Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs^{*}

Xueliang Li, Yaping Mao Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China lxl@nankai.edu.cn; maoyaping@ymail.com

Abstract

Let G be a graph, S be a set of vertices of G, and $\lambda(S)$ be the maximum number ℓ of pairwise edge-disjoint trees T_1, T_2, \dots, T_ℓ in G such that $S \subseteq V(T_i)$ for every $1 \leq i \leq \ell$. The generalized k-edge-connectivity $\lambda_k(G)$ of G is defined as $\lambda_k(G) = min\{\lambda(S)|S \subseteq V(G) \text{ and } |S| = k\}$. Thus $\lambda_2(G) = \lambda(G)$. In this paper, we consider the Nordhaus-Gaddum-type results for the parameter $\lambda_k(G)$. We determine sharp upper and lower bounds of $\lambda_k(G) + \lambda_k(\overline{G})$ and $\lambda_k(G) \cdot \lambda_k(\overline{G})$ for a graph G of order n, as well as for a graph of order n and size m. Some graph classes attaining these bounds are also given.

Keywords: edge-connectivity; Steiner tree; edge-disjoint trees; generalized edge-connectivity; complementary graph.

AMS subject classification 2010: 05C40, 05C05, 05C76.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the book [4] for graph theoretical notation and terminology not described here. For a graph G(V, E) and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or an Steiner tree connecting S (Shortly, a Steiner tree) is a subgraph T(V', E') of G which is a tree such that $S \subseteq V'$. Two Steiner trees T and T' connecting S are edge-disjoint if $E(T) \cap E(T') = \emptyset$. The Steiner Tree Packing Problem for a given graph G(V, E) and $S \subseteq V(G)$ asks to find a set of maximum number of edge-disjoint S-Steiner trees in G. This problem has obtained wide attention and many results have been worked out, see [18, 19, 20]. The problem for S = V(G) is called the Spanning Tree Packing Problem. For any graph G of order n, the spanning tree packing number or STP number, is the maximum number of edge-disjoint spanning trees contained in G. For the STP number, Palmer gave a good survey, see [17].

Recently, we introduced the concept of generalized edge-connectivity of a graph G in [13]. For $S \subseteq V(G)$, the generalized local edge-connectivity $\lambda(S)$ is the maximum number of edge-disjoint trees in G connecting S. Then the generalized k-edge-connectivity $\lambda_k(G)$

^{*}Supported by NSFC No.11071130 and the "973" project.

of G is defined as $\lambda_k(G) = \min\{\lambda(S) : S \subseteq V(G) \text{ and } |S| = k\}$. Thus $\lambda_2(G) = \lambda(G)$. Set $\lambda_k(G) = 0$ when G is disconnected. We call it the generalized k-edge-connectivity since Chartrand et al. in [5] introduced the concept of generalized (vertex) connectivity in 1984. There have been many results on the generalized connectivity, see [10, 11, 12, 13].

One can see that the Steiner Tree Packing Problem studies local properties of graphs, but the generalized edge-connectivity focuses on global properties of graphs. Actually, the STP number of a graph G is just $\lambda_n(G)$.

In addition to being natural combinatorial measures, the Steiner Tree Packing Problem and the generalized edge-connectivity can be motivated by their interesting interpretation in practice as well as theoretical consideration. For the practical backgrounds, we refer to [7, 8, 15].

From a theoretical perspective, both extremes of this problem are fundamental theorems in combinatorics. One extreme of the problem is when we have two terminals. In this case internally (edge-)disjoint trees are just internally (edge-)disjoint paths between the two terminals, and so the problem becomes the well-known Menger theorem. The other extreme is when all the vertices are terminals. In this case internally disjoint trees and edge-disjoint trees are just spanning trees of the graph, and so the problem becomes the classical Nash-Williams-Tutte theorem.

Theorem 1. (Nash-Williams [14], Tutte [16]) A multigraph G contains a system of ℓ edge-disjoint spanning trees if and only if

$$\|G/\mathscr{P}\| \ge \ell(|\mathscr{P}| - 1)$$

holds for every partition \mathscr{P} of V(G), where $||G/\mathscr{P}||$ denotes the number of crossing edges in G, i.e., edges between distinct parts of \mathscr{P} .

Corollary 1. Every 2ℓ -edge-connected graph contains a system of ℓ edge-disjoint spanning trees.

Let $\mathcal{G}(n)$ denote the class of simple graphs of order n and $\mathcal{G}(n,m)$ the subclass of $\mathcal{G}(n)$ having m edges. Give a graph theoretic parameter f(G) and a positive integer n, the Nordhaus-Gaddum(N-G) Problem is to determine sharp bounds for: (1) $f(G) + f(\overline{G})$ and (2) $f(G) \cdot f(\overline{G})$, as G ranges over the class $\mathcal{G}(n)$, and characterize the extremal graphs. The Nordhaus-Gaddum type relations have received wide investigations. Recently, Aouchiche and Hansen published a survey paper on this subject, see [3].

In this paper, we study $\lambda_k(G) + \lambda_k(\overline{G})$ and $\lambda_k(G) \cdot \lambda_k(\overline{G})$ for the parameter $\lambda_k(G)$ where $G \in \mathcal{G}(n)$ and $G \in \mathcal{G}(n, m)$.

2 Nordhaus-Gaddum-type results in $\mathcal{G}(n)$

The following observation is easily seen.

Observation 1. (1) If G is a connected graph, then $1 \le \lambda_k(G) \le \lambda(G) \le \delta(G)$;

(2) If H is a spanning subgraph of G, then $\lambda_k(H) \leq \lambda_k(G)$.

(3) Let G be a connected graph with minimum degree δ . If G has two adjacent vertices of degree δ , then $\lambda_k(G) \leq \delta - 1$.

Alavi and Mitchem in [2] considered Nordhaus-Gaddum-type results for the connectivity and edge-connectivity parameters. In [13] we were concerned with analogous inequalities involving the generalized k-connectivity and generalized k-edge-connectivity. We showed that $1 \leq \lambda_k(G) + \lambda_k(\overline{G}) \leq n - \lceil k/2 \rceil$, but this is just a starting result and now we will further study the Nordhaus-Guddum type relations.

To start with, let us recall the Harary graph $H_{n,d}$ on n vertices, which is constructed by arranging the n vertices in circular order and spreading the d edges around the boundary in a nice way, keeping the chords as short as possible. They have the maximum connectivity for their size and $\kappa(H_{n,d}) = \lambda(H_{n,d}) = \delta(H_{n,d}) = d$. Palmer [17] gave the *STP* number of some special graph classes.

Lemma 1. [17] (1) The STP number of a complete bipartite graph $K_{a,b}$ is $\lfloor \frac{ab}{a+b-1} \rfloor$. (2) The STP number of a Harary graph $H_{n,d}$ is $\lfloor d/2 \rfloor$.

Corresponding to (1) of Observation 1, we can obtain a sharp lower bound for the generalized k-edge-connectivity by Corollary 1. Actually, a connected graph G contains $\lfloor \frac{1}{2}\lambda(G) \rfloor$ spanning trees. Each of them is also a Steiner tree connecting S. So the following proposition is immediate.

Proposition 1. For a connected graph G of order n and $3 \le k \le n$, $\lambda_k(G) \ge \lfloor \frac{1}{2}\lambda(G) \rfloor$. Moreover, the lower bound is sharp.

In order to show the sharpness of this lower bound for k = n, we consider the Harary graph $H_{n,2r}$. Clearly, $\lambda(G) = 2r$. From (2) of Lemma 1, $H_{n,2r}$ contains r spanning trees, that is, $\lambda_n(H_{n,2r}) = r$. So $\lambda_n(H_{n,2r}) = \lfloor \frac{1}{2}\lambda(G) \rfloor$. For general k $(3 \le k \le n)$, one can check that the cycle C_n can attain the lower bound since $\frac{1}{2}\lambda(C_n) = 1 = \lambda_k(C_n)$.

The following proposition indicates that the monotone properties of λ_k , that is, $\lambda_n \leq \lambda_{n-1} \leq \cdots \geq \lambda_4 \leq \lambda_3 \leq \lambda$, is true for $2 \leq k \leq n$.

Proposition 2. For two integers k and n with $2 \le k \le n-1$, and a connected graph G, $\lambda_{k+1}(G) \le \lambda_k(G)$.

Proof. Assume $3 \leq k \leq n-1$. Set $\lambda_{k+1}(G) = \ell$. For each $S \subseteq V(G)$ with |S| = k, we let $S' = S \cup \{u\}$, where $u \notin S$. Since $\lambda_{k+1}(G) = \ell$, there exist ℓ edge-disjoint trees connecting S'. These trees are also ℓ edge-disjoint trees connecting S. So $\lambda_k(G) \geq \ell$ and $\lambda_{k+1}(G) \leq \lambda_k(G)$. Combining this with (1) of Observation 1, we get that $\lambda_{k+1}(G) \leq \lambda_k(G)$ for $2 \leq k \leq n-1$.

Now we give the lower bounds of $\lambda_k(G) + \lambda_k(\overline{G})$ and $\lambda_k(G) \cdot \lambda_k(\overline{G})$.

Lemma 2. Let $G \in \mathcal{G}(n)$. Then

- (1) $\lambda_k(G) + \lambda_k(\overline{G}) \ge 1;$
- (2) $\lambda_k(G) \cdot \lambda_k(\overline{G}) \ge 0.$

Moreover, the two lower bounds are sharp.

Proof. (1) If $\lambda_k(G) + \lambda_k(\overline{G}) = 0$, then $\lambda_k(G) = \lambda_k(\overline{G}) = 0$, that is, G and \overline{G} are all disconnected, which is impossible, and so $\lambda_k(G) + \lambda_k(\overline{G}) \ge 1$.

(2) By definition, $\lambda_k(G) \ge 0$ and $\lambda_k(\overline{G}) \ge 0$, and so $\lambda_k(G) \cdot \lambda_k(\overline{G}) \ge 0$.

The following observation indicates the graphs attaining the lower bound of (1) in Lemma 2.

Observation 2. $\lambda_k(G) \cdot \lambda_k(\overline{G}) = 0$ if and only if G or \overline{G} is disconnected.

In [13] we obtained the exact value of the generalized k-edge-connectivity of a complete graph K_n .

Lemma 3. [13] For two integers n and k with $2 \le k \le n$, $\lambda_k(K_n) = n - \lceil k/2 \rceil$.

For a connected graph G of order n, we know that $1 \leq \lambda_k(G) \leq \lambda_k(K_n) = n - \lceil k/2 \rceil$. In [13] we characterized the graphs attaining the upper bound.

Lemma 4. [13] For a connected graph G of order n with $3 \le k \le n$, $\lambda_k(G) = n - \lceil \frac{k}{2} \rceil$ if and only if $G = K_n$ for k even; $G = K_n \setminus M$ for k odd, where M is an edge set such that $0 \le |M| \le \frac{k-1}{2}$.

As we know, it is difficult to characterize the graphs with $\lambda_k(G) = 1$, even with $\lambda_3(G) = 1$. So we want to add some conditions to attack such a problem. Motivated by such an idea, we hope to characterize the graphs with $\lambda_k(G) + \lambda_k(\overline{G}) = 1$. Actually, the Norhaus-Gaddum-type problems also need to characterize the extremal graphs attaining the bounds.

Before studying the lower bounds of $\lambda_k(G) + \lambda_k(\overline{G})$ and $\lambda_k(G) \cdot \lambda_k(\overline{G})$, we give some graph classes (Every element of each graph class has order n), which will be used later.

For $n \geq 5$, \mathcal{G}_n^1 is a graph class as shown in Figure 1 (a) such that $\lambda(G) = 1$ and $d_G(v_1) = n - 1$ for $G \in \mathcal{G}_n^1$, where $v_1 \in V(G)$; \mathcal{G}_n^2 is a graph class as shown in Figure 1 (b) such that $\lambda(G) = 2$ and $d_G(u_1) = n - 1$ for $G \in \mathcal{G}_n^2$, where $u_1 \in V(G)$; \mathcal{G}_n^3 is a graph class as shown in Figure 1 (c) such that $\lambda(G) = 2$ and $d_G(v_1) = n - 1$ for $G \in \mathcal{G}_n^3$, where $v_1 \in V(G)$; \mathcal{G}_n^4 is a graph class as shown in Figure 1 (d) such that $\lambda(G) = 2$.

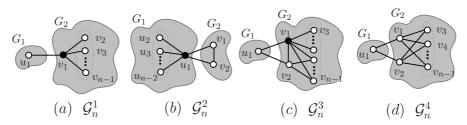


Figure 1. Graphs for Proposition 3 (The degree of a black vertex is n-1).

The following observation and lemma are some preparations for Proposition 3.

For $n \ge 5$, let $K_{2,n-2}^+$ and $K_{2,n-2}^{++}$ be two graphs obtained from the complete bipartite graph $K_{2,n-2}$ by adding one and two edges on the part having n-2 vertices, respectively.

Observation 3. (1) $\lambda_n(K_{2,n-2}^{++}) \geq 2$; (2) $\lambda_{n-1}(K_{2,n-2}^{+}) \geq 2$, $\lambda_n(K_{2,n-2}^{+}) = 1$; (3) $\lambda_{n-2}(K_{2,n-2}) \geq 2$, $\lambda_n(K_{2,n-2}) = \lambda_{n-1}(K_{2,n-2}) = 1$.

Proof. (1) As shown in Figure 2 (a), $\lambda_n(K_{2,n-2}^{++}) \ge 2$.

(2) As shown in Figure 2 (b), we have $\lambda_{n-1}(K_{2,n-2}^+) \ge 2$. Since $|E(K_{2,n-2}^+)| = 2(n-2) + 1$, $\lambda_n(K_{2,n-2}^+) \le \lfloor \frac{2(n-2)+1}{n-1} \rfloor$, which implies that $\lambda_n(K_{2,n-2}^+) \le 1$. Since $K_{2,n-2}^+$ is connected, $\lambda_n(K_{2,n-2}^+) = 1$.

(3) As shown in Figure 2 (c), it follows that $\lambda_{n-2}(K_{2,n-2}) \geq 2$. Let $U = \{u_1, u_2\}$ and $W = \{w_1, w_2, \cdots, w_{n-2}\}$ be two parts of the complete bipartite graph $K_{2,n-2}$. Choose $S = \{u_1, u_2, w_1, w_2, \cdots, w_{n-3}\}$. If there exists an S-tree containing vertex w_{n-2} , then this tree will use n-1 edges of $E(K_{2,n-2})$, which implies that $\lambda_{n-1}(K_{2,n-2}) \leq 1$ since $|E(K_{2,n-2})| = 2(n-2)$. Suppose that there is no S-tree containing vertex w_2 . Pick up a such tree, say T. Then there exists a vertex of degree 2 in T, which implies that there is no other S-tree in $K_{2,n-2}$. So $\lambda_{n-1}(K_{2,n-2}) \leq 1$. Since $K_{2,n-2}$ is connected, $\lambda_{n-1}(K_{2,n-2}) = 1$. From Proposition 2, $\lambda_n(K_{2,n-2}) = 1$.

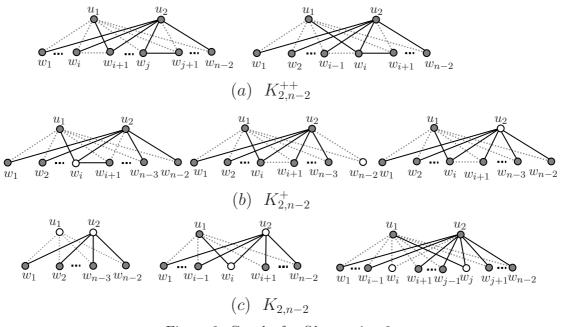


Figure 2. Graphs for Observation 2.

Lemma 5. Let G be a connected graph. If $\lambda(G) = 3$ and there exists a vertex $u \in V(G)$ such that $d_G(u) = n - 1$, then $\lambda_k(G) \ge 2$ for $3 \le k \le n$.

Proof. Let G_1, \dots, G_r be the connected components of $G \setminus u$. Since $\lambda(G) = 3$, it follows that $\delta(G_i) \geq 2$ $(1 \leq i \leq r)$. Let $|V(G_i)| = n_i$ $(1 \leq i \leq r)$ and $V(G_i) = \{v_{i1}, v_{i2}, \dots, v_{in_i}\}$. Then there exists an edge, without loss of generality, say $e_i = v_{i1}v_{i2} \in E(G_i)$ such that $G_i \setminus e_i$ is connected for $1 \leq i \leq r$. Thus $G_i \setminus e_i$ contains a spanning tree, say T_i $(1 \leq i \leq r)$. The trees $T = uv_{11} \cup T_1 \cup uv_{21} \cup T_2 \cup \dots \cup uv_{r1} \cup T_r$ and $T' = v_{11}v_{12} \cup uv_{12} \cup \dots \cup uv_{1n_1} \cup$ $v_{21}v_{22} \cup uv_{22} \cup \dots \cup uv_{2n_2} \cup \dots \cup v_{r1}v_{r2} \cup uv_{r2} \cup \dots \cup uv_{rn_r}$ are two spanning trees of G, that is, $\lambda_n(G) \geq 2$. Combining this with Proposition 2, $\lambda_k(G) \geq 2$ for $3 \leq k \leq n$. **Proposition 3.** $\lambda_k(G) + \lambda_k(\overline{G}) = 1$ if and only if G (symmetrically, \overline{G}) satisfies one of the following conditions:

(1) $G \in \mathcal{G}_n^1$ or $G \in \mathcal{G}_n^2$;

(2) $G \in \mathcal{G}_n^3$ and there exists a component G_i of $G \setminus v_1$ such that G_i is a tree and $|V(G_i)| < k$;

(3) $G \in \{K_{2,n-2}^+, K_{2,n-2}\}$ for k = n and $n \ge 5$, or $G \in \{P_3, C_3\}$ for k = n = 3, or $G \in \{C_4, K_4 \setminus e\}$ for k = n = 4, or $G = K_{3,3}$ for k = n = 6, or $G = K_{2,n-2}$ for k = n - 1 and $n \ge 5$, or $G = C_4$ for k = n - 1 = 3.

Proof. Necessity. Let G be a graph satisfying one of the conditions of (1), (2) and (3). One can see that G is connected and its complement \overline{G} is disconnected. Thus $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(G)$ and $\lambda_k(G) \ge 1$. We only need to show that $\lambda_k(G) \le 1$ for each graph G satisfying one of the conditions of (1), (2) and (3). For $G \in \mathcal{G}_n^1$, since $\delta(G) = 1$ we have $\lambda_k(G) \le 1$ by (1) of Observation 1. For $G \in \mathcal{G}_n^2$, it follows that $\lambda_k(G) \le \delta(G) - 1 = 1$ by (3) of Observation 1 since $d_G(v_1) = d_G(v_2) = \delta(G) = 2$. Suppose $G \in \mathcal{G}_n^3$ and there exists a connected component G_i of $G \setminus v_1$ such that G_i is a tree and $|V(G_i)| < k$. Set $V(G_i) = \{v_{i1}, v_{i2}, \cdots, v_{in_i}\}$. We choose $S \subseteq V(G)$ such that $V(G_i) \cup \{v_1\} = S' \subseteq S$. Then $|E(G[S'])| = 2n_i - 1$. Since every spanning tree of G[S'] uses $n_i - 1$ edges of E(G[S']), there exists at most one spanning tree of G[S'], which implies that there is at most one tree connecting S in G. So $\lambda_k(G) \le 1$. For $G = K_{2,n-2}$, $\lambda_n(G) = 1$ by (2) of Observation 3. For $G = K_{2,n-2}$, by (3) of Observation 3, we have $\lambda_n(K_{2,n-2}) = \lambda_{n-1}(K_{2,n-2}) = 1$. For $G = K_{3,3}$, $\lambda_n(G) \le \lfloor \frac{|E(G)|}{n-1} \rfloor = \lfloor \frac{9}{5} \rfloor = 1$. For $G \in \{P_3, C_3, C_4, K_4 \setminus e\}$, one can check that $\lambda_k(G) \le 1$ for k = n or k = n - 1. From these together with $\lambda_k(G) \ge 1$, we have $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(G) = 1$.

Sufficiency. Suppose $\lambda_k(G) + \lambda_k(\overline{G}) = 1$. Then $\lambda_k(G) = 1$ and $\lambda_k(\overline{G}) = 0$, or $\lambda_k(\overline{G}) = 1$ and $\lambda_k(G) = 0$. By symmetry, without loss of generality, we let $\lambda_k(G) = 1$ and $\lambda_k(\overline{G}) = 0$. From these together with Proposition 1, $\lambda(\overline{G}) = 0$ and $1 \leq \lambda(G) \leq 3$. So we have the following three cases to consider.

Case 1. $\lambda(G) = 1$.

For n = 3, one can check that $G = P_3$ satisfies $\lambda(G) = 1$ but $\lambda(\overline{G}) = 0$. Now we assume $n \ge 4$. Since $\lambda(G) = 1$, there exists at least one cut edge in G, say $e = u_1v_1$. Let G_1 and G_2 be two connected components of $G \setminus e$ such that $u_1 \in V(G_1)$ and $v_1 \in V(G_2)$. Set $V(G_1) = \{u_1, u_2, \cdots, u_{n_1}\}$ and $V(G_2) = \{v_1, v_2, \cdots, v_{n_2}\}$, where $n_1 + n_2 = n$. Suppose $n_i \ge 2$ (i = 1, 2). For any $u_i, u_j \in V(G_1)$, u_i and u_j are connected in \overline{G} since there exists a path $u_i v_2 u_j$ in \overline{G} ; for any $v_i, v_j \in V(G_2)$, v_i and v_j are connected in \overline{G} since there exists a path $v_i u_2 v_j$ in \overline{G} ; for any $u_i \in V(G_1)$ and $v_j \in V(G_2)$ $(i \ne 1 \text{ or } j \ne 1)$, $v_i v_j \in E(\overline{G})$. Clearly, the path $u_1 v_2 u_2 v_1$ connects u_1 and v_1 in \overline{G} . So \overline{G} is connected, a contradiction. Thus $n_1 = 1$ or $n_2 = 1$. Without loss of generality, let $n_1 = 1$. Then $V(G_1) = \{u_1\}$ and $V(G_2) = \{v_1, v_2, \cdots, v_{n-1}\}$. Clearly, G is a graph obtained from G_2 by attaching the edge $e = u_1 v_1$. Since $u_1 v_j \notin E(G)$ $(1 \le j \le n - 1), u_1 v_j \in E(\overline{G})$. If $d_G(v_1) \le n - 2$, then there exists one vertex v_j such that $v_1 v_j \in E(\overline{G})$, which results in $\lambda(\overline{G}) \ge 1$, a contradiction. So $d_G(v_1) = n - 1$ and $G \in \mathcal{G}_n^1$ (See Figure 1 (a)).

Case 2. $\lambda(G) = 2$.

For n = 3, 4, the graph $G \in \{C_3, C_4, K_4 \setminus e\}$ satisfies that $\lambda(G) = 2$ and $\lambda(\overline{G}) = 0$. Since $\lambda_3(C_3) = 1, \lambda_3(C_4) = 1, \lambda_4(C_4) = 1, \lambda_3(K_4 \setminus e) = 2$ and $\lambda_4(K_4 \setminus e) = 1$, we have $G = C_3$ for k = n = 3; $G \in \{C_4, K_4 \setminus e\}$ for k = n = 4; $G = C_4$ for k = n - 1 = 3. Now we assume $n \ge 5$. Since $\lambda(G) = 2$, there exists an edge cut M such that |M| = 2. Let G_1 and G_2 be two connected components of $G \setminus M, V(G_1) = \{u_1, \cdots, u_{n_1}\}$ and $V(G_2) = \{v_1, \cdots, v_{n_2}\}$, where $n_1 + n_2 = n$. Clearly, $G[M] = 2K_2$ or $G[M] = P_3$.

At first, we consider the case $G[M] = 2K_2$. Without loss of generality, let $M = \{u_1v_1, u_2v_2\}$. Since $n \ge 5$, $n_1 \ge 3$ or $n_2 \ge 3$. Without loss of generality, let $n_1 \ge 3$. Clearly, any two vertices $v_i, v_j \in V(G_2)$ are connected in \overline{G} since there exists a path $v_iu_3v_j$ in \overline{G} . Furthermore, for any $u_i \in V(G_1)$, $u_iv_1 \in E(\overline{G})$ or $u_iv_2 \in E(\overline{G})$. So \overline{G} is connected and $\lambda(\overline{G}) \ge 1$, a contradiction.

Next, we consider the case $G[M] = P_3$. Without loss of generality, let $P = v_1 u_1 v_2$ be the path of order 3. Since $n \ge 5$, there exist at least two vertices in $G \setminus \{u_1, v_1, v_2\}$. If $n_1 \ge 2$ and $n_2 \ge 3$, then we can check that \overline{G} is connected, a contradiction. So we assume that $n_1 = 1$ or $n_2 = 2$, that is, $V(G_2) = \{v_1, v_2\}$ or $V(G_1) = \{u_1\}$.

For the former, $V(G_1) = \{u_1, u_2, \cdots, u_{n-2}\}$. Since $\lambda(G) = 2, v_1v_2 \in E(G)$. Clearly, $v_1u_j, v_2u_j \notin E(G) \ (2 \leq j \leq n-2)$, which implies that $v_1u_j, v_2u_j \in E(\overline{G})$. Therefore, $u_1u_j \notin E(\overline{G}) \ (2 \leq j \leq n-2)$ since \overline{G} is disconnected. Thus $u_1u_j \in E(G)$ for each $j \ (2 \leq j \leq n-2)$. So $d_G(u_1) = n-1$ and $G \in \mathcal{G}_n^2$ (See Figure 1 (b)).

For the latter, let $V(G_2) = \{v_1, v_2, \dots, v_{n-1}\}$. First we consider the case $v_1v_2 \in E(G)$. Since $u_1v_j \notin E(G)$ $(3 \leq j \leq n-1)$, we have $u_1v_j \in E(\overline{G})$. If $3 \leq d_G(v_1) \leq n-2$ and $3 \leq d_G(v_2) \leq n-2$, then there exist two vertices v_i and v_j such that $v_1v_i, v_2v_j \in E(\overline{G})$ $(3 \leq i, j \leq n-1)$, which implies that \overline{G} is connected, a contradiction. So $d_G(v_1) = n-1$ or $d_G(v_2) = n-1$. Without loss of generality, let $d_G(v_1) = n-1$. Thus $G \in \mathcal{G}_n^3$ (See Figure 1 (c)). Now we focus on the graph $G \setminus v_1$. Let G_1, G_2, \dots, G_r be the connected components of $G \setminus v_1$ and $V(G_i) = \{v_{i1}, v_{i2}, \dots, v_{in_i}\}$ $(1 \leq i \leq r)$, where $\sum_{i=1}^r n_i = n-1$. If there exists some connected component G_i such that $G_i = K_2$, then $G \in \mathcal{G}_n^2$ (See Figure 1 (b)). So we assume $n_i \geq 3$. Then we prove the following claim and get a contradiction.

Claim 1. For each connected component G_i of $G \setminus v_1$, if $n_i \ge k$, or $n_i \le k - 1$ and $|E(G_i)| \ge n_i$, then $\lambda_k(G) \ge 2$ for $3 \le k \le n$.

Proof of Claim 1. For an arbitrary $S \subseteq V(G)$ with |S| = k, we only prove $\lambda(S) \geq 2$ for $v_1 \notin S$. The case for $v_1 \in S$ can be proved similarly. If there exists some connected component G_i such that $S = V(G_i)$, then $n_i = k$ and G_i has a spanning tree, say T_i . It is also a Steiner tree connecting S. Since $T'_i = v_1 v_{i1} \cup v_1 v_{i2} \cdots \cup v_1 v_{in_i}$ is another Steiner tree connecting S and T_i, T'_i are two edge-disjoint trees, we have $\lambda(S) \geq 2$. Let us assume now $S \neq V(G_i)$ for $n_i \geq k$ $(1 \leq i \leq r)$. Let $S_i = S \cap V(G_i)$ $(1 \leq i \leq r)$ and $|S_i| = k_i$. Clearly, $\bigcup_{i=1}^r S_i = S$ and $\sum_{i=1}^r k_i = k$. Thus $S_i \subset V(G_i)$ for each connected component G_i such that $n_i \geq k$, and $S_j \subseteq V(G_j)$ for each connected component G_j such that $n_j \leq k - 1$ and $|E(G_j)| \geq n_j$. We will show that there are two edge-disjoint Steiner trees connecting $S_i \cup \{v_1\}$ in $G[S_i \cup \{v_1\}]$ for each i $(1 \leq i \leq r)$ so that we can combine these trees to form two edge-disjoint Steiner trees connecting S in G. Suppose that G_i is a connected component such that $n_i \geq k$. Note that $V(G_i) = \{v_{i1}, v_{i2}, \cdots, v_{in_i}\}$. Since $S_i \subset V(G_i)$, there exists a vertex, without loss of generality, say v_i , such that $v_i \notin S_i$. Clearly, G_i contains a spanning tree, say T'_{i1} . Thus $T_{i1} = v_1v_{i1} \cup T'_{i1}$ is a Steiner tree connecting $S_i \cup \{v_1\}$ in $G[G_i \cup \{v_1\}]$. Since $T_{i2} = v_1v_{i2} \cup v_1v_{i3} \cup \cdots \cup v_1v_{in_i}$ is another Steiner tree connecting $S_i \cup \{v_1\}$. Clearly, T_{i1} and T_{i2} are edge-disjoint. Assume that G_j is a connected component such that $n_j \leq k-1$ and $|E(G_j)| \geq n_j$. Note that $V(G_j) = \{v_{j1}, v_{j2}, \cdots, v_{jn_j}\}$. Then there exists an edge, without loss of generality, say $e_j = v_{j1}v_{j2} \in E(G_j)$ such that $G_j \setminus e_j$ contains a spanning tree of G_j , say T'_{j1} . Thus $T_{j1} = v_1v_{j1} \cup T'_{j1}$ and $T_{j2} = v_{j1}v_{j2} \cup v_1v_{j2} \cup \cdots \cup v_1v_{jn_j}$ are two edge-disjoint Steiner trees connecting $S_j \cup \{v_1\}$. Now we combine these small trees connecting $S_i \cup \{v_1\}$ $(1 \leq i \leq r)$ by the vertex v_1 to form two big trees connecting S. Clearly, $T_1 = T_{11} \cup T_{21} \cup \cdots \cup T_{r1}$ and $T_2 = T_{12} \cup T_{22} \cup \cdots \cup T_{r2}$ are our desired trees, that is, $\lambda(S) \geq 2$. From the arbitrariness of S, we have $\lambda_k(G) \geq 2$.

By Claim 1, we know that $G \in \mathcal{G}_n^3$ and there exists a connected component G_i of $G \setminus \{v_1\}$ such that $n_i \leq k - 1$ and G_i is a tree.

We next consider the case $v_1v_2 \notin E(G)$ (See Figure 1 (d)). Thus $v_1v_2 \in E(\overline{G})$. Since $u_1v_j \notin E(G)$ $(3 \leq j \leq n-1)$, $u_1v_j \in E(\overline{G})$, which results in $v_1v_j, v_2v_j \notin E(\overline{G})$ since \overline{G} is disconnected. Thus $v_1v_j, v_2v_j \in E(G)$ for each j $(3 \leq j \leq n-1)$. Let $R = \{v_j | 3 \leq j \leq n-1\}$. If $|E(G[R])| \geq 2$, then G contains a subgraph $K_{2,n-2}^{++}$, which implies that $\lambda_n(G) \geq 2$ by (1) of Observation 3. Combining this with Proposition 2, $\lambda_k(G) \geq 2$ for $3 \leq k \leq n$, a contradiction. If |E(G[R])| < 2, then $G = K_{2,n-2}$ and $K_{2,n-2}^+$. From Observation 3 and Proposition 2, we have $\lambda_k(K_{2,n-2}^+) \geq 2$ for $3 \leq k \leq n-1$ and $\lambda_k(K_{2,n-2}) \geq 2$ for $3 \leq k \leq n-2$, a contradiction. So $G = K_{2,n-2}^+$ for k = n, or $G = K_{2,n-2}$ for k = n, or $G = K_{2,n-2}$ for k = n-1.

Case 3. $\lambda(G) = 3.$

For n = 4, $G = K_4$, $\lambda_3(G) = \lambda_4(G) = 2$ by Lemma 3. Then $\lambda_k(G) \ge 2$, a contradiction. Assume $n \ge 5$. Since $\lambda(G) = 3$, there exists an edge cut M such that |M| = 3. Let G_1

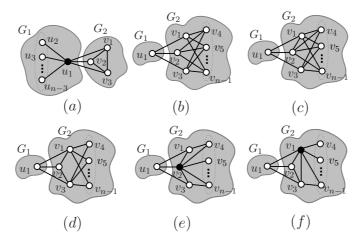


Figure 3. Graphs for Case 3 of Proposition 3.

and G_2 be two connected components of $G \setminus M$, $V(G_1) = \{u_1, u_2, \dots, u_{n_1}\}$ and $V(G_2) = \{v_1, v_2, \dots, v_{n_2}\}$, where $n_1 + n_2 = n$. Clearly, $G[M] = P_4$ or $G[M] = P_3 \cup K_2$ or $G[M] = 3K_2$ or $G[M] = K_{1,n-3}$. For the former three cases, $n_i \geq 3$ (i = 1, 2) and $n \geq 6$ since $\lambda(G) = 3$. To shorten the discussion, we only prove $\lambda(\overline{G}) \geq 1$ for $G[M] = P_4$ and get a contradiction among the former three cases. Without loss of generality, let

 $G[M] = P_4 = u_1 v_1 u_2 v_2$. For any $u_i, u_j \in V(G_1)$ $(1 \leq i \leq n_1)$, u_i and u_j are connected in \overline{G} since there exists a path $u_i v_3 u_j$ in \overline{G} ; for any $v_i, v_j \in V(G_2)$ $(1 \leq i \leq n_2)$, v_i and v_j are connected in \overline{G} since there exists a path $v_i u_3 v_j$ in \overline{G} ; for any $u_i \in V(G_1)$ and $v_j \in V(G_2)$ $(i \neq 3 \text{ and } j \neq 3)$, u_i and u_j are connected in \overline{G} since there exists a path $u_i v_3 u_3 v_j$ in \overline{G} . Since $u_3 v_j \in E(\overline{G})$ $(1 \leq j \leq n_2)$ and $v_3 u_i \in E(\overline{G})$ $(1 \leq i \leq n_1)$, \overline{G} is connected, a contradiction.

Now we consider the graph G such that $G[M] = K_{1,n-3}$. Assume $n_1 \ge 2$. If $n_2 \ge 4$, then we can check that \overline{G} is connected and get a contradiction. Therefore, $n_2 = 3$, $V(G_2) = \{v_1, v_2, v_3\}$ and $V(G_1) = \{u_1, u_2 \cdots, u_{n-3}\}$. Since $\lambda(G) = 3$, it follows that $v_1v_2, v_2v_3, v_1v_3 \in E(G)$. Since $v_iu_j \notin E(G)$ $(1 \le i \le 3, 2 \le j \le n-3)$, we have $v_iu_j \in E(\overline{G})$. If there exists some vertex u_j $(2 \le j \le n-3)$ such that $u_1u_j \in E(\overline{G})$, then \overline{G} is connected, a contradiction. So $u_1u_j \in E(G)$ for $2 \le j \le n-3$. Thus $d_G(u_1) = n-1$ (See Figure 3 (a)). From Lemma 5, $\lambda_k(G) \ge 2$ for $3 \le k \le n$ since $\lambda(G) = 3$, a contradiction.

Let us now assume $n_1 = 1$. Then $V(G_1) = \{u_1\}$ and $V(G_2) = \{v_1, v_2 \cdots, v_{n-1}\}$. If $G[\{v_1, v_2, v_3\}] = 3K_1$ or $G[\{v_1, v_2, v_3\}] = 2K_1 \cup K_2$, then we have $u_1v_j \in E(\overline{G})$ since $u_1v_j \notin E(G)$ $(4 \le j \le n - 1)$. From this together with the fact that \overline{G} is disconnected and $v_1v_3, v_2v_3 \in E(\overline{G}), v_iv_j \notin E(\overline{G})$ $(1 \le i \le 3, 4 \le j \le n - 1)$, we have that $v_iv_j \in E(G)$ $(1 \le i \le 3, 4 \le j \le n - 1)$. Thus G contains a complete bipartite graph $K_{3,n-3}$ as its subgraph (See Figure 3 (b) and (c)). From (1) of Lemma 1, $\lambda_n(G) = \lfloor \frac{3(n-3)}{n-1} \rfloor \ge 2$ for $n \ge 7$, which implies $\lambda_k(G) \ge 2$ for $3 \le k \le n$ and $n \ge 7$. Since $\lambda(G) = 3, n \ge 6$. So we only need to consider the case n = 6. Thus $G = H_i$ $(1 \le i \le 4)$ (See Figure 4). If $G = H_i$ $(2 \le i \le 4)$, then $\lambda_n(G) \ge 2$ for k = n = 6 (See Figure 4 (b), (c), (d)). Therefore $\lambda_k(G) \ge 2$ for $3 \le k \le 6$. If $G = H_1$, then $\lambda_n(G) \le \lfloor \frac{|E(G)|}{n-1} \rfloor = \lfloor \frac{9}{5} \rfloor = 1$ for k = n = 6. For k = 5, we can check that $\lambda_3(G) \ge \lambda_4(G) \ge \lambda_5(G) \ge 2$ (See Figure 4 (e)). So $G = K_{3,3}$ for k = n = 6.

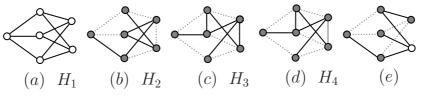


Figure 4. Graphs for Case 3 of Proposition 3.

Suppose $G[\{v_1, v_2, v_3\}] = P_3$. Without loss of generality, let $v_1v_2, v_2v_3 \in E(G)$. If $3 \leq d_G(v_2) \leq n-2$ (See Figure 3 (d)), then there exists at least one vertex v_j such that $v_2v_j \in E(\overline{G})$, which results in $v_1v_j, v_3v_j \notin E(\overline{G})$ $(4 \leq j \leq n-1)$ since $u_1v_j \in E(\overline{G})$ $(4 \leq j \leq n-1)$, $v_1v_3 \in E(\overline{G})$ and \overline{G} is disconnected. Thus $v_1v_j, v_3v_j \in E(G)$ for each j $(4 \leq j \leq n-1)$. Since $d(v_4) \geq \delta(G) \geq \lambda(G) = 3$, we have $v_4v_2 \in E(G)$ or there exists some vertex v_j $(5 \leq j \leq n-1)$ such that $v_4v_j \in E(G)$, which implies that Gcontains a subgraph $K_{2,n-2}^{++}$ and so $\lambda_n(G) \geq 2$ by (1) of Observation 3. From Proposition $2, \lambda_k(G) \geq 2$ for $3 \leq k \leq n$, a contradiction. If $d_G(v_2) = n-1$ (See Figure 3 (e)), then $\lambda_k(G) \geq 2$ for $3 \leq k \leq n$ by Lemma 5 since $\lambda(G) = 3$, a contradiction.

Suppose $G[\{v_1, v_2, v_3\}] = K_3$. Without loss of generality, let $v_1v_2, v_1v_3, v_2v_3 \in E(G)$.

If $d_G(v_1) = n - 1$ or $d_G(v_2) = n - 1$ or $d_G(v_3) = n - 1$ (See Figure 3 (f)), then by Lemma 5 $\lambda_k(G) \ge 2$ for $3 \le k \le n$ since $\lambda(G) = 3$, a contradiction. If $3 \le d_G(v_i) \le n - 2(1 \le i \le 3)$, then \overline{G} is connected, a contradiction.

We now investigate the upper bounds of $\lambda_k(G) + \lambda_k(\overline{G})$ and $\lambda_k(G) \cdot \lambda_k(\overline{G})$.

Lemma 6. Let $G \in \mathcal{G}(n)$. Then

- (1) $\lambda_k(G) + \lambda_k(\overline{G}) \le n \lceil k/2 \rceil;$
- (2) $\lambda_k(G) \cdot \lambda_k(\overline{G}) \leq \left[\frac{n \lfloor k/2 \rfloor}{2}\right]^2$.

Moreover, the two upper bounds are sharp.

Proof. (1) Since $G \cup \overline{G} = K_n$, $\lambda_k(G) + \lambda_k(\overline{G}) \leq \lambda_k(K_n)$. Combining this with Lemma 3, $\lambda_k(G) + \lambda_k(\overline{G}) \leq n - \lceil \frac{k}{2} \rceil$.

(2) The conclusion holds by (1).

Let us focus on (1) of Lemma 6. If one of G and \overline{G} is disconnected, we can characterize the graphs attaining the upper bound by Lemma 4.

Proposition 4. For any graph G of order n, if G is disconnected, then $\lambda_k(G) + \lambda_k(\overline{G}) = n - \lceil \frac{k}{2} \rceil$ if and only if $\overline{G} = K_n$ for k even; $\overline{G} = K_n \setminus M$ for k odd, where M is an edge set such that $0 \leq |M| \leq \frac{k-1}{2}$.

If both G and \overline{G} are all connected, we can obtain a structural property of the graphs attaining the upper bound although it seems too difficult to characterize them.

Proposition 5. If $\lambda_k(G) + \lambda_k(\overline{G}) = n - \lceil \frac{k}{2} \rceil$, then $\Delta(G) - \delta(G) \le \lceil \frac{k}{2} \rceil - 1$.

Proof. Assume that $\Delta(G) - \delta(G) \ge \lceil \frac{k}{2} \rceil$. Since $\lambda_k(\overline{G}) \le \delta(\overline{G}) = n - 1 - \Delta(G)$, $\lambda_k(G) + \lambda_k(\overline{G}) \le \delta(G) + n - 1 - \Delta(G) \le n - 1 - \lceil \frac{k}{2} \rceil$, a contradiction.

One can see that the graphs with $\lambda_k(G) + \lambda_k(\overline{G}) = n - \lceil \frac{k}{2} \rceil$ must have a uniform degree distribution. Actually, we can construct a graph class to show that the two upper bounds of Lemma 6 are tight for k = n.

Example 2. Let n, r be two positive integers such that n = 4r + 1. From (1) of Lemma 1, we know that the STP number of the complete bipartite graph $K_{2r,2r+1}$ is $\lfloor \frac{2r(2r+1)}{2r+(2r+1)-1} \rfloor = r$, that is, $\lambda_n(K_{2r,2r+1}) = r$. Let \mathcal{E} be the set of the edges of these rspanning trees in $K_{2r,2r+1}$. Then there exist $2r(2r+1) - 4r^2 = 2r$ remaining edges in $K_{2r,2r+1}$ except the edges in \mathcal{E} . Let M be the set of these 2r edges. Set $G = K_{2r,2r+1} \setminus M$. Then $\lambda_n(G) = r, M \subseteq E(\overline{G})$ and \overline{G} is a graph obtained from two cliques K_{2r} and K_{2r+1} by adding 2r edges in M between them, that is, one endpoint of each edge belongs to K_{2r} and the other endpoint belongs to K_{2r+1} . Note that $E(\overline{G}) = E(K_{2r}) \cup M \cup E(K_{2r+1})$. Now we show that $\lambda_n(\overline{G}) \ge r$. As we know, K_{2r} contains r Hamiltonian paths, say P_1, P_2, \cdots, P_r , and so does K_{2r+1} , say P'_1, P'_2, \cdots, P'_r . Pick up r edges from M, say e_1, e_2, \cdots, e_r , let $T_i = P_i \cup P'_i \cup e_i (1 \le i \le r)$. Then T_1, T_2, \cdots, T_r are r spanning trees in \overline{G} , namely, $\lambda_n(\overline{G}) \ge r$. Since $|E(\overline{G})| = {2r \choose 2} + {2r+1 \choose 2} + 2r = 4r^2 + 2r$ and each spanning tree uses 4r

edges, these edges can form at most $\lfloor \frac{4r^2+2r}{4r} \rfloor = r$ spanning trees, that is, $\lambda_n(\overline{G}) \leq r$. So $\lambda_n(\overline{G}) = r$.

Clearly, $\lambda_n(G) + \lambda_n(\overline{G}) = 2r = \frac{n-1}{2} = n - \lceil \frac{n}{2} \rceil$ and $\lambda_n(\overline{G}) \cdot \lambda_n(\overline{G}) = r^2 = \lfloor \frac{n - \lceil n/2 \rceil}{2} \rfloor^2$, which implies that the upper bound of Lemma 6 is sharp.

Combining Lemmas 2 and 6, we give our main result.

Theorem 2. Let $G \in \mathcal{G}(n)$. Then

(1) $1 \leq \lambda_k(G) + \lambda_k(\overline{G}) \leq n - \lceil k/2 \rceil;$ (2) $0 \leq \lambda_k(G) \cdot \lambda_k(\overline{G}) \leq \lceil \frac{n - \lceil k/2 \rceil}{2} \rceil^2.$

Moreover, the upper and lower bounds are sharp.

3 Nordhaus-Gaddum-type results in $\mathcal{G}(n,m)$

Achthan et. al. [1] restricted their attention to the subclass of $\mathcal{G}(n,m)$ consisting of graphs with exactly m edges. They investigated the edge-connectivity, diameter and chromatic number parameters. For edge-connectivity $\lambda(G)$, they showed that $\lambda(G) + \lambda(\overline{G}) \geq max\{1, n-1-m\}$. In this section, we consider a similar problem on the generalized edge-connectivity.

Lemma 7. If M is an edge set of the complete graph K_n such that $0 \le m \le \lfloor \frac{n}{3} \rfloor$ where |M| = m, then $G = K_n \setminus M$ contains ℓ edge-disjoint spanning trees, where $\ell = \min\{n - 2m - 1, \lfloor \frac{n}{2} - \frac{2m}{n-1} \rfloor\}$.

Proof. Let $\mathscr{P} = \bigcup_{i=1}^{p} V_i$ be a partition of V(G) with $|V_i| = n_i$ $(1 \le i \le p)$, and \mathcal{E}_p be the set of edges between distinct parts of \mathscr{P} in G. It suffices to show that $|\mathcal{E}_p| \ge \ell(|\mathscr{P}| - 1)$ so that we can use Nash-Williams-Tutte Theorem.

The case p = 1 is trivial, thus we assume $2 \le p \le n$. Then $|\mathcal{E}_p| \ge {n \choose 2} - \sum_{i=1}^p {n_i \choose 2} - [M_i] \ge {n \choose 2} - \sum_{i=1}^p {n_i \choose 2} - m$. We will show that ${n \choose 2} - \sum_{i=1}^p {n_i \choose 2} - m \ge \ell(p-1)$, that is, $\frac{n(n-1)}{2} - m - \ell(p-1) \ge \sum_{i=1}^p {n_i \choose 2}$. We only need to prove that $\frac{n(n-1)}{2} - m - \ell(p-1) \ge max\{\sum_{i=1}^p {n_i \choose 2}\}$. Since $f(n_1, n_2, \cdots, n_p) = \sum_{i=1}^p {n_i \choose 2}$ achieves its maximum value when $n_1 = n_2 = \cdots = n_{p-1} = 1$ and $n_p = n - p + 1$, we need the inequality $\frac{n(n-1)}{2} - m - \ell(p-1) \ge \frac{1}{2}(p-1) + \binom{n-p+1}{2}$, that is, $\frac{n(n-1)}{2} - m - \frac{(n-p+1)(n-p)}{2} \ge \ell(p-1)$. Actually, $\ell \le \frac{n(n-1)-(n-p+1)(n-p)-2m}{2(p-1)}$ is our required inequality, namely, $\ell \le n - \frac{1}{2} - (\frac{p-1}{2} + \frac{2m}{p-1})$. Since $f(x) = \frac{x}{2} + \frac{2m}{x}$ achieves its maximum value $max\{2m + \frac{1}{2}, \frac{n-1}{2} + \frac{2m}{n-1}\}$ when $1 \le x \le n-1$, we need $\ell \le min\{n-2m-1, \frac{n}{2} - \frac{2m}{n-1}\}$. Since this inequality holds for $0 \le m \le \lfloor \frac{n}{3} \rfloor$, we have $|\mathcal{E}_p| \ge {n \choose 2} - \sum_{i=1}^p {n_i \choose 2} - |M| \ge \ell(p-1)$. From Theorem 1, we know that G has ℓ edge-disjoint spanning trees.

Lemma 8. Let $G \in \mathcal{G}(n,m)$. For $n \ge 6$, we have

(1) $\lambda_k(G) + \lambda_k(\overline{G}) \ge L(n,m)$, where

$$L(n,m) = \begin{cases} max\{1, \lfloor \frac{1}{2}(n-2-m) \rfloor\} & \text{if } \lfloor \frac{n}{3} \rfloor + 1 \le m \le \binom{n}{2}, \\ min\{n-2m-1, \lfloor \frac{n}{2} - \frac{2m}{n-1} \rfloor\} & \text{if } 0 \le m \le \lfloor \frac{n}{3} \rfloor. \end{cases}$$

(2) $\lambda_k(G) \cdot \lambda_k(\overline{G}) \ge 0.$

Proof. (1) Since at least one of G and \overline{G} must be connected, we have $\lambda_k(G) + \lambda_k(\overline{G}) \geq 1$. For m < n - 1, $\lambda_k(G) + \lambda_k(\overline{G}) \geq \lfloor \frac{1}{2}\lambda(G) \rfloor + \lfloor \frac{1}{2}\lambda(\overline{G}) \rfloor \geq \lfloor \frac{1}{2}(\lambda(G) + \lambda(\overline{G}) - 1) \rfloor \geq \lfloor \frac{1}{2}(max\{1, n - 1 - m\} - 1) \rfloor \geq \lfloor \frac{1}{2}(n - 2 - m) \rfloor$ by Proposition 1. So $\lambda_k(G) + \lambda_k(\overline{G}) \geq max\{1, \lfloor \frac{1}{2}(n - 2 - m) \rfloor\}$. In particular, for $0 \leq m \leq \lfloor \frac{n}{3} \rfloor$, we can give a better lower bound of $\lambda_k(G) + \lambda_k(\overline{G})$ by Lemma 7, that is, $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(\overline{G}) \geq \lambda_n(\overline{G}) \geq min\{n - 2m - 1, \lfloor \frac{n}{2} - \frac{2m}{n-1} \rfloor\}$.

To show the sharpness of the above lower bound for $\lfloor \frac{n}{3} \rfloor + 1 \leq m \leq {n \choose 2}$, we consider the graph $G = K_{1,n-2} \cup K_1$. Then m = n-2 and \overline{G} is a graph obtained from a complete graph K_{n-1} by attaching a pendant edge. Clearly, $\lambda_k(G) = 0$ and $\lambda_k(\overline{G}) = 1$. So $\lambda_k(G) + \lambda_k(\overline{G}) = 1 = max\{1, \lfloor \frac{1}{2}(n-2-m) \rfloor\}$. To show the sharpness of the above lower bound for $0 \leq m \leq \lfloor \frac{n}{3} \rfloor$, we consider the graph $G = nK_1$. Thus m = 0 and $\overline{G} = K_n$. Since $\lambda_n(G) + \lambda_n(\overline{G}) = 0 + \lfloor \frac{n}{2} \rfloor = min\{n-2\cdot 0 - 1, \lfloor \frac{n}{2} - \frac{2\cdot 0}{n-1} \rfloor\}$, that is, the lower bound is sharp for k = n.

(2) The inequality follows from Theorem 2.

It was pointed out by Harary [9] that given the number of vertices and edges of a graph, the largest connectivity possible can also be read out of the inequality $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Theorem 3. [9] For each n, m with $0 \le n - 1 \le m \le {n \choose 2}$,

$$\kappa(G) \le \lambda(G) \le \left\lfloor \frac{2m}{n} \right\rfloor,$$

where the maximum are taken over all graphs $G \in \mathcal{G}(n,m)$.

Now we will study a similar problem for the generalized edge-connectivity, which will be used in (2) of Lemma 9.

Corollary 2. For any graph $G \in \mathcal{G}(n,m)$ and $3 \leq k \leq n$, $\lambda_k(G) = 0$ for m < n-1; $\lambda_k(G) \leq \lfloor \frac{2m}{n} \rfloor$ for $m \geq n-1$.

Proof. Let $G \in \mathcal{G}(n,m)$. When $0 \le m < n-1$, G must be disconnected and hence $\lambda_k(G) = 0$. If $m \ge n-1$, $\lambda_k(G) \le \lambda(G) \le \lfloor \frac{2m}{n} \rfloor$ by (1) of Observation 1 and Theorem 3.

Although the above bound of $\lambda_k(G)$ is the same as $\lambda(G)$, the graphs attaining the upper bound seems to be very rare. Actually, we can obtain some structural properties of these graphs.

Proposition 6. For any $G \in \mathcal{G}(n,m)$ and $3 \leq k \leq n$, if $\lambda_k(G) = \lfloor \frac{2m}{n} \rfloor$ for $m \geq n-1$, then

- (1) $\frac{2m}{n}$ is not an integer;
- (2) $\delta(G) = \lfloor \frac{2m}{n} \rfloor;$
- (3) for $u, v \in V(G)$ such that $d_G(u) = d_G(v) = \lfloor \frac{2m}{n} \rfloor$, $uv \notin E(G)$.

Proof. One can check that the conclusion holds for the case m = n - 1. Assume $m \ge n$. We claim that $\frac{2m}{n}$ is not an integer. Otherwise, let $r = \frac{2m}{n}$ be an integer. We will show that $\lambda_k(G) \le r - 1 = \frac{2m}{n} - 1$ and get a contradiction. If G has at least one vertex v_i such that $d(v_i) > r$, then, since the average degree of G is exactly r, there must be a vertex v_j whose degree $d(v_j) < r$. From (1) of Observation 1, we have $\lambda_k(G) \le \delta(G) \le d(v_j) < r$, that is, $\lambda_k(G) \le r - 1$. If, on the other hand, G is a regular graph, then by (3) of Observation 1, $\lambda_k(G) \le \delta(G) - 1 = r - 1$. So (1) holds.

For a graph G such that $\frac{2m}{n}$ is not an integer, $\lfloor \frac{2m}{n} \rfloor = \lambda_k(G) \le \delta(G) \le \lfloor \frac{2m}{n} \rfloor$, that is, $\delta(G) = \lfloor \frac{2m}{n} \rfloor$. So (2) holds.

For $u, v \in V(G)$ such that $d_G(u) = d_G(v) = \lfloor \frac{2m}{n} \rfloor$, we claim that $uv \notin E(G)$. Otherwise, $uv \in E(G)$. Since $d_G(u) = d_G(v) = \delta(G) = \lfloor \frac{2m}{n} \rfloor$, $\lambda_k(G) \leq \delta(G) - 1 = \lfloor \frac{2m}{n} \rfloor - 1$ by (3) of Observation 1, a contradiction. So (3) holds.

Corollary 3. For any graph G of order n and size m, if $\frac{2m}{n}$ is an integer, then $\lambda_k(G) \leq \frac{2m}{n} - 1$.

Lemma 9. Let $G \in \mathcal{G}(n,m)$. Then

(1) $\lambda_k(G) + \lambda_k(\overline{G}) \leq M(n,m)$, where

$$M(n,m) = \begin{cases} n - \lceil \frac{k}{2} \rceil & \text{if } m \ge n-1, \\ & \text{or } k \text{ is even and } m = 0, \\ & \text{or } k \text{ is odd and } 0 \le m \le \frac{k-1}{2}; \\ n - \lceil \frac{k}{2} \rceil - 1 & \text{if } k \text{ is even and } 1 \le m < n-1, \\ & \text{or } k \text{ is odd and } \frac{k+1}{2} \le m < n-1. \end{cases}$$

(2) $\lambda_k(G) \cdot \lambda_k(\overline{G}) \leq N(n,m)$, where

$$N(n,m) = \begin{cases} 0 & \text{if } 0 \le m \le n-2 \\ (\frac{2m}{n} - 1)(n - 2 - \frac{2m}{n}) & \text{if } m \ge n-1 \text{ and } 2m \equiv 0 \pmod{n}, \\ \lfloor \frac{2m}{n} \rfloor (n - 2 - \lfloor \frac{2m}{n} \rfloor) & \text{otherwise.} \end{cases}$$

Moreover, these upper bounds are sharp.

Proof. From Theorem 2, (1) holds for $m \ge n-1$. We have given a graph class to show that the upper bound is sharp. From Proposition 4, $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(\overline{G}) = n - \lceil \frac{k}{2} \rceil$ for k even and m = 0, or k odd and $0 \le m \le \frac{k-1}{2}$. So for k even and $1 \le m < n-1$, or k odd and $\frac{k+1}{2} \le m < n-1$, $\lambda_k(G) + \lambda_k(\overline{G}) \le n - \lceil \frac{k}{2} \rceil - 1$.

To prove the sharpness of the bound for k odd and $\frac{k+1}{2} \leq m < n-1$, we consider the graph $G = K_{1,\frac{k+1}{2}} \cup (n - \frac{k+3}{2})K_1$. Now \overline{G} is a graph obtained from the complete graph K_n by deleting all the edges of a star $K_{1,\frac{k+1}{2}}$. On one hand, by Lemma 4, $\lambda_k(\overline{G}) \leq n - \frac{k+1}{2} - 1$. On the other hand, by Lemma 4, we have $\lambda_k(\overline{G} + e) = n - \frac{k+1}{2}$ for any $e \notin E(\overline{G})$, which implies that $\lambda_k(\overline{G}) \geq n - \frac{k+1}{2} - 1$ (Note that $\lambda_k(H \setminus e) \geq \lambda_k(H) - 1$ for a connected graph H, where $e \in E(H)$). So $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(\overline{G}) = n - \frac{k+1}{2} - 1$. By the same reason, for

k even and $1 \le m < n-1$ one can check that the graph $G = K_2 \cup (n-2)K_1$ satisfies that $\lambda_k(G) + \lambda_k(\overline{G}) = \lambda_k(\overline{G}) \ge n - \frac{k}{2} - 1.$

(2) First, if $0 \le m \le n-2$, then $G \in \mathcal{G}(n,m)$ is disconnected. So $\lambda_k(G) \cdot \lambda_k(\overline{G}) = 0$. Next if $\frac{2m}{n} = r$ is an integer, then $\frac{2e(\overline{G})}{n} = n-1-r$ is also an integer. From Corollary 3, we have $\lambda_k(G) \le r-1$ and $\lambda_k(\overline{G}) \le n-2-r$. So $\lambda_k(G) \cdot \lambda_k(\overline{G}) \le (r-1)(n-2-r) = (\frac{2m}{n}-1)(n-2-\frac{2m}{n})$. Finally, if $2m = nr + \ell$ where $1 \le \ell \le n-1$, then $\Delta(G) \ge r+1$. By (1) of Observation 1, $\lambda_k(\overline{G}) \le \delta(\overline{G}) = n-1-\Delta(G) \le n-2-r$. So $\lambda_k(G) \cdot \lambda_k(\overline{G}) \le r(n-2-r) = \lfloor \frac{2m}{n} \rfloor (n-2-\lfloor \frac{2m}{n} \rfloor)$.

To show the sharpness of the upper bound for $m \ge n-1$ and $2m \equiv 0 \pmod{n}$, we consider the following example.

Example 3. Let G be a cycle $C_n = w_1 w_2 \cdots w_n w_1 (n \ge 9)$. Since $\frac{2m}{n} = 2$ is an integer, $\lambda_3(G) = \frac{2m}{n} - 1 = 1$. It suffices to prove that $\lambda_3(\overline{G}) = n - 2 - \frac{2m}{n} = n - 4$.

Choose $S = \{x, y, z\} \subseteq V(C_n) = V(G)$. We will show that $\lambda(S) \ge n-4$. If $d_{C_n}(x, y) = 1$ and $d_{C_n}(y, z) = 1$, without loss of generality, let $N_{C_n}(x) = \{x_1, y\}$ and $N_{C_n}(z) = \{y, z_2\}$, then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xz \cup zx_1 \cup x_1y$ form n-4 edgedisjoint S-trees (See Figure 5 (a)), namely, $\lambda(S) \ge n-4$, where $\{w_1, w_2, \cdots, w_{n-5}\} = V(G) \setminus \{x, y, z, x_1, z_2\}$.

If $d_{C_n}(x,y) = 2$ and $d_{C_n}(y,z) = 1$, without loss of generality, let $N_{C_n}(x) = \{x_1, y_1\}$ and $N_{C_n}(z) = \{y_1, z\}$ and $N_{C_n}(z) = \{y, z_2\}$, then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xy \cup xz$ and $T_2 = z_2x \cup z_2y \cup z_2y_1 \cup y_1z$ form n - 4 edge-disjoint S-trees (See Figure 5 (b)), namely, $\lambda(S) \ge n - 4$, where $\{w_1, w_2, \cdots, w_{n-6}\} = V(G) \setminus \{x, y, z, x_1, y_1, z_2\}$.

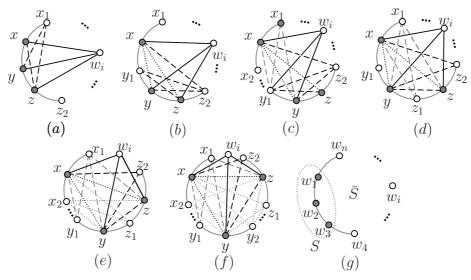


Figure 5. Graphs for Example 3.

If $d_{C_n}(x,y) \geq 3$ and $d_{C_n}(y,z) = 1$, without loss of generality, let $N_{C_n}(x) = \{x_1, x_2\}$ and $N_{C_n}(z) = \{y_1, z\}$ and $N_{C_n}(z) = \{y, z_2\}$, then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xy \cup xz$ and $T_2 = z_2x \cup z_2y \cup z_2y_1 \cup y_1z$ and $T_3 = xy_1 \cup y_1x_1 \cup x_1y \cup x_1z$ form n-4edge-disjoint S-trees (See Figure 5 (c)), namely, $\lambda(S) \geq n-4$, where $\{w_1, w_2, \cdots, w_{n-7}\} =$ $V(G) \setminus \{x, y, z, x_1, x_2, y_1, z_2\}$. If $d_{C_n}(x,y) = 2$ and $d_{C_n}(y,z) = 2$, without loss of generality, let $N_{C_n}(x) = \{x_1, y_1\}$ and $N_{C_n}(z) = \{y_1, z_1\}$ and $N_{C_n}(z) = \{z_1, z_2\}$, then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xz \cup xy$ and $T_2 = xz_2 \cup yz_2 \cup yz$ and $T_3 = x_1y \cup x_1z \cup x_1z_1 \cup xz_1$ form n - 4edge-disjoint S-trees (See Figure 5 (d)), namely, $\lambda(S) \ge n - 4$, where $\{w_1, w_2, \cdots, w_{n-7}\} =$ $V(G) \setminus \{x, y, z, x_1, y_1, z_1, z_2\}$.

If $d_{C_n}(x,y) \geq 3$ and $d_{C_n}(y,z) = 2$, without loss of generality, let $N_{C_n}(x) = \{x_1, x_2\}$ and $N_{C_n}(z) = \{y_1, z_1\}$ and $N_{C_n}(z) = \{z_1, z_2\}$, then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xz \cup xy$ and $T_2 = xz_2 \cup z_2y \cup yz$ and $T_3 = x_1y \cup x_1z \cup x_1y_1 \cup xy_1$ and $T_4 = x_2y \cup x_2z \cup x_2z_1 \cup z_1x$ form n - 4 edge-disjoint S-trees (See Figure 5 (e)), namely, $\lambda(S) \geq n - 4$, where $\{w_1, w_2, \cdots, w_{n-8}\} = V(G) \setminus \{x, y, z, x_1, x_2, y_1, y_2, z_2\}$.

Suppose that $d_{C_n}(x, y) \geq 3$ and $d_{C_n}(y, z) \geq 3$, without loss of generality, let $N_{C_n}(x) = \{x_1, x_2\}$ and $N_{C_n}(z) = \{y_1, y_2\}$ and $N_{C_n}(z) = \{z_1, z_2\}$. Then the trees $T_i = xw_i \cup yw_i \cup zw_i$ together with $T_1 = xz \cup xy$ and $T_2 = xz_2 \cup yz_2 \cup yz$ and $T_3 = xz_1 \cup yz_1 \cup y_2z_1 \cup y_2z_1$ and $T_4 = x_1y \cup x_1z \cup x_1y_1 \cup y_1x$ and $T_5 = x_2y \cup x_2z \cup x_2y_2 \cup y_2x$ form n - 4 edge-disjoint S-trees (See Figure 5 (f)), namely, $\lambda(S) \geq n - 4$, where $\{w_1, w_2, \cdots, w_{n-9}\} = V(G) \setminus \{x, y, z, x_1, x_2, y_1, y_2, z_1, z_2\}$.

From the arbitrariness of S, we know that $\lambda_3(\overline{G}) \ge n-4$ by definition. Now we show that $\lambda_3(\overline{G}) \le n-4$ for $\overline{G} = \overline{C_n}$. Choose $S = \{w_1, w_2, w_3\} \subseteq V(G) = V(C_n)$. Then $w_1w_n \in E(C_n)$ and $w_3w_4 \in E(C_n)$. Thus $|E(\overline{G}[S])| = 1$ and $|E_{\overline{G}}[S,\overline{S}]| = 3(n-3)-2$, which implies that $|E(\overline{G}[S]) \cup E_{\overline{G}}[S,\overline{S}]| = 3(n-3)-1$ (See Figure 5 (g)). One can see that each tree connecting S in \overline{G} uses at least 3 edges from $E(\overline{G}[S]) \cup E_{\overline{G}}[S,\overline{S}]$. Therefore $\lambda_3(\overline{G}) \le \frac{3(n-3)-1}{3} = n-3-\frac{1}{3}$, which results in $\lambda_3(\overline{G}) \le n-4$ since $\lambda_3(\overline{G})$ is an integer. So $\lambda_3(\overline{G}) = n-4$ and $\lambda_3(G) \cdot \lambda_3(\overline{G}) = \lambda_3(C_n) \cdot \lambda_3(\overline{C_n}) = 1 \cdot (n-4) = (\frac{2m}{n}-1)(n-2-\frac{2m}{n})$. The upper bound is sharp.

For $m \ge n-1$ and $\frac{2m}{n} = r + \ell (1 \le \ell \le n-1)$, let $G = P_4$. Then $\lambda_3(G) = 1 = \lfloor \frac{6}{4} \rfloor = \lfloor \frac{2m}{n} \rfloor$ and $\lambda_3(\overline{G}) = \lambda_3(P_4) = 1 = 4 - 2 - \lfloor \frac{6}{4} \rfloor = n - 2 - \lfloor \frac{2m}{n} \rfloor$. So $\lambda_3(G) \cdot \lambda_3(\overline{G}) = \lfloor \frac{2m}{n} \rfloor (n - 2 - \lfloor \frac{2m}{n} \rfloor)$.

Combining with Lemmas 8 and 9, we can obtain the following result.

Theorem 4. Let $G \in \mathcal{G}(n,m)$. For $n \ge 6$, we have

(1) $L(n,m) \leq \lambda_k(G) + \lambda_k(\overline{G}) \leq M(n,m);$ (2) $0 \leq \lambda_k(G) \cdot \lambda_k(\overline{G}) \leq N(n,m),$ where L(n,m), M(n,m), N(n,m) are defined in Lemmas 8 and 9.

Moreover, the upper and lower bounds are sharp.

References

- N. Achuthan, N. R. Achuthan, L. Caccetta, On the Nordhaus-Gaddum problems, Australasian J. Combin. 2(1990), 5-27.
- [2] Y. Alavi, J. Mitchem, The connectivity and edge-connectivity of complementary graphs, Lecture Notes in Math. 186(1971), 1-3.
- [3] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math., 2012.
- [4] J. Bondy, U. Murty, Graph Theory, GTM 244, Springer, 2008.

- [5] G. Chartrand, S.F. Kappor, L. Lesniak, D.R. Lick, *Generalized connectivity in graphs*, Bull. Bombay Math. Colloq. 2(1984), 1-6.
- [6] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
- [7] M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program. 78(1997), 265-281.
- [8] M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: A cutting plane algorithm and commputational results, Math. Program. 72(1996), 125-145.
- [9] F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci. USA 1142-1146.
- [10] H. Li, X. Li, Y. Sun, The generalied 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
- [11] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optim. 24(2012), 389-396.
- [12] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$, Discrete Math. 310(2010), 2147-2163.
- [13] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity, arXiv:1112.0127 [math.CO] 2011.
- [14] C.St.J.A, Nash-Williams, Edge-disjonint spanning trees of finite graphs, J. London Math. Soc. 36(1961), 445-450.
- [15] N. Sherwani, Algorithms for VLSI physical design automation, 3rd Edition, Kluwer Acad. Pub., London, 1999.
- [16] W. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36(1961), 221-230.
- [17] E. Palmer, On the spanning tree packing number of a graph: a survey, Discrete Math. 230(2001), 13-21.
- [18] M. Kriesell, Edge-disjoint trees containing some given vertices in a graph, J. Combin. Theory, Ser.B, 88(2003), 53-65.
- [19] M. Kriesell, Edge-disjoint Steiner trees in graphs without large bridges, J. Combin. Theory, Ser.B, 62(2009), 188-198.
- [20] H. Wu, D. West, Packing Steiner trees and S-connectors in graphs, J. Combin. Theory, Ser.B, 102(2012), 186-205.