Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs*

Xueliang Li, Yaping Mao
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; maoyaping@ymail.com

Abstract

Let G be a graph, S be a set of vertices of G, and $\lambda(S)$ be the maximum number ℓ of pairwise edge-disjoint trees $T_{1}, T_{2}, \cdots, T_{\ell}$ in G such that $S \subseteq V\left(T_{i}\right)$ for every $1 \leq i \leq \ell$. The generalized k-edge-connectivity $\lambda_{k}(G)$ of G is defined as $\lambda_{k}(G)=$ $\min \{\lambda(S) \mid S \subseteq V(G)$ and $|S|=k\}$. Thus $\lambda_{2}(G)=\lambda(G)$. In this paper, we consider the Nordhaus-Gaddum-type results for the parameter $\lambda_{k}(G)$. We determine sharp upper and lower bounds of $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ and $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})$ for a graph G of order n, as well as for a graph of order n and size m. Some graph classes attaining these bounds are also given.

Keywords: edge-connectivity; Steiner tree; edge-disjoint trees; generalized edgeconnectivity; complementary graph.

AMS subject classification 2010: 05C40, 05C05, 05C76.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the book [4] for graph theoretical notation and terminology not described here. For a graph $G(V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or an Steiner tree connecting S (Shortly, a Steiner tree) is a subgraph $T\left(V^{\prime}, E^{\prime}\right)$ of G which is a tree such that $S \subseteq V^{\prime}$. Two Steiner trees T and T^{\prime} connecting S are edge-disjoint if $E(T) \cap E\left(T^{\prime}\right)=\varnothing$. The Steiner Tree Packing Problem for a given graph $G(V, E)$ and $S \subseteq V(G)$ asks to find a set of maximum number of edge-disjoint S-Steiner trees in G. This problem has obtained wide attention and many results have been worked out, see [18, 19, 20]. The problem for $S=V(G)$ is called the Spanning Tree Packing Problem. For any graph G of order n, the spanning tree packing number or STP number, is the maximum number of edge-disjoint spanning trees contained in G. For the $S T P$ number, Palmer gave a good survey, see [17].

Recently, we introduced the concept of generalized edge-connectivity of a graph G in [13]. For $S \subseteq V(G)$, the generalized local edge-connectivity $\lambda(S)$ is the maximum number of edge-disjoint trees in G connecting S. Then the generalized k-edge-connectivity $\lambda_{k}(G)$

[^0]of G is defined as $\lambda_{k}(G)=\min \{\lambda(S): S \subseteq V(G)$ and $|S|=k\}$. Thus $\lambda_{2}(G)=\lambda(G)$. Set $\lambda_{k}(G)=0$ when G is disconnected. We call it the generalized k-edge-connectivity since Chartrand et al. in [5] introduced the concept of generalized (vertex) connectivity in 1984. There have been many results on the generalized connectivity, see [10, 11, 12, 13].

One can see that the Steiner Tree Packing Problem studies local properties of graphs, but the generalized edge-connectivity focuses on global properties of graphs. Actually, the $S T P$ number of a graph G is just $\lambda_{n}(G)$.

In addition to being natural combinatorial measures, the Steiner Tree Packing Problem and the generalized edge-connectivity can be motivated by their interesting interpretation in practice as well as theoretical consideration. For the practical backgrounds, we refer to [7, 8, 15].

From a theoretical perspective, both extremes of this problem are fundamental theorems in combinatorics. One extreme of the problem is when we have two terminals. In this case internally (edge-)disjoint trees are just internally (edge-)disjoint paths between the two terminals, and so the problem becomes the well-known Menger theorem. The other extreme is when all the vertices are terminals. In this case internally disjoint trees and edge-disjoint trees are just spanning trees of the graph, and so the problem becomes the classical Nash-Williams-Tutte theorem.

Theorem 1. (Nash-Williams [14], Tutte [16]) A multigraph G contains a system of ℓ edge-disjoint spanning trees if and only if

$$
\|G / \mathscr{P}\| \geq \ell(|\mathscr{P}|-1)
$$

holds for every partition \mathscr{P} of $V(G)$, where $\|G / \mathscr{P}\|$ denotes the number of crossing edges in G, i.e., edges between distinct parts of \mathscr{P}.

Corollary 1. Every 2ℓ-edge-connected graph contains a system of ℓ edge-disjoint spanning trees.

Let $\mathcal{G}(n)$ denote the class of simple graphs of order n and $\mathcal{G}(n, m)$ the subclass of $\mathcal{G}(n)$ having m edges. Give a graph theoretic parameter $f(G)$ and a positive integer n, the Nordhaus-Gaddum($\boldsymbol{N} \mathbf{- G}$) Problem is to determine sharp bounds for: $(1) f(G)+f(\bar{G})$ and (2) $f(G) \cdot f(\bar{G})$, as G ranges over the class $\mathcal{G}(n)$, and characterize the extremal graphs. The Nordhaus-Gaddum type relations have received wide investigations. Recently, Aouchiche and Hansen published a survey paper on this subject, see [3].

In this paper, we study $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ and $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})$ for the parameter $\lambda_{k}(G)$ where $G \in \mathcal{G}(n)$ and $G \in \mathcal{G}(n, m)$.

2 Nordhaus-Gaddum-type results in $\mathcal{G}(n)$

The following observation is easily seen.
Observation 1. (1) If G is a connected graph, then $1 \leq \lambda_{k}(G) \leq \lambda(G) \leq \delta(G)$;
(2) If H is a spanning subgraph of G, then $\lambda_{k}(H) \leq \lambda_{k}(G)$.
(3) Let G be a connected graph with minimum degree δ. If G has two adjacent vertices of degree δ, then $\lambda_{k}(G) \leq \delta-1$.

Alavi and Mitchem in [2] considered Nordhaus-Gaddum-type results for the connectivity and edge-connectivity parameters. In 13 we were concerned with analogous inequalities involving the generalized k-connectivity and generalized k-edge-connectivity. We showed that $1 \leq \lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq n-\lceil k / 2\rceil$, but this is just a starting result and now we will further study the Nordhaus-Guddum type relations.

To start with, let us recall the Harary graph $H_{n, d}$ on n vertices, which is constructed by arranging the n vertices in circular order and spreading the d edges around the boundary in a nice way, keeping the chords as short as possible. They have the maximum connectivity for their size and $\kappa\left(H_{n, d}\right)=\lambda\left(H_{n, d}\right)=\delta\left(H_{n, d}\right)=d$. Palmer [17] gave the STP number of some special graph classes.

Lemma 1. 17] (1) The STP number of a complete bipartite graph $K_{a, b}$ is $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.
(2) The STP number of a Harary graph $H_{n, d}$ is $\lfloor d / 2\rfloor$.

Corresponding to (1) of Observation [1, we can obtain a sharp lower bound for the generalized k-edge-connectivity by Corollary 1. Actually, a connected graph G contains $\left\lfloor\frac{1}{2} \lambda(G)\right\rfloor$ spanning trees. Each of them is also a Steiner tree connecting S. So the following proposition is immediate.

Proposition 1. For a connected graph G of order n and $3 \leq k \leq n, \lambda_{k}(G) \geq\left\lfloor\frac{1}{2} \lambda(G)\right\rfloor$. Moreover, the lower bound is sharp.

In order to show the sharpness of this lower bound for $k=n$, we consider the Harary graph $H_{n, 2 r}$. Clearly, $\lambda(G)=2 r$. From (2) of Lemma 11 $H_{n, 2 r}$ contains r spanning trees, that is, $\lambda_{n}\left(H_{n, 2 r}\right)=r$. So $\lambda_{n}\left(H_{n, 2 r}\right)=\left\lfloor\frac{1}{2} \lambda(G)\right\rfloor$. For general $k(3 \leq k \leq n)$, one can check that the cycle C_{n} can attain the lower bound since $\frac{1}{2} \lambda\left(C_{n}\right)=1=\lambda_{k}\left(C_{n}\right)$.

The following proposition indicates that the monotone properties of λ_{k}, that is, $\lambda_{n} \leq$ $\lambda_{n-1} \leq \cdots \lambda_{4} \leq \lambda_{3} \leq \lambda$, is true for $2 \leq k \leq n$.

Proposition 2. For two integers k and n with $2 \leq k \leq n-1$, and a connected graph G, $\lambda_{k+1}(G) \leq \lambda_{k}(G)$.

Proof. Assume $3 \leq k \leq n-1$. Set $\lambda_{k+1}(G)=\ell$. For each $S \subseteq V(G)$ with $|S|=k$, we let $S^{\prime}=S \cup\{u\}$, where $u \notin S$. Since $\lambda_{k+1}(G)=\ell$, there exist ℓ edge-disjoint trees connecting S^{\prime}. These trees are also ℓ edge-disjoint trees connecting S. So $\lambda_{k}(G) \geq \ell$ and $\lambda_{k+1}(G) \leq \lambda_{k}(G)$. Combining this with (1) of Observation 1, we get that $\lambda_{k+1}(G) \leq \lambda_{k}(G)$ for $2 \leq k \leq n-1$.

Now we give the lower bounds of $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ and $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})$.
Lemma 2. Let $G \in \mathcal{G}(n)$. Then
(1) $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq 1$;
(2) $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \geq 0$.

Moreover, the two lower bounds are sharp.

Proof. (1) If $\lambda_{k}(G)+\lambda_{k}(\bar{G})=0$, then $\lambda_{k}(G)=\lambda_{k}(\bar{G})=0$, that is, G and \bar{G} are all disconnected, which is impossible, and so $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq 1$.
(2) By definition, $\lambda_{k}(G) \geq 0$ and $\lambda_{k}(\bar{G}) \geq 0$, and so $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \geq 0$.

The following observation indicates the graphs attaining the lower bound of (1) in Lemma 2.

Observation 2. $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})=0$ if and only if G or \bar{G} is disconnected.

In [13] we obtained the exact value of the generalized k-edge-connectivity of a complete graph K_{n}.

Lemma 3. [13] For two integers n and k with $2 \leq k \leq n, \lambda_{k}\left(K_{n}\right)=n-\lceil k / 2\rceil$.
For a connected graph G of order n, we know that $1 \leq \lambda_{k}(G) \leq \lambda_{k}\left(K_{n}\right)=n-\lceil k / 2\rceil$. In [13] we characterized the graphs attaining the upper bound.

Lemma 4. [13] For a connected graph G of order n with $3 \leq k \leq n, \lambda_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil$ if and only if $G=K_{n}$ for k even; $G=K_{n} \backslash M$ for k odd, where M is an edge set such that $0 \leq|M| \leq \frac{k-1}{2}$.

As we know, it is difficult to characterize the graphs with $\lambda_{k}(G)=1$, even with $\lambda_{3}(G)=1$. So we want to add some conditions to attack such a problem. Motivated by such an idea, we hope to characterize the graphs with $\lambda_{k}(G)+\lambda_{k}(\bar{G})=1$. Actually, the Norhaus-Gaddum-type problems also need to characterize the extremal graphs attaining the bounds.

Before studying the lower bounds of $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ and $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})$, we give some graph classes (Every element of each graph class has order n), which will be used later.

For $n \geq 5, \mathcal{G}_{n}^{1}$ is a graph class as shown in Figure $1(a)$ such that $\lambda(G)=1$ and $d_{G}\left(v_{1}\right)=n-1$ for $G \in \mathcal{G}_{n}^{1}$, where $v_{1} \in V(G) ; \mathcal{G}_{n}^{2}$ is a graph class as shown in Figure 1 (b) such that $\lambda(G)=2$ and $d_{G}\left(u_{1}\right)=n-1$ for $G \in \mathcal{G}_{n}^{2}$, where $u_{1} \in V(G) ; \mathcal{G}_{n}^{3}$ is a graph class as shown in Figure $1(c)$ such that $\lambda(G)=2$ and $d_{G}\left(v_{1}\right)=n-1$ for $G \in \mathcal{G}_{n}^{3}$, where $v_{1} \in V(G) ; \mathcal{G}_{n}^{4}$ is a graph class as shown in Figure $1(d)$ such that $\lambda(G)=2$.

Figure 1. Graphs for Proposition 3 (The degree of a black vertex is $n-1$).

The following observation and lemma are some preparations for Proposition 3 .
For $n \geq 5$, let $K_{2, n-2}^{+}$and $K_{2, n-2}^{++}$be two graphs obtained from the complete bipartite graph $K_{2, n-2}$ by adding one and two edges on the part having $n-2$ vertices, respectively.

Observation 3. (1) $\lambda_{n}\left(K_{2, n-2}^{++}\right) \geq 2$; (2) $\lambda_{n-1}\left(K_{2, n-2}^{+}\right) \geq 2, \quad \lambda_{n}\left(K_{2, n-2}^{+}\right)=1$; (3) $\lambda_{n-2}\left(K_{2, n-2}\right) \geq 2, \lambda_{n}\left(K_{2, n-2}\right)=\lambda_{n-1}\left(K_{2, n-2}\right)=1$.

Proof. (1) As shown in Figure $2(a), \lambda_{n}\left(K_{2, n-2}^{++}\right) \geq 2$.
(2) As shown in Figure $2(b)$, we have $\lambda_{n-1}\left(K_{2, n-2}^{+}\right) \geq 2$. Since $\left|E\left(K_{2, n-2}^{+}\right)\right|=2(n-$ $2)+1, \lambda_{n}\left(K_{2, n-2}^{+}\right) \leq\left\lfloor\frac{2(n-2)+1}{n-1}\right\rfloor$, which implies that $\lambda_{n}\left(K_{2, n-2}^{+}\right) \leq 1$. Since $K_{2, n-2}^{+}$is connected, $\lambda_{n}\left(K_{2, n-2}^{+}\right)=1$.
(3) As shown in Figure $2(c)$, it follows that $\lambda_{n-2}\left(K_{2, n-2}\right) \geq 2$. Let $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots, w_{n-2}\right\}$ be two parts of the complete bipartite graph $K_{2, n-2}$. Choose $S=\left\{u_{1}, u_{2}, w_{1}, w_{2}, \cdots, w_{n-3}\right\}$. If there exists an S-tree containing vertex w_{n-2}, then this tree will use $n-1$ edges of $E\left(K_{2, n-2}\right)$, which implies that $\lambda_{n-1}\left(K_{2, n-2}\right) \leq 1$ since $\left|E\left(K_{2, n-2}\right)\right|=2(n-2)$. Suppose that there is no S-tree containing vertex w_{2}. Pick up a such tree, say T. Then there exists a vertex of degree 2 in T, which implies that there is no other S-tree in $K_{2, n-2}$. So $\lambda_{n-1}\left(K_{2, n-2}\right) \leq 1$. Since $K_{2, n-2}$ is connected, $\lambda_{n-1}\left(K_{2, n-2}\right)=1$. From Proposition 2, $\lambda_{n}\left(K_{2, n-2}\right)=1$.

Figure 2. Graphs for Observation 2.

Lemma 5. Let G be a connected graph. If $\lambda(G)=3$ and there exists a vertex $u \in V(G)$ such that $d_{G}(u)=n-1$, then $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$.

Proof. Let G_{1}, \cdots, G_{r} be the connected components of $G \backslash u$. Since $\lambda(G)=3$, it follows that $\delta\left(G_{i}\right) \geq 2(1 \leq i \leq r)$. Let $\left|V\left(G_{i}\right)\right|=n_{i}(1 \leq i \leq r)$ and $V\left(G_{i}\right)=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i n_{i}}\right\}$. Then there exists an edge, without loss of generality, say $e_{i}=v_{i 1} v_{i 2} \in E\left(G_{i}\right)$ such that $G_{i} \backslash e_{i}$ is connected for $1 \leq i \leq r$. Thus $G_{i} \backslash e_{i}$ contains a spanning tree, say $T_{i}(1 \leq i \leq r)$. The trees $T=u v_{11} \cup T_{1} \cup u v_{21} \cup T_{2} \cup \cdots \cup u v_{r 1} \cup T_{r}$ and $T^{\prime}=v_{11} v_{12} \cup u v_{12} \cup \cdots \cup u v_{1 n_{1}} \cup$ $v_{21} v_{22} \cup u v_{22} \cup \cdots \cup u v_{2 n_{2}} \cup \cdots \cup v_{r 1} v_{r 2} \cup u v_{r 2} \cup \cdots \cup u v_{r n_{r}}$ are two spanning trees of G, that is, $\lambda_{n}(G) \geq 2$. Combining this with Proposition 2, $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$.

Proposition 3. $\lambda_{k}(G)+\lambda_{k}(\bar{G})=1$ if and only if G (symmetrically, \bar{G}) satisfies one of the following conditions:
(1) $G \in \mathcal{G}_{n}^{1}$ or $G \in \mathcal{G}_{n}^{2}$;
(2) $G \in \mathcal{G}_{n}^{3}$ and there exists a component G_{i} of $G \backslash v_{1}$ such that G_{i} is a tree and $\left|V\left(G_{i}\right)\right|<k$;
(3) $G \in\left\{K_{2, n-2}^{+}, K_{2, n-2}\right\}$ for $k=n$ and $n \geq 5$, or $G \in\left\{P_{3}, C_{3}\right\}$ for $k=n=3$, or $G \in\left\{C_{4}, K_{4} \backslash e\right\}$ for $k=n=4$, or $G=K_{3,3}$ for $k=n=6$, or $G=K_{2, n-2}$ for $k=n-1$ and $n \geq 5$, or $G=C_{4}$ for $k=n-1=3$.

Proof. Necessity. Let G be a graph satisfying one of the conditions of (1), (2) and (3). One can see that G is connected and its complement \bar{G} is disconnected. Thus $\lambda_{k}(G)+$ $\lambda_{k}(\bar{G})=\lambda_{k}(G)$ and $\lambda_{k}(G) \geq 1$. We only need to show that $\lambda_{k}(G) \leq 1$ for each graph G satisfying one of the conditions of (1), (2) and (3). For $G \in \mathcal{G}_{n}^{1}$, since $\delta(G)=1$ we have $\lambda_{k}(G) \leq 1$ by (1) of Observation (1) For $G \in \mathcal{G}_{n}^{2}$, it follows that $\lambda_{k}(G) \leq \delta(G)-1=1$ by (3) of Observation $\mathbb{1}$ since $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\delta(G)=2$. Suppose $G \in \mathcal{G}_{n}^{3}$ and there exists a connected component G_{i} of $G \backslash v_{1}$ such that G_{i} is a tree and $\left|V\left(G_{i}\right)\right|<k$. Set $V\left(G_{i}\right)=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i n_{i}}\right\}$. We choose $S \subseteq V(G)$ such that $V\left(G_{i}\right) \cup\left\{v_{1}\right\}=S^{\prime} \subseteq S$. Then $\left|E\left(G\left[S^{\prime}\right]\right)\right|=2 n_{i}-1$. Since every spanning tree of $G\left[S^{\prime}\right]$ uses $n_{i}-1$ edges of $E\left(G\left[S^{\prime}\right]\right)$, there exists at most one spanning tree of $G\left[S^{\prime}\right]$, which implies that there is at most one tree connecting S in G. So $\lambda_{k}(G) \leq 1$. For $G=K_{2, n-2}^{+}, \lambda_{n}(G)=1$ by (2) of Observation 3. For $G=K_{2, n-2}$, by (3) of Observation 33 we have $\lambda_{n}\left(K_{2, n-2}\right)=\lambda_{n-1}\left(K_{2, n-2}\right)=1$. For $G=K_{3,3}, \lambda_{n}(G) \leq\left\lfloor\frac{\lfloor E(G)\rfloor}{n-1}\right\rfloor=\left\lfloor\frac{9}{5}\right\rfloor=1$. For $G \in\left\{P_{3}, C_{3}, C_{4}, K_{4} \backslash e\right\}$, one can check that $\lambda_{k}(G) \leq 1$ for $k=n$ or $k=n-1$. From these together with $\lambda_{k}(G) \geq 1$, we have $\lambda_{k}(G)+\lambda_{k}(\bar{G})=\lambda_{k}(G)=1$.

Sufficiency. Suppose $\lambda_{k}(G)+\lambda_{k}(\bar{G})=1$. Then $\lambda_{k}(G)=1$ and $\lambda_{k}(\bar{G})=0$, or $\lambda_{k}(\bar{G})=1$ and $\lambda_{k}(G)=0$. By symmetry, without loss of generality, we let $\lambda_{k}(G)=1$ and $\lambda_{k}(\bar{G})=0$. From these together with Proposition [1, $\lambda(\bar{G})=0$ and $1 \leq \lambda(G) \leq 3$. So we have the following three cases to consider.

Case 1. $\lambda(G)=1$.
For $n=3$, one can check that $G=P_{3}$ satisfies $\lambda(G)=1$ but $\lambda(\bar{G})=0$. Now we assume $n \geq 4$. Since $\lambda(G)=1$, there exists at least one cut edge in G, say $e=u_{1} v_{1}$. Let G_{1} and G_{2} be two connected components of $G \backslash e$ such that $u_{1} \in V\left(G_{1}\right)$ and $v_{1} \in V\left(G_{2}\right)$. Set $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\}$, where $n_{1}+n_{2}=n$. Suppose $n_{i} \geq 2(i=1,2)$. For any $u_{i}, u_{j} \in V\left(G_{1}\right), u_{i}$ and u_{j} are connected in \bar{G} since there exists a path $u_{i} v_{2} u_{j}$ in \bar{G}; for any $v_{i}, v_{j} \in V\left(G_{2}\right), v_{i}$ and v_{j} are connected in \bar{G} since there exists a path $v_{i} u_{2} v_{j}$ in \bar{G}; for any $u_{i} \in V\left(G_{1}\right)$ and $v_{j} \in V\left(G_{2}\right)(i \neq 1$ or $j \neq 1), v_{i} v_{j} \in E(\bar{G})$. Clearly, the path $u_{1} v_{2} u_{2} v_{1}$ connects u_{1} and v_{1} in \bar{G}. So \bar{G} is connected, a contradiction. Thus $n_{1}=1$ or $n_{2}=1$. Without loss of generality, let $n_{1}=1$. Then $V\left(G_{1}\right)=\left\{u_{1}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}$. Clearly, G is a graph obtained from G_{2} by attaching the edge $e=u_{1} v_{1}$. Since $u_{1} v_{j} \notin E(G)(1 \leq j \leq n-1), u_{1} v_{j} \in E(\bar{G})$. If $d_{G}\left(v_{1}\right) \leq n-2$, then there exists one vertex v_{j} such that $v_{1} v_{j} \in E(\bar{G})$, which results in $\lambda(\bar{G}) \geq 1$, a contradiction. So $d_{G}\left(v_{1}\right)=n-1$ and $G \in \mathcal{G}_{n}^{1}$ (See Figure $1(a)$).

Case 2. $\lambda(G)=2$.

For $n=3,4$, the graph $G \in\left\{C_{3}, C_{4}, K_{4} \backslash e\right\}$ satisfies that $\lambda(G)=2$ and $\lambda(\bar{G})=0$. Since $\lambda_{3}\left(C_{3}\right)=1, \lambda_{3}\left(C_{4}\right)=1, \lambda_{4}\left(C_{4}\right)=1, \lambda_{3}\left(K_{4} \backslash e\right)=2$ and $\lambda_{4}\left(K_{4} \backslash e\right)=1$, we have $G=C_{3}$ for $k=n=3 ; G \in\left\{C_{4}, K_{4} \backslash e\right\}$ for $k=n=4 ; G=C_{4}$ for $k=n-1=3$. Now we assume $n \geq 5$. Since $\lambda(G)=2$, there exists an edge cut M such that $|M|=2$. Let G_{1} and G_{2} be two connected components of $G \backslash M, V\left(G_{1}\right)=\left\{u_{1}, \cdots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, \cdots, v_{n_{2}}\right\}$, where $n_{1}+n_{2}=n$. Clearly, $G[M]=2 K_{2}$ or $G[M]=P_{3}$.

At first, we consider the case $G[M]=2 K_{2}$. Without loss of generality, let $M=$ $\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$. Since $n \geq 5, n_{1} \geq 3$ or $n_{2} \geq 3$. Without loss of generality, let $n_{1} \geq 3$. Clearly, any two vertices $v_{i}, v_{j} \in V\left(G_{2}\right)$ are connected in \bar{G} since there exists a path $v_{i} u_{3} v_{j}$ in \bar{G}. Furthermore, for any $u_{i} \in V\left(G_{1}\right), u_{i} v_{1} \in E(\bar{G})$ or $u_{i} v_{2} \in E(\bar{G})$. So \bar{G} is connected and $\lambda(\bar{G}) \geq 1$, a contradiction.

Next, we consider the case $G[M]=P_{3}$. Without loss of generality, let $P=v_{1} u_{1} v_{2}$ be the path of order 3 . Since $n \geq 5$, there exist at least two vertices in $G \backslash\left\{u_{1}, v_{1}, v_{2}\right\}$. If $n_{1} \geq 2$ and $n_{2} \geq 3$, then we can check that \bar{G} is connected, a contradiction. So we assume that $n_{1}=1$ or $n_{2}=2$, that is, $V\left(G_{2}\right)=\left\{v_{1}, v_{2}\right\}$ or $V\left(G_{1}\right)=\left\{u_{1}\right\}$.

For the former, $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n-2}\right\}$. Since $\lambda(G)=2, v_{1} v_{2} \in E(G)$. Clearly, $v_{1} u_{j}, v_{2} u_{j} \notin E(G)(2 \leq j \leq n-2)$, which implies that $v_{1} u_{j}, v_{2} u_{j} \in E(\bar{G})$. Therefore, $u_{1} u_{j} \notin E(\bar{G})(2 \leq j \leq n-2)$ since \bar{G} is disconnected. Thus $u_{1} u_{j} \in E(G)$ for each $j(2 \leq j \leq n-2)$. So $d_{G}\left(u_{1}\right)=n-1$ and $G \in \mathcal{G}_{n}^{2}$ (See Figure $\left.1(b)\right)$.

For the latter, let $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}$. First we consider the case $v_{1} v_{2} \in E(G)$. Since $u_{1} v_{j} \notin E(G)(3 \leq j \leq n-1)$, we have $u_{1} v_{j} \in E(\bar{G})$. If $3 \leq d_{G}\left(v_{1}\right) \leq n-2$ and $3 \leq d_{G}\left(v_{2}\right) \leq n-2$, then there exist two vertices v_{i} and v_{j} such that $v_{1} v_{i}, v_{2} v_{j} \in E(\bar{G})(3 \leq$ $i, j \leq n-1$), which implies that \bar{G} is connected, a contradiction. So $d_{G}\left(v_{1}\right)=n-1$ or $d_{G}\left(v_{2}\right)=n-1$. Without loss of generality, let $d_{G}\left(v_{1}\right)=n-1$. Thus $G \in \mathcal{G}_{n}^{3}$ (See Figure 1 $(c))$. Now we focus on the graph $G \backslash v_{1}$. Let $G_{1}, G_{2}, \cdots, G_{r}$ be the connected components of $G \backslash v_{1}$ and $V\left(G_{i}\right)=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i n_{i}}\right\}(1 \leq i \leq r)$, where $\sum_{i=1}^{r} n_{i}=n-1$. If there exists some connected component G_{i} such that $G_{i}=K_{2}$, then $G \in \mathcal{G}_{n}^{2}$ (See Figure 1 (b)). So we assume $n_{i} \geq 3$. Then we prove the following claim and get a contradiction.
Claim 1. For each connected component G_{i} of $G \backslash v_{1}$, if $n_{i} \geq k$, or $n_{i} \leq k-1$ and $\left|E\left(G_{i}\right)\right| \geq n_{i}$, then $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$.
Proof of Claim 1. For an arbitrary $S \subseteq V(G)$ with $|S|=k$, we only prove $\lambda(S) \geq 2$ for $v_{1} \notin S$. The case for $v_{1} \in S$ can be proved similarly. If there exists some connected component G_{i} such that $S=V\left(G_{i}\right)$, then $n_{i}=k$ and G_{i} has a spanning tree, say T_{i}. It is also a Steiner tree connecting S. Since $T_{i}^{\prime}=v_{1} v_{i 1} \cup v_{1} v_{i 2} \cdots \cup v_{1} v_{i n_{i}}$ is another Steiner tree connecting S and T_{i}, T_{i}^{\prime} are two edge-disjoint trees, we have $\lambda(S) \geq 2$. Let us assume now $S \neq V\left(G_{i}\right)$ for $n_{i} \geq k(1 \leq i \leq r)$. Let $S_{i}=S \cap V\left(G_{i}\right)(1 \leq i \leq r)$ and $\left|S_{i}\right|=k_{i}$. Clearly, $\bigcup_{i=1}^{r} S_{i}=S$ and $\sum_{i=1}^{r} k_{i}=k$. Thus $S_{i} \subset V\left(G_{i}\right)$ for each connected component G_{i} such that $n_{i} \geq k$, and $S_{j} \subseteq V\left(G_{j}\right)$ for each connected component G_{j} such that $n_{j} \leq k-1$ and $\left|E\left(G_{j}\right)\right| \geq n_{j}$. We will show that there are two edge-disjoint Steiner trees connecting $S_{i} \cup\left\{v_{1}\right\}$ in $G\left[S_{i} \cup\left\{v_{1}\right\}\right]$ for each $i(1 \leq i \leq r)$ so that we can combine these trees to form two edge-disjoint Steiner trees connecting S in G. Suppose that G_{i} is a connected component such that $n_{i} \geq k$. Note that $V\left(G_{i}\right)=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i n_{i}}\right\}$. Since $S_{i} \subset V\left(G_{i}\right)$, there exists a vertex, without loss of generality, say $v_{i 1}$, such that $v_{i 1} \notin S_{i}$. Clearly, G_{i} contains a
spanning tree, say $T_{i 1}^{\prime}$. Thus $T_{i 1}=v_{1} v_{i 1} \cup T_{i 1}^{\prime}$ is a Steiner tree connecting $S_{i} \cup\left\{v_{1}\right\}$ in $G\left[G_{i} \cup\left\{v_{1}\right\}\right]$. Since $T_{i 2}=v_{1} v_{i 2} \cup v_{1} v_{i 3} \cup \cdots \cup v_{1} v_{i n_{i}}$ is another Steiner tree connecting $S_{i} \cup\left\{v_{1}\right\}$. Clearly, $T_{i 1}$ and $T_{i 2}$ are edge-disjoint. Assume that G_{j} is a connected component such that $n_{j} \leq k-1$ and $\left|E\left(G_{j}\right)\right| \geq n_{j}$. Note that $V\left(G_{j}\right)=\left\{v_{j 1}, v_{j 2}, \cdots, v_{j n_{j}}\right\}$. Then there exists an edge, without loss of generality, say $e_{j}=v_{j 1} v_{j 2} \in E\left(G_{j}\right)$ such that $G_{j} \backslash e_{j}$ contains a spanning tree of G_{j}, say $T_{j 1}^{\prime}$. Thus $T_{j 1}=v_{1} v_{j 1} \cup T_{j 1}^{\prime}$ and $T_{j 2}=v_{j 1} v_{j 2} \cup v_{1} v_{j 2} \cup \cdots \cup v_{1} v_{j n_{j}}$ are two edge-disjoint Steiner trees connecting $S_{j} \cup\left\{v_{1}\right\}$. Now we combine these small trees connecting $S_{i} \cup\left\{v_{1}\right\}(1 \leq i \leq r)$ by the vertex v_{1} to form two big trees connecting S. Clearly, $T_{1}=T_{11} \cup T_{21} \cup \cdots \cup T_{r 1}$ and $T_{2}=T_{12} \cup T_{22} \cup \cdots \cup T_{r 2}$ are our desired trees, that is, $\lambda(S) \geq 2$. From the arbitrariness of S, we have $\lambda_{k}(G) \geq 2$.

By Claim 1, we know that $G \in \mathcal{G}_{n}^{3}$ and there exists a connected component G_{i} of $G \backslash\left\{v_{1}\right\}$ such that $n_{i} \leq k-1$ and G_{i} is a tree.

We next consider the case $v_{1} v_{2} \notin E(G)$ (See Figure $1(d)$). Thus $v_{1} v_{2} \in E(\bar{G})$. Since $u_{1} v_{j} \notin E(G)(3 \leq j \leq n-1), u_{1} v_{j} \in E(\bar{G})$, which results in $v_{1} v_{j}, v_{2} v_{j} \notin E(\bar{G})$ since \bar{G} is disconnected. Thus $v_{1} v_{j}, v_{2} v_{j} \in E(G)$ for each $j(3 \leq j \leq n-1)$. Let $R=\left\{v_{j} \mid 3 \leq j \leq n-1\right\}$. If $|E(G[R])| \geq 2$, then G contains a subgraph $K_{2, n-2}^{++}$, which implies that $\lambda_{n}(G) \geq 2$ by (1) of Observation 3. Combining this with Proposition 2, $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$, a contradiction. If $|E(G[R])|<2$, then $G=K_{2, n-2}$ and $K_{2, n-2}^{+}$. From Observation 3 and Proposition 2, we have $\lambda_{k}\left(K_{2, n-2}^{+}\right) \geq 2$ for $3 \leq k \leq n-1$ and $\lambda_{k}\left(K_{2, n-2}\right) \geq 2$ for $3 \leq k \leq n-2$, a contradiction. So $G=K_{2, n-2}^{+}$for $k=n$, or $G=K_{2, n-2}$ for $k=n$, or $G=K_{2, n-2}$ for $k=n-1$.

Case 3. $\lambda(G)=3$.
For $n=4, G=K_{4}, \lambda_{3}(G)=\lambda_{4}(G)=2$ by Lemma3. Then $\lambda_{k}(G) \geq 2$, a contradiction. Assume $n \geq 5$. Since $\lambda(G)=3$, there exists an edge cut M such that $|M|=3$. Let G_{1}

Figure 3. Graphs for Case 3 of Proposition 3.
and G_{2} be two connected components of $G \backslash M, V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\}$, where $n_{1}+n_{2}=n$. Clearly, $G[M]=P_{4}$ or $G[M]=P_{3} \cup K_{2}$ or $G[M]=$ $3 K_{2}$ or $G[M]=K_{1, n-3}$. For the former three cases, $n_{i} \geq 3(i=1,2)$ and $n \geq 6$ since $\lambda(G)=3$. To shorten the discussion, we only prove $\lambda(\bar{G}) \geq 1$ for $G[M]=P_{4}$ and get a contradiction among the former three cases. Without loss of generality, let
$G[M]=P_{4}=u_{1} v_{1} u_{2} v_{2}$. For any $u_{i}, u_{j} \in V\left(G_{1}\right)\left(1 \leq i \leq n_{1}\right), u_{i}$ and u_{j} are connected in \bar{G} since there exists a path $u_{i} v_{3} u_{j}$ in \bar{G}; for any $v_{i}, v_{j} \in V\left(G_{2}\right)\left(1 \leq i \leq n_{2}\right), v_{i}$ and v_{j} are connected in \bar{G} since there exists a path $v_{i} u_{3} v_{j}$ in \bar{G}; for any $u_{i} \in V\left(G_{1}\right)$ and $v_{j} \in V\left(G_{2}\right)(i \neq 3$ and $j \neq 3), u_{i}$ and u_{j} are connected in \bar{G} since there exists a path $u_{i} v_{3} u_{3} v_{j}$ in \bar{G}. Since $u_{3} v_{j} \in E(\bar{G})\left(1 \leq j \leq n_{2}\right)$ and $v_{3} u_{i} \in E(\bar{G})\left(1 \leq i \leq n_{1}\right), \bar{G}$ is connected, a contradiction.

Now we consider the graph G such that $G[M]=K_{1, n-3}$. Assume $n_{1} \geq 2$. If $n_{2} \geq 4$, then we can check that \bar{G} is connected and get a contradiction. Therefore, $n_{2}=3$, $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V\left(G_{1}\right)=\left\{u_{1}, u_{2} \cdots, u_{n-3}\right\}$. Since $\lambda(G)=3$, it follows that $v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3} \in E(G)$. Since $v_{i} u_{j} \notin E(G)(1 \leq i \leq 3,2 \leq j \leq n-3)$, we have $v_{i} u_{j} \in E(\bar{G})$. If there exists some vertex $u_{j}(2 \leq j \leq n-3)$ such that $u_{1} u_{j} \in E(\bar{G})$, then \bar{G} is connected, a contradiction. So $u_{1} u_{j} \in E(G)$ for $2 \leq j \leq n-3$. Thus $d_{G}\left(u_{1}\right)=n-1$ (See Figure $3(a)$). From Lemma 号 $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$ since $\lambda(G)=3$, a contradiction.

Let us now assume $n_{1}=1$. Then $V\left(G_{1}\right)=\left\{u_{1}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2} \cdots, v_{n-1}\right\}$. If $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]=3 K_{1}$ or $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]=2 K_{1} \cup K_{2}$, then we have $u_{1} v_{j} \in E(\bar{G})$ since $u_{1} v_{j} \notin E(G)(4 \leq j \leq n-1)$. From this together with the fact that \bar{G} is disconnected and $v_{1} v_{3}, v_{2} v_{3} \in E(\bar{G}), v_{i} v_{j} \notin E(\bar{G})(1 \leq i \leq 3,4 \leq j \leq n-1)$, we have that $v_{i} v_{j} \in$ $E(G)(1 \leq i \leq 3,4 \leq j \leq n-1)$. Thus G contains a complete bipartite graph $K_{3, n-3}$ as its subgraph (See Figure $3(b)$ and (c)). From (1) of Lemma $\lambda_{n}(G)=\left\lfloor\frac{3(n-3)}{n-1}\right\rfloor \geq 2$ for $n \geq 7$, which implies $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$ and $n \geq 7$. Since $\lambda(G)=3, n \geq 6$. So we only need to consider the case $n=6$. Thus $G=H_{i}(1 \leq i \leq 4)$ (See Figure 4). If $G=H_{i}(2 \leq i \leq 4)$, then $\lambda_{n}(G) \geq 2$ for $k=n=6$ (See Figure $\left.4(b),(c),(d)\right)$. Therefore $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq 6$. If $G=H_{1}$, then $\lambda_{n}(G) \leq\left\lfloor\frac{\mid E(G)\rfloor}{n-1}\right\rfloor=\left\lfloor\frac{9}{5}\right\rfloor=1$ for $k=n=6$. For $k=5$, we can check that $\lambda_{3}(G) \geq \lambda_{4}(G) \geq \lambda_{5}(G) \geq 2$ (See Figure 4 (e)). So $G=K_{3,3}$ for $k=n=6$.

Figure 4. Graphs for Case 3 of Proposition 3,

Suppose $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]=P_{3}$. Without loss of generality, let $v_{1} v_{2}, v_{2} v_{3} \in E(G)$. If $3 \leq d_{G}\left(v_{2}\right) \leq n-2$ (See Figure $3(d)$), then there exists at least one vertex v_{j} such that $v_{2} v_{j} \in E(\bar{G})$, which results in $v_{1} v_{j}, v_{3} v_{j} \notin E(\bar{G})(4 \leq j \leq n-1)$ since $u_{1} v_{j} \in$ $E(\bar{G})(4 \leq j \leq n-1), v_{1} v_{3} \in E(\bar{G})$ and \bar{G} is disconnected. Thus $v_{1} v_{j}, v_{3} v_{j} \in E(G)$ for each $j(4 \leq j \leq n-1)$. Since $d\left(v_{4}\right) \geq \delta(G) \geq \lambda(G)=3$, we have $v_{4} v_{2} \in E(G)$ or there exists some vertex $v_{j}(5 \leq j \leq n-1)$ such that $v_{4} v_{j} \in E(G)$, which implies that G contains a subgraph $K_{2, n-2}^{++}$and so $\lambda_{n}(G) \geq 2$ by (1) of Observation 3 From Proposition 2. $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$, a contradiction. If $d_{G}\left(v_{2}\right)=n-1$ (See Figure $3(e)$), then $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$ by Lemma 5 since $\lambda(G)=3$, a contradiction.

Suppose $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]=K_{3}$. Without loss of generality, let $v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3} \in E(G)$.

If $d_{G}\left(v_{1}\right)=n-1$ or $d_{G}\left(v_{2}\right)=n-1$ or $d_{G}\left(v_{3}\right)=n-1$ (See Figure $3(f)$), then by Lemma 5 $\lambda_{k}(G) \geq 2$ for $3 \leq k \leq n$ since $\lambda(G)=3$, a contradiction. If $3 \leq d_{G}\left(v_{i}\right) \leq n-2(1 \leq i \leq 3)$, then \bar{G} is connected, a contradiction.

We now investigate the upper bounds of $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ and $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})$.
Lemma 6. Let $G \in \mathcal{G}(n)$. Then
(1) $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq n-\lceil k / 2\rceil$;
(2) $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq\left[\frac{n-\lceil k / 2\rceil}{2}\right]^{2}$.

Moreover, the two upper bounds are sharp.
Proof. (1) Since $G \cup \bar{G}=K_{n}, \lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq \lambda_{k}\left(K_{n}\right)$. Combining this with Lemma 3, $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq n-\left\lceil\frac{k}{2}\right\rceil$.
(2) The conclusion holds by (1).

Let us focus on (1) of Lemma6. If one of G and \bar{G} is disconnected, we can characterize the graphs attaining the upper bound by Lemma 4 ,

Proposition 4. For any graph G of order n, if G is disconnected, then $\lambda_{k}(G)+\lambda_{k}(\bar{G})=$ $n-\left\lceil\frac{k}{2}\right\rceil$ if and only if $\bar{G}=K_{n}$ for k even; $\bar{G}=K_{n} \backslash M$ for k odd, where M is an edge set such that $0 \leq|M| \leq \frac{k-1}{2}$.

If both G and \bar{G} are all connected, we can obtain a structural property of the graphs attaining the upper bound although it seems too difficult to characterize them.
Proposition 5. If $\lambda_{k}(G)+\lambda_{k}(\bar{G})=n-\left\lceil\frac{k}{2}\right\rceil$, then $\Delta(G)-\delta(G) \leq\left\lceil\frac{k}{2}\right\rceil-1$.
Proof. Assume that $\Delta(G)-\delta(G) \geq\left\lceil\frac{k}{2}\right\rceil$. Since $\lambda_{k}(\bar{G}) \leq \delta(\bar{G})=n-1-\Delta(G), \lambda_{k}(G)+$ $\lambda_{k}(\bar{G}) \leq \delta(G)+n-1-\Delta(G) \leq n-1-\left\lceil\frac{k}{2}\right\rceil$, a contradiction.

One can see that the graphs with $\lambda_{k}(G)+\lambda_{k}(\bar{G})=n-\left\lceil\frac{k}{2}\right\rceil$ must have a uniform degree distribution. Actually, we can construct a graph class to show that the two upper bounds of Lemma 6 are tight for $k=n$.

Example 2. Let n, r be two positive integers such that $n=4 r+1$. From (1) of Lemma 1 we know that the $S T P$ number of the complete bipartite graph $K_{2 r, 2 r+1}$ is $\left\lfloor\frac{2 r(2 r+1)}{2 r+(2 r+1)-1}\right\rfloor=r$, that is, $\lambda_{n}\left(K_{2 r, 2 r+1}\right)=r$. Let \mathcal{E} be the set of the edges of these r spanning trees in $K_{2 r, 2 r+1}$. Then there exist $2 r(2 r+1)-4 r^{2}=2 r$ remaining edges in $K_{2 r, 2 r+1}$ except the edges in \mathcal{E}. Let M be the set of these $2 r$ edges. Set $G=K_{2 r, 2 r+1} \backslash M$. Then $\lambda_{n}(G)=r, M \subseteq E(\bar{G})$ and \bar{G} is a graph obtained from two cliques $K_{2 r}$ and $K_{2 r+1}$ by adding $2 r$ edges in M between them, that is, one endpoint of each edge belongs to $K_{2 r}$ and the other endpoint belongs to $K_{2 r+1}$. Note that $E(\bar{G})=E\left(K_{2 r}\right) \cup M \cup E\left(K_{2 r+1}\right)$. Now we show that $\lambda_{n}(\bar{G}) \geq r$. As we know, $K_{2 r}$ contains r Hamiltonian paths, say $P_{1}, P_{2}, \cdots, P_{r}$, and so does $K_{2 r+1}$, say $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{r}^{\prime}$. Pick up r edges from M, say $e_{1}, e_{2}, \cdots, e_{r}$, let $T_{i}=P_{i} \cup P_{i}^{\prime} \cup e_{i}(1 \leq i \leq r)$. Then $T_{1}, T_{2}, \cdots, T_{r}$ are r spanning trees in \bar{G}, namely, $\lambda_{n}(\bar{G}) \geq r$. Since $|E(\bar{G})|=\binom{2 r}{2}+\binom{2 r+1}{2}+2 r=4 r^{2}+2 r$ and each spanning tree uses $4 r$
edges, these edges can form at most $\left\lfloor\frac{4 r^{2}+2 r}{4 r}\right\rfloor=r$ spanning trees, that is, $\lambda_{n}(\bar{G}) \leq r$. So $\lambda_{n}(\bar{G})=r$.

Clearly, $\lambda_{n}(G)+\lambda_{n}(\bar{G})=2 r=\frac{n-1}{2}=n-\left\lceil\frac{n}{2}\right\rceil$ and $\lambda_{n}(\bar{G}) \cdot \lambda_{n}(\bar{G})=r^{2}=\left[\frac{n-\lceil n / 2\rceil}{2}\right]^{2}$, which implies that the upper bound of Lemma 6 is sharp.

Combining Lemmas 2 and 6, we give our main result.
Theorem 2. Let $G \in \mathcal{G}(n)$. Then
(1) $1 \leq \lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq n-\lceil k / 2\rceil$;
(2) $0 \leq \lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq\left[\frac{n-\lceil k / 2\rceil}{2}\right]^{2}$.

Moreover, the upper and lower bounds are sharp.

3 Nordhaus-Gaddum-type results in $\mathcal{G}(n, m)$

Achthan et. al. [1] restricted their attention to the subclass of $\mathcal{G}(n, m)$ consisting of graphs with exactly m edges. They investigated the edge-connectivity, diameter and chromatic number parameters. For edge-connectivity $\lambda(G)$, they showed that $\lambda(G)+$ $\lambda(\bar{G}) \geq \max \{1, n-1-m\}$. In this section, we consider a similar problem on the generalized edge-connectivity.

Lemma 7. If M is an edge set of the complete graph K_{n} such that $0 \leq m \leq\left\lfloor\frac{n}{3}\right\rfloor$ where $|M|=m$, then $G=K_{n} \backslash M$ contains ℓ edge-disjoint spanning trees, where $\ell=\min \{n-$ $\left.2 m-1,\left\lfloor\frac{n}{2}-\frac{2 m}{n-1}\right\rfloor\right\}$.

Proof. Let $\mathscr{P}=\bigcup_{i=1}^{p} V_{i}$ be a partition of $V(G)$ with $\left|V_{i}\right|=n_{i}(1 \leq i \leq p)$, and \mathcal{E}_{p} be the set of edges between distinct parts of \mathscr{P} in G. It suffices to show that $\left|\mathcal{E}_{p}\right| \geq \ell(|\mathscr{P}|-1)$ so that we can use Nash-Williams-Tutte Theorem.

The case $p=1$ is trivial, thus we assume $2 \leq p \leq n$. Then $\left|\mathcal{E}_{p}\right| \geq\binom{ n}{2}-\sum_{i=1}^{p}\binom{n_{i}}{2}-$ $|M| \geq\binom{ n}{2}-\sum_{i=1}^{p}\binom{n_{i}}{2}-m$. We will show that $\binom{n}{2}-\sum_{i=1}^{p}\binom{n_{i}}{2}-m \geq \ell(p-1)$, that is, $\frac{n(n-1)}{2}-m-\ell(p-1) \geq \sum_{i=1}^{p}\binom{n_{i}}{2}$. We only need to prove that $\frac{n(n-1)}{2}-m-\ell(p-1) \geq$ $\max \left\{\sum_{i=1}^{p}\binom{n_{i}}{2}\right\}$. Since $f\left(n_{1}, n_{2}, \cdots, n_{p}\right)=\sum_{i=1}^{p}\binom{n_{i}}{2}$ achieves its maximum value when $n_{1}=n_{2}=\cdots=n_{p-1}=1$ and $n_{p}=n-p+1$, we need the inequality $\frac{n(n-1)}{2}-m-\ell(p-$ 1) $\geq\binom{ 1}{2}(p-1)+\binom{n-p+1}{2}$, that is, $\frac{n(n-1)}{2}-m-\frac{(n-p+1)(n-p)}{2} \geq \ell(p-1)$. Actually, $\ell \leq$ $\frac{n(n-1)-(n-p+1)(n-p)-2 m}{2(p-1)}$ is our required inequality, namely, $\ell \leq n-\frac{1}{2}-\left(\frac{p-1}{2}+\frac{2 m}{p-1}\right)$. Since $f(x)=\frac{x}{2}+\frac{2 m}{x}$ achieves its maximum value $\max \left\{2 m+\frac{1}{2}, \frac{n-1}{2}+\frac{2 m}{n-1}\right\}$ when $1 \leq x \leq n-1$, we need $\ell \leq \min \left\{n-2 m-1, \frac{n}{2}-\frac{2 m}{n-1}\right\}$. Since this inequality holds for $0 \leq m \leq\left\lfloor\frac{n}{3}\right\rfloor$, we have $\left|\mathcal{E}_{p}\right| \geq\binom{ n}{2}-\sum_{i=1}^{p}\binom{n_{i}}{2}-|M| \geq \ell(p-1)$. From Theorem 1 , we know that G has ℓ edge-disjoint spanning trees.

Lemma 8. Let $G \in \mathcal{G}(n, m)$. For $n \geq 6$, we have
(1) $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq L(n, m)$, where

$$
L(n, m)=\left\{\begin{array}{cl}
\max \left\{1,\left\lfloor\frac{1}{2}(n-2-m)\right\rfloor\right\} & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq m \leq\binom{ n}{2}, \\
\min \left\{n-2 m-1,\left\lfloor\frac{n}{2}-\frac{2 m}{n-1}\right\rfloor\right\} & \text { if } 0 \leq m \leq\left\lfloor\frac{n}{3}\right\rfloor .
\end{array}\right.
$$

(2) $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \geq 0$.

Proof. (1) Since at least one of G and \bar{G} must be connected, we have $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq$ 1. For $m<n-1, \lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq\left\lfloor\frac{1}{2} \lambda(G)\right\rfloor+\left\lfloor\frac{1}{2} \lambda(\bar{G})\right\rfloor \geq\left\lfloor\frac{1}{2}(\lambda(G)+\lambda(\bar{G})-1)\right\rfloor \geq$ $\left\lfloor\frac{1}{2}(\max \{1, n-1-m\}-1)\right\rfloor \geq\left\lfloor\frac{1}{2}(n-2-m)\right\rfloor$ by Proposition 1 . So $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \geq$ $\max \left\{1,\left\lfloor\frac{1}{2}(n-2-m)\right\rfloor\right\}$. In particular, for $0 \leq m \leq\left\lfloor\frac{n}{3}\right\rfloor$, we can give a better lower bound of $\lambda_{k}(G)+\lambda_{k}(\bar{G})$ by Lemma 7, that is, $\lambda_{k}(G)+\lambda_{k}(\bar{G})=\lambda_{k}(\bar{G}) \geq \lambda_{n}(\bar{G}) \geq$ $\min \left\{n-2 m-1,\left\lfloor\frac{n}{2}-\frac{2 m}{n-1}\right\rfloor\right\}$.

To show the sharpness of the above lower bound for $\left\lfloor\frac{n}{3}\right\rfloor+1 \leq m \leq\binom{ n}{2}$, we consider the graph $G=K_{1, n-2} \cup K_{1}$. Then $m=n-2$ and \bar{G} is a graph obtained from a complete graph K_{n-1} by attaching a pendant edge. Clearly, $\lambda_{k}(G)=0$ and $\lambda_{k}(\bar{G})=1$. So $\lambda_{k}(G)+\lambda_{k}(\bar{G})=1=\max \left\{1,\left\lfloor\frac{1}{2}(n-2-m)\right\rfloor\right\}$. To show the sharpness of the above lower bound for $0 \leq m \leq\left\lfloor\frac{n}{3}\right\rfloor$, we consider the graph $G=n K_{1}$. Thus $m=0$ and $\bar{G}=K_{n}$. Since $\lambda_{n}(G)+\lambda_{n}(\bar{G})=0+\left\lfloor\frac{n}{2}\right\rfloor=\min \left\{n-2 \cdot 0-1,\left\lfloor\frac{n}{2}-\frac{2 \cdot 0}{n-1}\right\rfloor\right\}$, that is, the lower bound is sharp for $k=n$.
(2) The inequality follows from Theorem 2.

It was pointed out by Harary [9] that given the number of vertices and edges of a graph, the largest connectivity possible can also be read out of the inequality $\kappa(G) \leq$ $\lambda(G) \leq \delta(G)$.

Theorem 3. [9] For each n, m with $0 \leq n-1 \leq m \leq\binom{ n}{2}$,

$$
\kappa(G) \leq \lambda(G) \leq\left\lfloor\frac{2 m}{n}\right\rfloor
$$

where the maximum are taken over all graphs $G \in \mathcal{G}(n, m)$.
Now we will study a similar problem for the generalized edge-connectivity, which will be used in (2) of Lemma 9

Corollary 2. For any graph $G \in \mathcal{G}(n, m)$ and $3 \leq k \leq n, \lambda_{k}(G)=0$ for $m<n-1$; $\lambda_{k}(G) \leq\left\lfloor\frac{2 m}{n}\right\rfloor$ for $m \geq n-1$.

Proof. Let $G \in \mathcal{G}(n, m)$. When $0 \leq m<n-1, G$ must be disconnected and hence $\lambda_{k}(G)=0$. If $m \geq n-1, \lambda_{k}(G) \leq \lambda(G) \leq\left\lfloor\frac{2 m}{n}\right\rfloor$ by (1) of Observation 1 and Theorem 3.

Although the above bound of $\lambda_{k}(G)$ is the same as $\lambda(G)$, the graphs attaining the upper bound seems to be very rare. Actually, we can obtain some structural properties of these graphs.

Proposition 6. For any $G \in \mathcal{G}(n, m)$ and $3 \leq k \leq n$, if $\lambda_{k}(G)=\left\lfloor\frac{2 m}{n}\right\rfloor$ for $m \geq n-1$, then
(1) $\frac{2 m}{n}$ is not an integer;
(2) $\delta(G)=\left\lfloor\frac{2 m}{n}\right\rfloor$;
(3) for $u, v \in V(G)$ such that $d_{G}(u)=d_{G}(v)=\left\lfloor\frac{2 m}{n}\right\rfloor$, $u v \notin E(G)$.

Proof. One can check that the conclusion holds for the case $m=n-1$. Assume $m \geq n$. We claim that $\frac{2 m}{n}$ is not an integer. Otherwise, let $r=\frac{2 m}{n}$ be an integer. We will show that $\lambda_{k}(G) \leq r-1=\frac{2 m}{n}-1$ and get a contradiction. If G has at least one vertex v_{i} such that $d\left(v_{i}\right)>r$, then, since the average degree of G is exactly r, there must be a vertex v_{j} whose degree $d\left(v_{j}\right)<r$. From (1) of Observation we have $\lambda_{k}(G) \leq \delta(G) \leq d\left(v_{j}\right)<r$, that is, $\lambda_{k}(G) \leq r-1$. If, on the other hand, G is a regular graph, then by (3) of Observation (1, $\lambda_{k}(G) \leq \delta(G)-1=r-1$. So (1) holds.

For a graph G such that $\frac{2 m}{n}$ is not an integer, $\left\lfloor\frac{2 m}{n}\right\rfloor=\lambda_{k}(G) \leq \delta(G) \leq\left\lfloor\frac{2 m}{n}\right\rfloor$, that is, $\delta(G)=\left\lfloor\frac{2 m}{n}\right\rfloor$. So (2) holds.

For $u, v \in V(G)$ such that $d_{G}(u)=d_{G}(v)=\left\lfloor\frac{2 m}{n}\right\rfloor$, we claim that $u v \notin E(G)$. Otherwise, $u v \in E(G)$. Since $d_{G}(u)=d_{G}(v)=\delta(G)=\left\lfloor\frac{2 m}{n}\right\rfloor, \lambda_{k}(G) \leq \delta(G)-1=\left\lfloor\frac{2 m}{n}\right\rfloor-1$ by (3) of Observation a contradiction. So (3) holds.

Corollary 3. For any graph G of order n and size m, if $\frac{2 m}{n}$ is an integer, then $\lambda_{k}(G) \leq$ $\frac{2 m}{n}-1$.

Lemma 9. Let $G \in \mathcal{G}(n, m)$. Then
(1) $\lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq M(n, m)$, where

$$
M(n, m)=\left\{\begin{array}{cc}
n-\left\lceil\frac{k}{2}\right\rceil & \text { if } m \geq n-1, \\
& \text { or } k \text { is even and } m=0, \\
\text { or } k \text { is odd and } 0 \leq m \leq \frac{k-1}{2} ; \\
n-\left\lceil\frac{k}{2}\right\rceil-1 & \text { if } k \text { is even and } 1 \leq m<n-1, \\
& \text { or } k \text { is odd and } \frac{k+1}{2} \leq m<n-1 .
\end{array}\right.
$$

(2) $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq N(n, m)$, where

$$
N(n, m)=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq m \leq n-2 \\
\left(\frac{2 m}{n}-1\right)\left(n-2-\frac{2 m}{n}\right) & \text { if } m \geq n-1 \text { and } 2 m \equiv 0(\bmod n), \\
\left\lfloor\frac{2 m}{n}\right\rfloor\left(n-2-\left\lfloor\frac{2 m}{n}\right\rfloor\right) & \text { otherwise. }
\end{array}\right.
$$

Moreover, these upper bounds are sharp.
Proof. From Theorem 2, (1) holds for $m \geq n-1$. We have given a graph class to show that the upper bound is sharp. From Proposition [4, $\lambda_{k}(G)+\lambda_{k}(\bar{G})=\lambda_{k}(\bar{G})=n-\left\lceil\frac{k}{2}\right\rceil$ for k even and $m=0$, or k odd and $0 \leq m \leq \frac{k-1}{2}$. So for k even and $1 \leq m<n-1$, or k odd and $\frac{k+1}{2} \leq m<n-1, \lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq n-\left\lceil\frac{k}{2}\right\rceil-1$.

To prove the sharpness of the bound for k odd and $\frac{k+1}{2} \leq m<n-1$, we consider the graph $G=K_{1, \frac{k+1}{2}} \cup\left(n-\frac{k+3}{2}\right) K_{1}$. Now \bar{G} is a graph obtained from the complete graph K_{n} by deleting all the edges of a star $K_{1, \frac{k+1}{2}}$. On one hand, by Lemma四 $\lambda_{k}(\bar{G}) \leq n-\frac{k+1}{2}-1$. On the other hand, by Lemma 4. we have $\lambda_{k}(\bar{G}+e)=n-\frac{k+1}{2}$ for any $e \notin E(\bar{G})$, which implies that $\lambda_{k}(\bar{G}) \geq n-\frac{k+1}{2}-1$ (Note that $\lambda_{k}(H \backslash e) \geq \lambda_{k}(H)-1$ for a connected graph H, where $e \in E(H))$. So $\lambda_{k}(G)+\lambda_{k}(\bar{G})=\lambda_{k}(\bar{G})=n-\frac{k+1}{2}-1$. By the same reason, for
k even and $1 \leq m<n-1$ one can check that the graph $G=K_{2} \cup(n-2) K_{1}$ satisfies that $\lambda_{k}(G)+\lambda_{k}(\bar{G})=\lambda_{k}(\bar{G}) \geq n-\frac{k}{2}-1$.
(2) First, if $0 \leq m \leq n-2$, then $G \in \mathcal{G}(n, m)$ is disconnected. So $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G})=0$. Next if $\frac{2 m}{n}=r$ is an integer, then $\frac{2 e(\bar{G})}{n}=n-1-r$ is also an integer. From Corollary 33, we have $\lambda_{k}(G) \leq r-1$ and $\lambda_{k}(\bar{G}) \leq n-2-r$. So $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq(r-1)(n-$ $2-r)=\left(\frac{2 m}{n}-1\right)\left(n-2-\frac{2 m}{n}\right)$. Finally, if $2 m=n r+\ell$ where $1 \leq \ell \leq n-1$, then $\Delta(G) \geq r+1$. By (1) of Observation $\lambda_{k}(\bar{G}) \leq \delta(\bar{G})=n-1-\Delta(G) \leq n-2-r$. So $\lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq r(n-2-r)=\left\lfloor\frac{2 m}{n}\right\rfloor\left(n-2-\left\lfloor\frac{2 m}{n}\right\rfloor\right)$.

To show the sharpness of the upper bound for $m \geq n-1$ and $2 m \equiv 0(\bmod n)$, we consider the following example.

Example 3. Let G be a cycle $C_{n}=w_{1} w_{2} \cdots w_{n} w_{1}(n \geq 9)$. Since $\frac{2 m}{n}=2$ is an integer, $\lambda_{3}(G)=\frac{2 m}{n}-1=1$. It suffices to prove that $\lambda_{3}(\bar{G})=n-2-\frac{2 m}{n}=n-4$.

Choose $S=\{x, y, z\} \subseteq V\left(C_{n}\right)=V(G)$. We will show that $\lambda(S) \geq n-4$. If $d_{C_{n}}(x, y)=$ 1 and $d_{C_{n}}(y, z)=1$, without loss of generality, let $N_{C_{n}}(x)=\left\{x_{1}, y\right\}$ and $N_{C_{n}}(z)=\left\{y, z_{2}\right\}$, then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x z \cup z x_{1} \cup x_{1} y$ form $n-4$ edgedisjoint S-trees (See Figure $5(a)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-5}\right\}=$ $V(G) \backslash\left\{x, y, z, x_{1}, z_{2}\right\}$.

If $d_{C_{n}}(x, y)=2$ and $d_{C_{n}}(y, z)=1$, without loss of generality, let $N_{C_{n}}(x)=\left\{x_{1}, y_{1}\right\}$ and $N_{C_{n}}(z)=\left\{y_{1}, z\right\}$ and $N_{C_{n}}(z)=\left\{y, z_{2}\right\}$, then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x y \cup x z$ and $T_{2}=z_{2} x \cup z_{2} y \cup z_{2} y_{1} \cup y_{1} z$ form $n-4$ edge-disjoint S-trees (See Figure $5(b)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-6}\right\}=V(G) \backslash\left\{x, y, z, x_{1}, y_{1}, z_{2}\right\}$.

Figure 5. Graphs for Example 3.

If $d_{C_{n}}(x, y) \geq 3$ and $d_{C_{n}}(y, z)=1$, without loss of generality, let $N_{C_{n}}(x)=\left\{x_{1}, x_{2}\right\}$ and $N_{C_{n}}(z)=\left\{y_{1}, z\right\}$ and $N_{C_{n}}(z)=\left\{y, z_{2}\right\}$, then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x y \cup x z$ and $T_{2}=z_{2} x \cup z_{2} y \cup z_{2} y_{1} \cup y_{1} z$ and $T_{3}=x y_{1} \cup y_{1} x_{1} \cup x_{1} y \cup x_{1} z$ form $n-4$ edge-disjoint S-trees (See Figure $5(c)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-7}\right\}=$ $V(G) \backslash\left\{x, y, z, x_{1}, x_{2}, y_{1}, z_{2}\right\}$.

If $d_{C_{n}}(x, y)=2$ and $d_{C_{n}}(y, z)=2$, without loss of generality, let $N_{C_{n}}(x)=\left\{x_{1}, y_{1}\right\}$ and $N_{C_{n}}(z)=\left\{y_{1}, z_{1}\right\}$ and $N_{C_{n}}(z)=\left\{z_{1}, z_{2}\right\}$, then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x z \cup x y$ and $T_{2}=x z_{2} \cup y z_{2} \cup y z$ and $T_{3}=x_{1} y \cup x_{1} z \cup x_{1} z_{1} \cup x z_{1}$ form $n-4$ edge-disjoint S-trees (See Figure $5(d)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-7}\right\}=$ $V(G) \backslash\left\{x, y, z, x_{1}, y_{1}, z_{1}, z_{2}\right\}$.

If $d_{C_{n}}(x, y) \geq 3$ and $d_{C_{n}}(y, z)=2$, without loss of generality, let $N_{C_{n}}(x)=\left\{x_{1}, x_{2}\right\}$ and $N_{C_{n}}(z)=\left\{y_{1}, z_{1}\right\}$ and $N_{C_{n}}(z)=\left\{z_{1}, z_{2}\right\}$, then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x z \cup x y$ and $T_{2}=x z_{2} \cup z_{2} y \cup y z$ and $T_{3}=x_{1} y \cup x_{1} z \cup x_{1} y_{1} \cup x y_{1}$ and $T_{4}=x_{2} y \cup x_{2} z \cup x_{2} z_{1} \cup z_{1} x$ form $n-4$ edge-disjoint S-trees (See Figure $5(e)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-8}\right\}=V(G) \backslash\left\{x, y, z, x_{1}, x_{2}, y_{1}, y_{2}, z_{2}\right\}$.

Suppose that $d_{C_{n}}(x, y) \geq 3$ and $d_{C_{n}}(y, z) \geq 3$, without loss of generality, let $N_{C_{n}}(x)=$ $\left\{x_{1}, x_{2}\right\}$ and $N_{C_{n}}(z)=\left\{y_{1}, y_{2}\right\}$ and $N_{C_{n}}(z)=\left\{z_{1}, z_{2}\right\}$. Then the trees $T_{i}=x w_{i} \cup y w_{i} \cup z w_{i}$ together with $T_{1}=x z \cup x y$ and $T_{2}=x z_{2} \cup y z_{2} \cup y z$ and $T_{3}=x z_{1} \cup y z_{1} \cup y_{2} z_{1} \cup y_{2} z$ and $T_{4}=x_{1} y \cup x_{1} z \cup x_{1} y_{1} \cup y_{1} x$ and $T_{5}=x_{2} y \cup x_{2} z \cup x_{2} y_{2} \cup y_{2} x$ form $n-4$ edgedisjoint S-trees (See Figure $5(f)$), namely, $\lambda(S) \geq n-4$, where $\left\{w_{1}, w_{2}, \cdots, w_{n-9}\right\}=$ $V(G) \backslash\left\{x, y, z, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}$.

From the arbitrariness of S, we know that $\lambda_{3}(\bar{G}) \geq n-4$ by definition. Now we show that $\lambda_{3}(\bar{G}) \leq n-4$ for $\bar{G}=\overline{C_{n}}$. Choose $S=\left\{w_{1}, w_{2}, w_{3}\right\} \subseteq V(G)=V\left(C_{n}\right)$. Then $w_{1} w_{n} \in E\left(C_{n}\right)$ and $w_{3} w_{4} \in E\left(C_{n}\right)$. Thus $|E(\bar{G}[S])|=1$ and $\left|E_{\bar{G}}[S, \bar{S}]\right|=3(n-3)-2$, which implies that $\left|E(\bar{G}[S]) \cup E_{\bar{G}}[S, \bar{S}]\right|=3(n-3)-1$ (See Figure $5(g)$). One can see that each tree connecting S in \bar{G} uses at least 3 edges from $E(\bar{G}[S]) \cup E_{\bar{G}}[S, \bar{S}]$. Therefore $\lambda_{3}(\bar{G}) \leq \frac{3(n-3)-1}{3}=n-3-\frac{1}{3}$, which results in $\lambda_{3}(\bar{G}) \leq n-4$ since $\lambda_{3}(\bar{G})$ is an integer. So $\lambda_{3}(\bar{G})=n-4$ and $\lambda_{3}(G) \cdot \lambda_{3}(\bar{G})=\lambda_{3}\left(C_{n}\right) \cdot \lambda_{3}\left(\overline{C_{n}}\right)=1 \cdot(n-4)=\left(\frac{2 m}{n}-1\right)\left(n-2-\frac{2 m}{n}\right)$. The upper bound is sharp.

For $m \geq n-1$ and $\frac{2 m}{n}=r+\ell(1 \leq \ell \leq n-1)$, let $G=P_{4}$. Then $\lambda_{3}(G)=1=\left\lfloor\frac{6}{4}\right\rfloor=\left\lfloor\frac{2 m}{n}\right\rfloor$ and $\lambda_{3}(\bar{G})=\lambda_{3}\left(P_{4}\right)=1=4-2-\left\lfloor\frac{6}{4}\right\rfloor=n-2-\left\lfloor\frac{2 m}{n}\right\rfloor$. So $\lambda_{3}(G) \cdot \lambda_{3}(\bar{G})=\left\lfloor\frac{2 m}{n}\right\rfloor\left(n-2-\left\lfloor\frac{2 m}{n}\right\rfloor\right)$.

Combining with Lemmas 8 and 9, we can obtain the following result.
Theorem 4. Let $G \in \mathcal{G}(n, m)$. For $n \geq 6$, we have
(1) $L(n, m) \leq \lambda_{k}(G)+\lambda_{k}(\bar{G}) \leq M(n, m)$;
(2) $0 \leq \lambda_{k}(G) \cdot \lambda_{k}(\bar{G}) \leq N(n, m)$,
where $L(n, m), M(n, m), N(n, m)$ are defined in Lemmas 8 and 9 .
Moreover, the upper and lower bounds are sharp.

References

[1] N. Achuthan, N. R. Achuthan, L. Caccetta, On the Nordhaus-Gaddum problems, Australasian J. Combin. 2(1990), 5-27.
[2] Y. Alavi, J. Mitchem, The connectivity and edge-connectivity of complementary graphs, Lecture Notes in Math. 186(1971), 1-3.
[3] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math., 2012.
[4] J. Bondy, U. Murty, Graph Theory, GTM 244, Springer, 2008.
[5] G. Chartrand, S.F. Kappor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
[6] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
[7] M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program. 78(1997), 265-281.
[8] M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: A cutting plane algorithm and commputational results, Math. Program. 72(1996), 125-145.
[9] F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci. USA 1142-1146.
[10] H. Li, X. Li, Y. Sun, The generalied 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
[11] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optim. 24(2012), 389-396.
[12] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147-2163.
[13] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity, arXiv:1112.0127 [math.CO] 2011.
[14] C.St.J.A, Nash-Williams, Edge-disjonint spanning trees of finite graphs, J. London Math. Soc. 36(1961), 445-450.
[15] N. Sherwani, Algorithms for VLSI physical design automation, 3rd Edition, Kluwer Acad. Pub., London, 1999.
[16] W. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36(1961), 221-230.
[17] E. Palmer, On the spanning tree packing number of a graph: a survey, Discrete Math. 230(2001), 13-21.
[18] M. Kriesell, Edge-disjoint trees containing some given vertices in a graph, J. Combin. Theory, Ser.B, 88(2003), 53-65.
[19] M. Kriesell, Edge-disjoint Steiner trees in graphs without large bridges, J. Combin. Theory, Ser.B, 62(2009), 188-198.
[20] H. Wu, D. West, Packing Steiner trees and S-connectors in graphs, J. Combin. Theory, Ser.B, 102(2012), 186-205.

[^0]: *Supported by NSFC No. 11071130 and the " 973 " project.

