Clique cycle-transversals in distance-hereditary graphs

Andreas Brandstädt ${ }^{1}$, Simone Esposito ${ }^{2}$, Loana Tito Nogueira ${ }^{2}$, and Fábio Protti ${ }^{2}$
${ }^{1}$ Institut für Informatik, Universität Rostock, Germany, e-mail:ab@informatik.uni-rostock.de
${ }^{2}$ Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil, email: \{loana,fabio\}@ic.uff.br, simone.esposito@light.com.br

Abstract

A cycle-transversal of a graph G is a subset $T \subseteq V(G)$ such that $T \cap V(C) \neq \emptyset$ for every cycle C of G. A clique cycle-transversal, or $c c t$ for short, is a cycle-transversal which is a clique. Recognizing graphs which admit a cct can be done in polynomial time; however, no structural characterization of such graphs is known. We characterize distancehereditary graphs admitting a cct in terms of forbidden induced subgraphs. This extends similar results for chordal graphs and cographs.

1 Introduction

A cycle-transversal of a graph G is a subset $T \subseteq V(G)$ such that $T \cap V(C) \neq \emptyset$ for every cycle C of G. When T is a clique, we say that T is a clique cycle-transversal or simply cct. A graph admits a cct if and only if it can be partitioned into a complete subgraph and a forest; by this reason such a graph is also called a $(\mathcal{C}, \mathcal{F})$-graph in [3].
Finding a minimum cycle-transversal in a graph is NP-hard due to a general result in [12], which says that the problem of finding the minimum number of vertices of a graph G whose deletion results in a subgraph satisfying a hereditary property π on induced subgraphs is NP-hard. This result implies the NP-hardness of other problems involving cycletransversals, for instance the problem of finding a minimum odd cycle-transversal (which is equivalent to finding a maximum induced bipartite subgraph), or the problem of finding a minimum triangle-transversal (which is equivalent to finding a maximum induced trianglefree subgraph). Odd cycle-transversals are interesting due to their connections to perfect graph theory; in [11], an $O(m n)$ algorithm is developed to find odd cycle-transversals with bounded size. In [8], the authors study the problem of finding C_{k}-transversals, for a fixed integer k, in graphs with bounded degree; among other results, they describe a polynomial-time algorithm for finding minimum C_{4}-transversals in graphs with maximum degree three.

Graphs admitting a cct can be recognized in polynomial time, as follows. Note first that $(\mathcal{C}, \mathcal{F})$-graphs form a subclass of $(2,1)$-graphs (graphs whose vertex set can be partitioned into two stable sets and one clique). The strategy for recognizing a $(\mathcal{C}, \mathcal{F})$-graph G initially checks whether G is a (2,1)-graph, which can be done in polynomial time (see [2]). If so, then test, for each candidate clique Q of a $(2,1)$-partition of G, if $G-Q$ is acyclic (which can be done in linear time). If the test fails for all cliques Q, then G is not a $(\mathcal{C}, \mathcal{F})$-graph, otherwise G is a $(\mathcal{C}, \mathcal{F})$-graph. To conclude the argument, we claim that the number of candidate cliques Q is polynomial. Since G is a $(2,1)$-graph, let (B, Q) be a $(2,1)$-partition of $V(G)$ where B induces a bipartite subgraph and Q is a clique. Let (B^{\prime}, Q^{\prime}) be another (2,1)-partition of $V(G)$. Then $\left|Q^{\prime} \backslash Q\right| \leq 2$ and $\left|Q \backslash Q^{\prime}\right| \leq 2$, otherwise $G[B]$ or $G\left[B^{\prime}\right]$ would contain a triangle, which is impossible. Therefore, we can generate in polynomial time all the other candidate cliques Q^{\prime} from Q. This is the same argument used to count sparse-dense partitions (for more details see [7]). Although recognizing graphs admitting a cct can be done in polynomial time, no structural characterization of such graphs is known, even for perfect graphs.

A similar sparse-dense partition argument can be employed to show that an interesting superclass of $(\mathcal{C}, \mathcal{F})$-graphs, namely graphs admitting a clique triangle-transversal, can also be recognized in polynomial time. Such graphs are also known in the literature as $(1,2)$-split graphs. A characterization of this class is given in [13], where it has been proved that there are 350 minimal forbidden induced subgraphs for (1,2)-split graphs. When G is a perfect graph, being a $(1,2)$-split graph is equivalent to being a $(2,1)$-graph: observe that a perfect graph G contains a clique triangle-transversal if and only if G contains a clique that intersects all of its odd cycles. In [4] and [9], respectively, characterizations by forbidden induced subgraphs of cographs and chordal graphs which are (1,2)-split graphs are presented.
Deciding whether a distance-hereditary graph admits a cct can be done in linear-time using the clique-width approach, since the existence of a cct can be represented by a Monadic Second Order Logic (MSOL) formula using only predicates over vertex sets [6. 10]. However, no structural characterization for distance-hereditary graphs admitting a cct was known. In order to fill this gap, in this note we describe a characterization of distance-hereditary graphs with cct in terms of forbidden induced subgraphs.

2 Background

In this work, all graphs are finite, simple and undirected. Given a graph $G=(V(G), E(G))$, we denote by \bar{G} the complement of G. For $V^{\prime} \subseteq V(G), G\left[V^{\prime}\right]$ denotes the subgraph of G induced by V^{\prime}. Let $X=\left(V_{X}, E_{X}\right)$ and $Y=\left(V_{Y}, E_{Y}\right)$ be two graphs such that $V_{X} \cap V_{Y}=\emptyset$. The operations " + " and " \cup " are defined as follows: the disjoint union $X \cup Y$, sometimes referred simply as graph union, is the graph with vertex set $V_{X} \cup V_{Y}$ and edge set $E_{X} \cup E_{Y}$; the join $X+Y$ is the graph with vertex set $V_{X} \cup V_{Y}$ and edge set
$E_{X} \cup E_{Y} \cup\left\{x y \mid x \in V_{X}, y \in V_{Y}\right\}$.
Let $N(x)=\{y \mid y \neq x$ and $x y \in E\}$ denote the open neighborhood of x and let $N[x]=$ $\{x\} \cup N(x)$ denote the closed neighborhood of x. A cut-vertex is a vertex x such that $G[V \backslash\{x\}$ has more connected components than G. A block (or 2-connected component) of G is a maximal induced subgraph of G having no cut-vertex. A block is nontrivial if it contains a cycle; otherwise it is trivial.

For a set \mathcal{F} of graphs, G is \mathcal{F}-free if no induced subgraph of G is in \mathcal{F}.
Vertices x and y are true twins (false twins, respectively) in G if $N[x]=N[y](N(x)=N(y)$, respectively).
Adding a true twin (false twin, pendant vertex, respectively) y to vertex x in graph G means that for G and $y \notin V(G)$, a new graph G^{\prime} is constructed with $V\left(G^{\prime}\right)=V(G) \cup\{y\}$ and $E\left(G^{\prime}\right)=E(G) \cup\{x y\} \cup\{u y \mid u \in N(x)\}\left(E\left(G^{\prime}\right)=E(G) \cup\{u y \mid u \in N(x)\}\right.$, $E\left(G^{\prime}\right)=E(G) \cup\{x y\}$, respectively).

The complete (resp. edgeless) graph with n vertices is denoted by K_{n} (respectively I_{n}). The graphs K_{1} and K_{3} are called trivial graph and triangle, respectively. The chordless cycle (chordless path, respectively) with n vertices is denoted by C_{n} (P_{n}, respectively). The graph $C_{n}\left(\overline{C_{n}}\right.$, respectively) for $n \geq 5$ is a hole (anti-hole, respectively).

The house is the graph with vertices a, b, c, d, e and edges $a b, b c, c d, a d, a e, b e$. The $g e m$ is the graph with vertices a, b, c, d, e and edges $a b, b c, c d, a e, b e, c e, d e$. The domino is the graph with vertices a, b, c, d, e, h and edges $a b, b c, c d, a d, b e, e h, c h$.

Figure 1: House, hole, domino, and gem.
If H is an induced subgraph of G then we say that G contains H, otherwise G is H-free. A clique (resp. stable or independent set) is a subset of vertices inducing a complete (resp. edgeless) subgraph. A universal vertex is a vertex adjacent to all the other vertices of the graph. A split graph is a graph whose vertex set can be partitioned into a stable set and a clique. It is well known that G is a split graph if an only if G is $\left(2 K_{2}, C_{4}, C_{5}\right)$-free.
A star is a graph whose vertex set can be partitioned into a stable set and a universal vertex. A bipartite graph is a graph whose vertex set can be partitioned into two stable sets. A cograph is a graph containing no P_{4}. A chordal graph is a graph containing no C_{k}, for $k \geq 4$. A distance-hereditary graph is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. A threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the
following two operations: (a) addition of a single isolated vertex to the graph; (b) addition of a single universal vertex to the graph. It is well known that G is a threshold graph if an only if G is $\left(2 K_{2}, C_{4}, P_{4}\right)$-free.
If $T \cap V(C) \neq \emptyset$ for cycle C, we say that T covers C.

3 The forbidden subgraph characterization

The following well-known characterization of distance-hereditary graphs, also called $H H D G$ free graphs, will be fundamental for our result:

Theorem 1 [1] The following are equivalent for any graph G :
(i) G is a distance-hereditary graph.
(ii) G can be generated from a single vertex by repeatedly adding a pendant vertex, a false twin, or a true twin, respectively.
(iii) G is (house, hole, domino, gem)-free. (See Figure 1.)

Let $G=(V, E)$ be a graph, and for a vertex $x \in V$, let $N^{k}(x)=\left\{y \in V \mid \operatorname{dist}_{G}(x, y)=k\right\}$ for $k \geq 0$ denote the distance levels in G with respect to x. For $k=2$, let $R=V \backslash(N[x] \cup$ $\left.N^{2}(x)\right)$. The following are useful properties of distance-hereditary graphs:

Proposition 1 Let G be distance hereditary and $u, v \in N^{2}(x)$.
(i) If $u v \in E(G)$ or $u v \notin E(G)$ but connected by a path in $N^{2}(x) \cup R$ then $N(u) \cap N(x)=$ $N(v) \cap N(x)$.
(ii) If $N(x)$ is a stable set then for $u, v \in N^{2}(x)$ with $u v \notin E, N(u) \cap N(x)$ and $N(v) \cap$ $N(x)$ do not overlap.

Proof. (i): Since G is (house,hole)-free, u, v cannot have incomparable neighborhoods in $N(x)$. Moreover, since G is (house, hole, domino, gem)-free, the neighborhoods of u and v in $N(x)$ cannot properly contain one another, which shows Proposition 1 .
(ii): Let us suppose, by contradiction, that u and v overlap. In this case, let a, b, c be vertices in $N(x)$ such that $a u \in E(G)$, av $\notin E(G)$, bu, bv $\in E(G)$, cu $\notin E(G)$ and $c v \in E(G)$. Then $G[x, a, b, c, u, v]$ induces a domino, which is a contradiction.

Theorem 2 Let G be a distance-hereditary graph. Then G admits a clique cycle transversal if and only if G is $\left(G_{1}, \ldots, G_{12}\right)$-free.

G_{3}

G_{6}

G_{7}

Figure 2: Forbidden subgraphs for distance-hereditary graphs with cct.

Proof. It is easy to see that G_{1}, \ldots, G_{12} from Figure 2 have no cct. For the converse direction, let G^{\prime} be a distance-hereditary $\left(G_{1}, \ldots, G_{12}\right)$-free graph. By Theorem 1, G^{\prime} results, starting with a single vertex, by repeatedly applying one of the three operations in Theorem 1 (ii). Since adding a pendant vertex y to a vertex x in G does not create cycles with y, we can restrict ourselves to the following two cases: G^{\prime} results from G by either adding a true twin or a false twin y to vertex x in G, and in both cases, we have to show that G^{\prime} has a cct.

We can inductively assume that G has a cct Q. The vertex set $V(G)$ can be partitioned into $\{x\} \cup N(x) \cup N^{2}(x) \cup R$. Let $Q_{1}=Q \cap N(x), Q_{2}=Q \cap N^{2}(x)$ and $N_{1}(x)=N(x) \backslash Q_{1}$.

3.1 Case 1: y is a true twin to x.

Let G^{\prime} result from G by adding a true twin y to x in G. In this case, the possible cycles with y in G^{\prime} are triangles $x y a$ for $a \in N(x)$, triangles $y a b$ for $a, b \in N(x), a b \in E(G)$, and C_{4} 's $y a b c$ for $a, b \in N(x), a b \notin E(G), c \in N^{2}(x)$. If $x \in Q$ or, more generally, $Q \subseteq N[x]$, then $Q \cup\{y\}$ is a cct of G^{\prime}. Thus we have to consider the case $x \notin Q$. Since for a triangle $y a b$ also $x a b$ is a triangle which is covered by Q, the triangle yab is covered by Q, and similarly for the $C_{4} y a b c$ where $x a b c$ is a C_{4} in G covered by Q. Thus, we only have to
deal with triangles $x y a$.

Claim 1 If $x \notin Q$ then $G[N(x)]$ is a split graph with partition $\left(N_{1}(x), Q_{1}\right)$.

Proof of Claim 1. For each edge $a b \in G[N(x)], x a b$ is a triangle. Hence, a or b is in Q and $N_{1}(x)$ is a stable set. Since Q_{1} is a clique, the claim follows.
Since G^{\prime} is $\left(G_{1}, G_{2}, G_{3}\right)$-free, R induces a cycle-free subgraph in G.
Case 1.1: $G\left[N^{2}(x) \cup R\right]$ is cycle-free.
Claim 2 If $x \notin Q$ then G^{\prime} has a cct.
Proof of Claim 2. Since Q is a clique and $G\left[N^{2}(x) \cup R\right]$ is cycle-free, Q_{2} contains at most two vertices. If $Q_{2}=\emptyset$ then $Q \cup\{y\}$ is a cct of G^{\prime}. If a vertex $u \in Q_{2}$ has no neighbors in $N_{1}(x)$ then every cycle containing u also contains a vertex of Q_{1}, i.e., $Q \backslash\{u\}$ is still a cct of G. Thus, assume without loss of generality that every vertex in Q_{2} has a neighbor in $N_{1}(x)$.
If $Q_{2}=\{u, v\}$, the neighborhood of Q_{2} in $N_{1}(x)$ cannot contain two vertices a and b, otherwise by Claim 1 and Proposition 1 vertices x, y, a, b, u, v induce G_{5}. Hence u and v have precisely one neighbor $a \in N_{1}(x)$ which must be adjacent to all vertices of Q_{1}, otherwise if a misses a vertex $b \in Q_{1}$ then vertices x, y, a, b, u, v induce G_{5}. Therefore $(Q \backslash\{u, v\}) \cup\{a, y\}$ is a cct of G^{\prime}.
If $Q_{2}=\{u\}$, we consider two subcases:
(i) Vertex u has a neighbor $a \in N_{1}(x)$ which misses some vertex $b \in Q_{1}$. Then every cycle C in G containing a, u but no vertex of Q_{1} must also contain x. This is shown as follows: If C does not contain x then, by Proposition 1, C is either a triangle auv with $v \in N^{2}(x)$ or a C_{4} aucv with $c \in N_{1}(x), v \in N^{2}(x)$. In the former case by using Proposition 1, vertices x, y, a, b, u, v induce G_{5}. The latter case cannot occur since the existence of cycle aucv implies the existence of cycle axcv in G, not covered by Q. This implies that $(Q \backslash\{u\}) \cup\{x, y\}$ is a cct of G^{\prime}.
(ii) Every neighbor $a \in N_{1}(x)$ of u sees all vertices in Q_{1}. Then $Q \cup\{a\}$ is a cct of G for some $a \in N_{1}(x)$ and, since by Claim $1 N_{1}(x)$ is a stable set, every other neighbor $a^{\prime} \in N_{1}(x)$ of u misses some vertex in $Q_{1} \cup\{a\}$. By applying a similar argument as in (i), every cycle C in G containing a^{\prime}, u but no vertex of $Q_{1} \cup\{a\}$ must also contain x. We conclude that $(Q \backslash\{u\}) \cup\{x, y, a\}$ is a cct of G^{\prime}. This completes the proof of Claim 2 .

Case 1.2: $G\left[N^{2}(x) \cup R\right]$ is not cycle-free.
We now assume that $G\left[N^{2}(x) \cup R\right]$ contains a cycle C. This cycle can be one of the following types (see Figure 3):
$\left(A_{1}\right) C$ has exactly one vertex u in $N^{2}(x)$, and C is a C_{4}.
$\left(A_{2}\right) C$ has exactly one vertex u in $N^{2}(x)$, and C is a C_{3}.
$\left(B_{1}\right) C$ has exactly two vertices u, v in $N^{2}(x), u v \in E(G)$, and C is a C_{4}.
$\left(B_{2}\right) C$ has exactly two vertices u, v in $N^{2}(x), u v \in E(G)$, and C is a C_{3}.
$\left(B_{3}\right) C$ has exactly two vertices u, v in $N^{2}(x), u v \notin E(G)$, and C is a C_{4}.
$\left(C_{1}\right) C$ is a C_{4} with exactly three vertices u, v, w in $N^{2}(x)$ (which form a P_{3} in $N^{2}(x)$).
$\left(D_{1}\right) C$ is a C_{3} in $N^{2}(x)$.
$\left(D_{2}\right) C$ is a C_{4} in $N^{2}(x)$.
a)

b)

c)

d)

Figure 3: Cycles in $G\left[N^{2}(x) \cup R\right]$.

Claim $3 N(x)$ is a clique.

Proof of Claim 3. Suppose to the contrary that there are $a, b \in N(x)$ with $a b \notin E(G)$. Since G^{\prime} is $\left(G_{1}, G_{2}\right)$-free, a and b must see each cycle in $G\left[N^{2}(x) \cup R\right]$. If C is a cycle of type $\left(A_{1}\right)$ or $\left(A_{2}\right)$ in $G\left[N^{2}(x) \cup R\right]$, i.e., with exactly one vertex u in $N^{2}(x)$ then a and b see u and we obtain G_{7} or G_{8} - contradiction. If C is of type $\left(B_{3}\right)$ with $u, v, \in N^{2}(x)$, $u v \notin E(G)$, then both a and b have to see C, and if not both a and b see both u and v then there is either a hole or domino or G_{8}. Thus a and b see both u and v, i.e., there is G_{11} - contradiction.
We analyze the remaining cases by considering the following situation: If a sees vertex u and b sees vertex $v \neq u$ in $N^{2}(x)$ such that there exists a path linking u and v in $N^{2}(x)$ then by Proposition 1, a and b see a common edge $u^{\prime} v^{\prime}$; but then G^{\prime} contains G_{5} with $x, y, a, b, u^{\prime}, v^{\prime}$ - contradiction. This shows Claim 3.

Let $N_{C}^{2}(x)$ denote the set of all vertices in $N^{2}(x)$ which are contained in cycles of subgraph $G\left[N^{2}(x) \cup R\right]$. Since G is $\left(G_{1}, G_{2}, G_{3}\right)$-free, there is only one connected component in $G\left[N_{C}^{2}(x) \cup R\right]$. In addition, if $a \in N(x)$ then there is a triangle $x y a$, and a must see every cycle in $G\left[N_{C}^{2}(x) \cup R\right]$.

Claim 4 Every vertex in $N(x)$ sees every vertex in Q_{2}.
Proof of Claim 4. Since G^{\prime} is $\left(G_{1}, G_{2}, G_{3}\right)$-free, any vertex $a \in N(x)$ sees at least one vertex u in each cycle of $G\left[N^{2}(x) \cup R\right]$. Since by Claim 3, $N(x)$ is a clique, and by Proposition 1, all vertices in Q_{2} have the same neighborhood in $N(x)$, and vertex u sees a, all vertices in Q_{2} see all vertices in $N(x)$ which shows Claim 4 .
We conclude that if there is a cycle in $G\left[N^{2}(x) \cup R\right]$ and $x \notin Q$ then $N(x) \cup Q_{2}$ is a cct of G^{\prime}, which finishes the proof in Case 1.

3.2 Case 2: y is a false twin to x.

Let G^{\prime} result from G by adding a false twin y to x in G. We again inductively suppose that G has a cct Q. The possible cycles with y in G^{\prime} are triangles yab for $a, b \in N(x), a b \in E(G)$, C_{4} 's $y a b c$ for $a, b \in N(x), a b \notin E(G), c \in N^{2}(x)$, and C_{4} 's $x y a b$ for $a, b \in N(x)$.
If $|N(x)|=1$ then Q is also a cct of G^{\prime}. Now assume that $|N(x)| \geq 2$.
Recall that $V(G)$ is partitioned into $\{x\} \cup N(x) \cup N^{2}(x) \cup R$, and since G^{\prime} is $\left(G_{1}, G_{2}, G_{3}\right)$ free, R induces a cycle-free subgraph in G^{\prime}.
The fact below strengthens Claim 1.

Claim $5 G^{\prime}[N(x)]$ is a threshold graph.

Proof of Claim 5. Since G^{\prime} is distance hereditary, $N(x)$ is P_{4}-free, and since G^{\prime} is $G_{5^{-}}$and G_{6}-free, $N(x)$ is $2 K_{2^{-}}$and C_{4}-free, i.e., $G^{\prime}[N(x)]$ is a threshold graph which shows Claim 5 . \diamond

Case 2.1: $G\left[N^{2}(x) \cup R\right]$ is cycle-free.
We are going to show that also in this case, G^{\prime} has a cct.
Recall that G has a cct Q, and let $Q_{1}=Q \cap N(x), Q_{2}=Q \cap N^{2}(x), N_{1}(x)=N(x) \backslash Q_{1}$. As in Claim 2, Q_{2} can contain at most two vertices, and we can assume that every vertex in Q_{2} has a neighbor in $N_{1}(x)$. Moreover, if $Q_{2} \neq \emptyset$ then $x \notin Q$.
Case 2.1.1: $\left|Q_{2}\right|=2$.
Let $Q_{2}=\{u, v\}$; recall that by Proposition 1, u and v have the same neighborhood in $N_{1}(x)$. We distinguish between three subcases:
(i) If u, v have three neighbors a, b, c in (the stable set) $N_{1}(x)$ then vertices x, y, u, a, b, c (vertices x, y, v, a, b, c, respectively) induce G_{4} in G^{\prime}, which is impossible.
(ii) If u, v have exactly two neighbors a, b in $N_{1}(x)$ then there is no other vertex $c \in N_{1}(x)$, otherwise x, y, a, b, c, u, v induce G_{11} in G^{\prime}. In addition, since G^{\prime} is G_{4}-free and by Claim 5 , $G^{\prime}[N(x)]$ is a threshold graph, either a or b sees all vertices of Q_{1}, otherwise if a misses a^{\prime} and b misses b^{\prime} in Q_{1}, respectively, then either G^{\prime} contains G_{4} (if we can choose $a^{\prime}=b^{\prime}$) or there is a $P_{4} a b^{\prime} a^{\prime} b$ in $N(x)$. Suppose that a sees all vertices of Q_{1}. Then every cycle in G^{\prime} containing y also contains some vertex in $Q \cup\{a\}$, showing that $Q \cup\{a\}$ is a cct of G^{\prime}.
(iii) If u, v have exactly one neighbor a in $N_{1}(x)$, we analyze the neighborhood of a. If a misses some vertex $b \in Q_{1}$ then there is no other vertex $c \in N_{1}(x)$ (otherwise x, y, a, b, c, u, v induce G_{11} if $b c \notin E(G)$ or c, b, x, u, a induce house if $b c \in E(G)$), and hence every cycle in G^{\prime} containing y also contains some vertex in Q, i.e., Q is still a cct of G^{\prime}. If a sees all vertices in Q_{1}, every cycle containing u or v also contains some vertex in $Q_{1} \cup\{a\}$, and hence $(Q \backslash\{u, v\}) \cup\{a, y\}$ is a cct of G^{\prime}.
Case 2.1.2: $\left|Q_{2}\right|=1$.
Let $Q_{2}=\{u\}$. Since G^{\prime} is G_{4}-free, u has at most two neighbors in $N_{1}(x)$. If u has two neighbors a, b in $N_{1}(x)$ then, by Claim 5 and since G^{\prime} is G_{4}-free, one of them, say a, must see all vertices in Q_{1}, and this means that every cycle containing u also contains some vertex in $Q_{1} \cup\{a\}$ (recall that $G\left[N^{2}(x) \cup R\right]$ is cycle-free), i.e., $(Q \backslash\{u\}) \cup\{a, y\}$ is a cct of G^{\prime}. If u has precisely one neighbor a in $N_{1}(x)$ and a sees all vertices in Q_{1}, again $(Q \backslash\{u\}) \cup\{a, y\}$ is a cct of G^{\prime}; otherwise, a misses a vertex b in Q_{1}, and the analysis is as follows:
$\left(i^{\prime}\right)$ If $N_{1}(x)$ consists only of vertex a then every cycle in G^{\prime} containing y also contains a vertex of Q_{1}, and hence Q is a cct of G^{\prime}.
(ii') If $N_{1}(x)$ contains a vertex $c \neq a$, we must have $b c \notin E(G)$ (otherwise x, a, b, c, u induce a house). We show that there is no cycle C in G containing a, u but no vertex of Q_{1}. If there is such a cycle C then by Proposition 1, it must be a triangle auv with $v \in N^{2}(x)$, and then vertices x, y, a, b, c, u, v induce graph G_{11}, or it is a C_{4} auvw with $u, v \in N^{2}(x)$ and $w \in R$ but then there is a G_{12} or domino in G^{\prime}. We conclude that $(Q \backslash\{u\}) \cup\{y\}$ is a cct of G^{\prime}.

Case 2.1.3: $Q_{2}=\emptyset$.
In this case, $Q \subseteq N[x]$. If there is a cct Q of G with $x \notin Q$ then $Q \cup\{y\}$ is a cct of G^{\prime} and we are done. So we have to show that in Case 2.1.3, G has a cct Q with $Q \subseteq N(x)$.
In G, there are two types of cycles containing x : Triangles $x a b$ with $a, b \in N(x)$ and C_{4} 's $x a b c$ with $a, b \in N(x)$ and $c \in N^{2}(x)$. Recall that by Claim 5, $N(x)$ induces a threshold graph and in particular is partitioned into a clique Q_{1} and a stable set $N_{1}(x)$. Then Q_{1} (and in general, every maximal clique in $N(x)$) covers every triangle $x a b$ since $a b \in E$.
The case of C_{4} with x in G is more involved. Assume that there is a $C_{4} x a b c$ with
$a, b \in N(x)$ and $c \in N^{2}(x)$ which is not covered by Q_{1}. If vertex a (vertex b, respectively) sees all vertices in Q_{1} then the clique $Q_{1} \cup\{a\}\left(Q_{1} \cup\{b\}\right.$, respectively) covers xabc as well. Otherwise both a and b have non-neighbors in Q_{1}. Since by Claim 5, $N(x)$ is P_{4} free, a and b have a common non-neighbor, say d, in Q_{1}. It follows that $c d \notin E$ (otherwise x, y, c, a, b, d induce $\left.G_{4}\right)$. If a and b miss another vertex $d^{\prime} \in Q_{1}$ then $x, y, d, d^{\prime}, a, b, c$ induce G_{11}, a contradiction. Thus one of a and b, say a, has at most one non-neighbor, say d, in Q_{1}, and since $N(x)$ is a threshold graph, without loss of generality, the neighborhood of b in Q_{1} is contained in the neighborhood of a in Q_{1}; in particular, b misses d, and, as above, c misses d. Let e be a neighbor of d in $N^{2}(x)$.

Claim 6 Let e be a neighbor of d in $N^{2}(x)$. Then e misses a, b and c. (with a, b, c and d as described above).

Proof of Claim 6.

We begin by observing that if $c e \in E$, by Proposition 1 (i), c and e have the same neighbors in $N(x)$ which is impossible since e sees d and c misses d. Therefore $c e \notin E(G)$. In this case, by Proposition 1 (ii), if e sees one of a and b, it must see both of them but now, x, y, e, a, b, d induce G_{4} - a contradiciton. Then e must also miss both a and b. \diamond
Suppose that $Q_{1}^{\prime}:=\left(Q_{1} \backslash\{d\}\right) \cup\{a\}$ is not a cct of G. Note that $N(x) \backslash Q_{1}^{\prime}$ is stable. Then there is a cycle in G whose only vertex from Q_{1} is d. Obviously, if C is a cycle containing d and an edge in $N(x)$ then Q_{1}^{\prime} covers C since $N(x) \backslash Q_{1}^{\prime}$ is stable. Thus, we have to consider cycles without an edge in $N(x)$.
First consider a $C_{3} d u v$ with $u, v \in N^{2}(x)$. Then by Claim 6, u and v miss a, b and c, and now, together with y, G^{\prime} contains G_{9}, a contradiction. If d is in a $C_{4} d u v w$ with $u, v \in N^{2}(x)$ and $w \in R$ then very similarly, together with y, G^{\prime} contains G_{10}, a contradiction. Thus, d is not contained in any of such cycles.
If C is a C_{4} with $d, z \in N(x)$ and $u, v \in N^{2}(x)$ then, again by Claim 6, u and v miss a, b and c. Then z must see a and b, otherwise there is a house or G_{12} in G^{\prime}, together with y, but then $x a d z u$ induce a house, a contradiction.
This also happens when d is in a C_{4} with x and no vertex from Q_{1}^{\prime}. This final contradiction shows that in Case 2.1.3, there is a cct Q of G without x, and thus, there is a cct $Q \cup\{y\}$ in G^{\prime}.
Case 2.2: $G\left[N^{2}(x) \cup R\right]$ is not cycle-free.
As in Case 1, we now assume that $G\left[N^{2}(x) \cup R\right]$ contains a cycle C (which implies that in this case, $x \notin Q$ holds).

Claim $7 N(x)$ is I_{3}-free.
Proof of Claim 7. Assume that $G\left[N^{2}(x) \cup R\right]$ is not cycle-free and $N(x)$ contains a stable set of three vertices a_{1}, a_{2}, a_{3}. Let S be a maximal stable set in $N(x)$ containing a_{1}, a_{2}, a_{3}.

Recall that by Proposition 1, for vertices $u, v \in N^{2}(x)$ in the same connected component of $G\left[N^{2}(x) \cup R\right]$, their neighborhoods in S are equal. In addition, no vertex $u \in N^{2}(x)$ sees at least three vertices in S, otherwise G_{4} is contained in G^{\prime}. Thus, for every pair of vertices $u, v \in N^{2}(x), N(u) \cap S=N(v) \cap S \subseteq\left\{a_{1}, a_{2}\right\}$ holds.
If $u \in N^{2}(x)$ is in a cycle of type $\left(A_{1}\right)$ or $\left(A_{2}\right)$ then $x, y, a_{1}, a_{2}, a_{3}, u$ and the vertices of the remaining cycle induce G_{2}, G_{3}, G_{9} or G_{10}. If the cycle with $u, v \in N^{2}(x)$ is of type $\left(B_{1}\right)$, there is a house; if it is of type $\left(B_{2}\right)$ or $\left(D_{1}\right)$, there is G_{2} or G_{11}; if of type $\left(B_{3}\right)$, there is G_{3} or G_{12}; and finally, if of type $\left(C_{1}\right)$ or $\left(D_{2}\right)$, there is G_{3} or G_{11}. This shows Claim 7 . \diamond
We conclude that if y is a false twin to x and $G\left[N^{2}(x) \cup R\right]$ is not cycle-free then by Claim 7, $N_{1}(x)$ contains at most two vertices. If $\left|N_{1}(x)\right| \leq 1$ then Q is a cct of G^{\prime}. If $N_{1}(x)=\{a, b\}$ then by Claims 5 and 7 , one of them, say a, sees all vertices in Q_{1}. By Proposition 1, either $Q_{2} \cup\{a\}$ is a clique, and then $Q \cup\{a\}$ is a cct of G^{\prime}, or a sees no vertex of Q_{2}, and then let C be a cycle in $G\left[N^{2}(x) \cup R\right]$ and let $u \in V(C) \cap Q_{2}$. Since $x y a b$ is a C_{4} and G is $\left(G_{2}, G_{3}\right)$-free, there is an edge linking xyab and C. By Proposition 11, we conclude that b sees all vertices in $C \cap N^{2}(x)$ and, therefore, in Q_{2}. Now if there is some $a^{\prime} \in Q_{1}$ then x, a, a^{\prime}, b, u induce either a house or a gem - a contradiction. Therefore $Q_{1}=\emptyset$ and $Q_{2}^{\prime} \cup\{b\}$ is a cct of G^{\prime}. This finishes the proof in Case 2 and thus also the proof of Theorem 2 .

As a direct consequence of Theorem 2, we obtain another proof of a result in [3):

Corollary 1 If G is a cograph then G admits a clique cycle-transversal if and only if G is $\left(G_{1}, \ldots, G_{6}\right)$-free.

Proof. Graphs G_{1} to G_{6} admit no cct. Conversely, G is also $\left(G_{7}, \ldots, G_{12}\right)$-free (because all of them contain P_{4}). Since every cograph is a distance-hereditary graph, by Theorem 2 the corollary follows.

Corollary 2 Let G be a distance-hereditary graph. Then G is a (2,1)-graph if and only if G is $\left(G_{1}, G_{5}, G_{6}, G_{7}\right)$-free.

Proof. Graphs G_{1}, G_{5}, G_{6} and G_{7} are not (2,1)-graphs. Conversely, assume that G is $\left(G_{1}, G_{5}, G_{6}, G_{7}\right)$-free and G is not a (2,1)-graph. Let G^{\prime} be a minimal induced subgraph of G which is not a $(2,1)$-graph. Note that being a $(2,1)$-graph is equivalent to admitting a clique that intersects every odd cycle. Thus G^{\prime} does not admit a cct. By Theorem 2, G^{\prime} is isomorphic to one of the graphs $G_{1}, G_{2}, \ldots, G_{12}$. Since $G_{2}, G_{3}, G_{4}, G_{8}, G_{9}, G_{10}, G_{11}$, and G_{12} are (2,1)-graphs, it follows that G contains G_{1}, G_{5}, G_{6}, or G_{7} as an induced subgraph.

References

[1] H.-J. Bandelt, H.M. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory B 41 (1986) 182-208.
[2] A. Brandstädt. Partitions of graphs into one or two independent sets and cliques. Discrete Mathematics 152 (1996) 47-54. Corrigendum: Discrete Mathematics 186 (1998) 295.
[3] A. Brandstädt, S. Brito, S. Klein, L. T. Nogueira, F. Protti. Cycle transversals in perfect graphs and cographs. Submitted manuscript, 2011.
[4] R. S. F. Bravo, L. T. Nogueira, S. Klein. Cographs (k, l)-partitionable. Proc. of the 7th International Colloquium on Graph Theory. Electronic Notes in Discrete Mathematics 22 (2005) 277-280.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 1990.
[6] B. Courcelle, J. A. Makowsky, U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33 (2000) 125-150.
[7] T. Feder, P. Hell, S. Klein, R. Motwani. Complexity of Graph Partitions Problems. 31st Annual ACM Symposium on Theory of Computing (STOC 99) (1999) 464-472.
[8] M. Groshaus, P. Hell, S. Klein, L. T. Nogueira, F. Protti. Cycle Transversals in Bounded Degree Graphs. Discrete Mathematics and Theoretical Computer Science 13:1 (2011) 45-66.
[9] P. Hell, S. Klein, L. T. Nogueira, F. Protti. Partitioning chordal graphs into independent sets and cliques. Discrete Applied Mathematics 141 (2004) 185-194.
[10] M. Rao. MSOL partitioning problems on graphs of bounded treewidth and cliquewidth. Theoretical Computer Science 377 (2007) 260-267.
[11] B. Reed, K. Smith and A. Vetta. Finding odd cycle transversals. Operations Research Letters 32 (2004) 299-301.
[12] M. Yannakakis. Node- and edge-deletion NP-complete problems. Proceedings of the Tenth Annual ACM Symposium on Theory of Computing - STOC'r8, pp. 253-264, 1978, ACM Press.
[13] I. E. Zverovich, I. I. Zverovich. An Improvement of Gyárfás' bounds on the maximal order of a minimal forbidden induced subgraph for (1,2)-split graphs. Rutcor Research Report RRR 37-2002.

