| > a, then outside of the fibre Fx there are at most b faulty
edges. As the graph B is (b + 1)-edge connected, there are at least b + 1
neighbors of the vertex p(x) inB. Therefore there exist a neighbor v of vertex
p(x) in B, e = p(x)v ∈ E(B), such that |YD ∩ F (v)| = 0 and p(e) /∈ p(YN),

and hence there is a path x → x′ P
→ y′ → y, which avoids Y , where x′, y′ ∈

F (v) and ℓ(P ) ≤ D(F ). Thus dG\Y (x, y) ≤ 1+D(F )+1 ≤ DE
a (F )+DE

b (B).
• Now assume that x and y are in distinct fibres, i.e. p(x) 6= p(y). We distin-
guish two cases.

(1) If |YN | ≥ b, then let Y ′
N ⊆ YN be an arbitrary subset of YN with |Y ′

N | = b.
The subgraph B \ p(Y ′

N) is a connected graph and there exists a path Q
from p(x) to p(y) with ℓ(Q) ≤ DE

b (B). In p−1(Q) = F✷Q there are at
most a + 1 faulty edges. Let x′ ∈ Fy be the endpoint of the path Q̃x, the
lift of Q. We distinguish two cases.
(a) If x′ = y, then Q̃x is a path from x to y in G. If Q̃x avoids Y , then

dG\Y (x, y) ≤ ℓ(Q) ≤ DE
b (B). If Q̃x does not avoid Y , then there are

at most a faulty edges outside of the path Q̃x in F✷Q. As the graph
F is (a + 1)-edge connected, there are at least a + 1 neighbors of x
in Fx. Since there are more neighbors than faulty edges (outside of
Q̃x in F✷Q) there exist a neighbor s ∈ V (Fx) of x, such that the

path x → s
Q̃
→ s′ → y avoids Y , where s′ ∈ V (Fy) is a neighbor of y,

therefore dG\X(x, y) ≤ 1 + ℓ(Q) + 1 ≤ DE
a (F ) +DE

b (B).
(b) Let x′ 6= y. If |E(Fx) ∩ Y | = a + 1 or |E(Fy) ∩ Y | = a + 1, then

obviously dG\Y (x, y) ≤ ℓ(Q) +D(F ) ≤ DE
b (B) +DE

a (F ).

Now let |E(Fx) ∩ Y | ≤ a and |E(Fy) ∩ Y | ≤ a. If Q̃x or Q̃y avoid
Y , then dG\Y (x, y) ≤ ℓ(Q) + DE

a (F ) ≤ DE
b (B) + DE

a (F ). Suppose

that paths Q̃x and Q̃y do not avoid Y . Then there are at most a− 1

13



faulty edges outside of paths Q̃x and Q̃y in F✷Q. Let Y ′
D ⊆ E(Fy)

be set of edges from x′ to such neighbors v′i ∈ V (Fy) for which the

paths v′i
Q̃
→ vi → x do not avoid faulty edges, Y ′

D = {e = x′v′ ∈

E(Fy);
∣

∣

∣(Q̃′
v ∪ vx) ∩ Y

∣

∣

∣ > 0, v = Q̃′
v∩Fx}. Note that if x

′ is a neighbor

of y then x′y ∈ Y ′
D. Then the subgraph Fy \ (Y

′
D ∪YD) is a connected

graph as there are at most a+ 1 faulty edges in p−1(Q) = F✷Q and
Q̃x does not avoid Y . Therefore there is a path P from x′ to y in
Fy \ (Y ′

D ∪ YD) of length 2 ≤ ℓ(P ) ≤ DE
a (F ), which avoids Y and

for the neighbor v′ of x′ on the path P , the lift Q̃v′ avoids Y . Let

v = Q̃v′ ∩ Fx. Then vx /∈ Y , and the path x → v
Q̃
→ v′

P\e′

→ y avoids
Y , thus dG\Y (x, y) ≤ 1 + ℓ(Q) + ℓ(P )− 1 ≤ DE

a (F ) +DE
b (B).

(2) If |YN | < b, then there is a path Q from p(x) to p(y) in B which avoids
p(YN) of length ℓ(Q) ≤ DE

b−1(B) ≤ DE
b (B). If |E(Fx) ∩ YD| ≤ a or

|E(Fy) ∩ Y | ≤ a, then obviously dG\Y (x, y) ≤ ℓ(Q) + DE
a (F ) ≤ DE

b (B) +
DE

a (F ).
Now let |E(Fx) ∩ Y | > a and |E(Fy) ∩ Y | > a. Then outside of the fi-
bres Fx and Fy there are at most b − 1 faulty edges. Let Y ′

N ⊆ E(B)
be set of edges from p(x) to such neighbors vi ∈ V (B) for which fibre
F (vi) contains faulty edges, Y ′

N = {e = p(x)v ∈ E(B); |F (v) ∩ YD| > 0}.
Note that if p(x) is a neighbor of p(y) then p(x)p(y) ∈ Y ′

N . Then the
subgraph B \ (Y ′

N ∪ p(YN)) is a connected graph as there are at most
b − 1 faulty edges outside of fibres Fx and Fy. Therefore there is a path
Q′ from p(x) to p(y) with 2 ≤ ℓ(Q′) ≤ DE

b (B) that avoids p(YN) and
there is no faulty edges in the fibre F (v) of the neighbor v of p(x) on

the path Q′, e = p(x)v ⊂ Q′. Hence there is a path x → x′ P
→ y′

Q̃\e
→ y,

which avoids Y , where x′, y′ ∈ F (v) and ℓ(P ) ≤ D(F ). Thus dG\Y (x, y) ≤
1 +D(F ) + ℓ(Q)− 1 ≤ DE

a (F ) +DE
b (B). ✷

Clearly, Theorem 5.4 improves Theorem 4.3 for all cases except in the following
two cases: either when a = 0 and F is a complete graph or when b = 0 and B
is a complete graph.
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[19] W. Imrich, T. Pisanski, J. Žerovnik, Recognizing Cartesian graph bundles,
Discrete Math. 167–168 (1997) 393–403.

[20] M. Krishnamoorthy, B. Krishnamurty, Fault diameter of interconnection
networks, Comput. Math. Appl. 13 (1987) 577–582.

[21] S. C. Liaw, G. J. Chang, F. Cao, D. F. Hsu, Fault-tolerant routing in circulant
networks and cycle prefix networks, Ann. Comb. 2 (1998) 165–172.

15

http://arxiv.org/abs/1002.2508


[22] W. Mader, Connectivity and edge-connectivity infinite graphs, Surveys in
Combinatorics. London Math. Soc. Lecture Notes 38 (1979), 66–95.

[23] T. Pisanski, J. Vrabec, Graph bundles, Preprint Ser. Dep. Math., vol. 20, no.
079, p. 213-298, Ljubljana, 1982.

[24] T. Pisanski, J. Shawe-Taylor, J. Vrabec, Edge-colorability of graph bundles, J.
Comb. Theory Ser. B 35 (1983) 12–19.
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