
HAL Id: hal-01208434
https://hal.science/hal-01208434

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study of scheduling problems with preemptions on
multi-core computers with GPU accelerators

Jacek Blażewicz, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié,
Denis Trystram

To cite this version:
Jacek Blażewicz, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, Denis Trystram. A study
of scheduling problems with preemptions on multi-core computers with GPU accelerators. Discrete
Applied Mathematics, 2015, 196, pp.72-82. �10.1016/j.dam.2015.04.009�. �hal-01208434�

https://hal.science/hal-01208434
https://hal.archives-ouvertes.fr

A Study of Scheduling Problems with Preemptions on

Multi-Core Computers with GPU Accelerators

Jacek Blazewicza, Safia Kedad-Sidhoumb, Florence Monnab,c,∗, Grégory
Mouniéc, Denis Trystramc,d

aPoznan University of Technology, Poland
bSorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, F-75005, Paris,

France
cGrenoble Institute of Technology, 51 avenue Kuntzmann, 38330 Montbonnot Saint

Martin, France
dInstitut Universitaire de France

Abstract

For many years, scheduling problems have been concerned either with parallel
processor systems or with dedicated processors - job shop type systems. With
a development of new computing architectures this partition is no longer so
obvious. Multi-core (processor) computers equipped with GPU co-processors
require new scheduling strategies. This paper is devoted to a characterization
of this new type of scheduling problems. After a thorough introduction of the
new model of a computing system, an extension of the classical notation of
scheduling problems is proposed. A special attention is paid to preemptions,
since this feature of the new architecture differs the most as compared with
the classical model. In the paper, several scheduling algorithms, new ones
and those refining classical approaches, are presented. Possible extensions of
the model are also discussed.

Keywords: Scheduling, Approximation algorithms, Parallel heterogeneous
systems, Preemption

1. Introduction

This paper is concerned with scheduling problems arising in the new area
of parallel processing. In several domains, like in real time finance applica-

∗Corresponding author

Preprint submitted to Discrete Applied Math October 2, 2015

tions for instance, complex computations are necessary, and the parallelism
of processors of the same type is not always the best solution.

Another very important example, where different types of parallel pro-
cessors are used is DNA assembling problem, where hundreds of millions of
DNA chains are to be aligned and the resulting chromosome is to be con-
structed. In short, this approach requires at the first stage (alignment of
DNA chains) a multi-GPU machine, while the second stage (construction of
a corresponding DNA graph and finding the resulting path) should be done
on a parallel CPU system (cf. [1, 2, 3] for a deeper analysis of the subject).

As a result, most of computing systems available today include parallel
multi-core chips sharing a large memory with additional hardware acceler-
ators [4]. There is an increasing complexity in the architecture of internal
nodes of such parallel systems, mainly due to the heterogeneity of the com-
putational resources. In order to take advantage of the benefits offered by
heterogeneity, effective and automatic management of the resources will be-
come more and more important for running any applications. These new
hybrid architectures have given rise to new scheduling problems consisting in
allocating and sequencing the computations on the different resources such
that a given objective is optimized. A huge amount of work has been done
for implementing algorithms on this new type of hybrid platforms, mostly
for regular numerical kernels. However, most of these studies are dedicated
to ad hoc analysis for specialized computations with specific applications like
multiple alignments of biological sequences [5], or molecular dynamics [6],
and few of them propose more generic high-level approaches, especially in
the field of scheduling. All these approaches follow the main characteristics
of these hybrid platforms in particular for managing communications from
a standard computing unit (CPU) to a GPU as well as the memory orga-
nization. In the existing scheduling algorithms, a GPU is usually seen as a
co-processor of a CPU, and, up to now, it is difficult and costly to interrupt
the execution of a task on a CPU and resume it on a GPU or even to pre-
empt a task on GPUs. No definitive solution has been given to the matter of
preemption of the tasks on these platforms. However, the use of preemption
could yield much better schedules for the CPUs. Let us note here that the
profitability of preemptions is a common feature of the classical systems [7],
as well as multiprocessor task scheduling ones [8].

Thus, the objective of this work is to investigate how preemptions can
be introduced in order to improve global computations. Here, preemption
is allowed for the tasks scheduled on the CPUs and even between CPUs,

2

but, due to the architecture of the GPUs, preemptions of the tasks are not
allowed in the latter. Therefore only a “partial” preemption on CPUs is
addressed in this work. We consider several problems, all of them dealing
with a heterogeneous computing platform constituted of mixed CPUs and
GPUs, where n sequential tasks have to be executed. A task Tj has two
distinct processing times, pj if it is executed on a standard CPU and pj if it
is processed on a standard GPU.

Moreover, some CPUs may process the tasks faster than other CPUs.
Due to the similar structure of all the CPUs, the speedup factor of one CPU
over the other is the same here for all the tasks. The CPUs are said to
be uniform. Then, the processing time of the task Tj on a given CPU is
the processing time on the standard CPU, pj, multiplied or divided by the
coefficient corresponding to the difference of speeds between the given CPU
and the standard one. The same operations can be performed for uniform
GPUs instead of identical ones. More details on this subject are given in
Section 2.

The aim of the paper is to introduce a new model in the scheduling area,
motivated by the practical applications of hybrid CPU/GPU systems, study
the basic scheduling algorithms and point out possible refinements, moving
ahead of the development of theses technologies.

In this work, some of the problems analyzed are matched with classical
scheduling problems and their solving methods are adapted to the new hybrid
problems, but some CPU/GPU problems cannot be restricted to standard
problems, and therefore new algorithms are developed specifically for these
new problems.

The structure of the paper is as follows. In the following section, a new
notation for a new type of scheduling problems dealing with heterogeneity
is introduced. Then, we provide in Section 3, a survey of classical problems
whose scheduling algorithms can be adapted to solve some hybrid platform
scheduling problems. In Section 4, a new method for scheduling efficiently
parallel applications, where each task of the application can be processed
either on a core (CPU) or on a GPU and are independent from each other,
is proposed. Finally, in Section 5, some possible extensions of the model
proposed are analyzed before the conclusion (Section 6).

3

2. Notation

We extend the traditional notation α | β | γ introduced by Graham et
al. [9] in scheduling theory. We detail here only the proposed extensions for
some scheduling problems with n independent sequential tasks.

2.1. Machines (α)

2.1.1. Sets of Identical CPUs and Identical GPUs

We denote by (Pm,Pk) the problem on a heterogeneous computing plat-
form constituted of m identical CPUs (Pm) and k identical GPUs (Pk),
where, as previously defined, a task Tj has two distinct processing times, pj
if it is executed on a CPU and pj if it is processed on a GPU. Since the
CPUs are all identical, and so are the GPUs respectively, there is no need
for a more complex notation involving the number of the CPU (or GPU)
where one task is processed. The default hypothesis is that the acceleration
factor

pj
pj

= qj of the different tasks is arbitrary. Some tasks can have their

processing times greatly reduced when assigned to a GPU, while some other
tasks may have similar processing times on CPU and on GPU, or even be
slowed down when assigned to a GPU.

Let us consider for instance the problem (Pm,Pk) || Cmax, where the
objective is to minimize the makespan (Cmax). This objective is the most
frequently investigated in HPC field. Other classical objectives found in the
literature can also be integrated in this notation, as for example the mean
flow time (

∑
Cj), which is also investigated in this paper.

The notation (P, P) is used when the numbers of CPUs and GPUs are
arbitrary, but all the CPUs are still considered identical as well as the GPUs.

2.1.2. Sets of Uniform CPUs and Uniform GPUs

With the same reasoning, we denote by (Qm,Qk) the problem with n
independent sequential tasks on a platform with m uniform CPUs (Qm)
and k uniform GPUs (Qk). In this case, a task can have several distinct
processing times. We denote by pj the processing time of task Tj on the
slowest CPU, taken as the reference CPU. From there, the processing time
of Tj on CPU i is defined by pij =

pj
si

, where si is the speedup factor of CPU i
compared to the slowest CPU, whose speedup is 1, as described for classical
scheduling problems with uniform machines Q.

We introduce the same processing times for the GPUs, where pj denotes
the processing time of a task Tj on the slowest GPU. The processing time of

4

Tj on GPU i is then defined by pij =
pj

si
, where si is the speedup factor of

GPU i compared to the slowest GPU, whose speedup is 1.
Using this notation, we define similarly the acceleration ratio of a task

from its parallelization on a GPU with the processing times on the standard
processors: qj =

pj
pj

. Once again, the default hypothesis is that all the ac-

celeration ratios of the different tasks can be arbitrary. The parallelization
process allowing much greater acceleration that any increase in computing
speed, it is assumed that even the largest factor among the si is lower than
the smallest acceleration factor qj for a task Tj on the GPU.

Again, the notation (Q,Q) is used when the numbers of CPUs and GPUs
are arbitrary, as for instance in the problem of minimizing the makespan:
(Q,Q) || Cmax, but other objectives than the makespan can also be considered
for this problem.

This new notation allows us to consider all the combinations for the sets
of CPUs and GPUs: we could for instance study the problem (P2, Q2) cor-
responding to a simple laptop with 2 CPU cores and its built-in GPU on
which another, different, GPU has been plugged for graphical purposes.

Let us remark that extending this notation to unrelated sets of CPUs
and GPUs would bring no additional material to the notation of α = R, the
processing times being completely arbitrary from one task and one machine
to another.

2.2. Tasks (β)

2.2.1. One type of tasks

As mentioned in the previous section, the default hypothesis in the new
notation is that the acceleration factors

pj
pj

= qj for the different tasks can

be arbitrary. A restricted version of this hypothesis can be made in order to
consider the problems dealing with the scheduling of only one type of tasks,
i.e. all the considered tasks would have the same acceleration factor:

pj
pj

= q

for j = 1, . . . , n.
For instance, the problem (Pm,Pk) || Cmax with only one type of tasks

will be denoted by (Pm,Pk) | qj = q | Cmax. All other entries from the β field
in the classical notation can be integrated in order to refine the problem, with
the exception of the preemption which is detailed in the following section.

5

2.2.2. Partial Preemption

Due to the different architectures of the GPUs as well as the different
programming languages, it is difficult and costly to start a task on a CPU,
stop its processing and pick it up where it was stopped on a GPU: complete
preemption cannot be allowed between a CPU and a GPU. The GPU peculiar
structure requires complex management of the preemption even between the
GPUs themselves [10].

We introduce the notion of “partial preemption”, denoted by ppmtn,
where preemption is only allowed for tasks remaining on the CPUs. In the
rest of the article, we suppose that preemption is not allowed between GPUs,
or between a CPU and a GPU.

The notion may evolve in the next few years with new accelerator archi-
tectures as the Intel MIC (Many Integrated Core) architecture of the Xeon
Phi, which is roughly a “standard” 60 core disk-less system. Preemption
inside a MIC is much easier. Nevertheless, efficient task migration between
the CPU and the MIC remains an open problem.

3. Analysis of some CPU/GPU Problems

We start with some basic problems in order to analyze the complexity
and potential resolution of the problems with CPUs and GPUs, and then
see if the addition of the partial preemption imply a change in the order of
complexity of these problems.

3.1. Minimization of the makespan with independent tasks and fixed speedup

The first problems considered have the objective of makespan minimiza-
tion and have the additional simplifying constraint that all the tasks have
the same speedup on the GPUs. We start with a problem which is close to
a classical polynomial problem, Q | pj = 1 | Cmax [9].

3.1.1. (Pm,Pk) | qj = q, pj = 1 | Cmax
Complexity. The problem can be solved polynomially. It can be formulated
as a transportation problem in the same way as shown by Graham et al. [9]
for the Q | pj = 1 | Cmax problem.

Solving method. Below is the adaption of the method of Graham et al. [9] to
the problem (Pm,Pk) | qj = q, pj = 1 | Cmax.

There are n sources j = 1, . . . , n each corresponding to a task Tj, and
(m + k)n sinks (i, v) for i = 1, . . . ,m + k, and v = 1, . . . , n. The first m

6

machines correspond to the CPUs and the last k ones to the GPUs. The
cost of arc (j, (i, v)) is

cijv =

{
v if machine Mi is a CPU (i.e. i = 1, . . . ,m),

v/q if machine Mi is a GPU (i.e. i = m+ 1, . . . ,m+ k),

The arc flow is

xijv =

{
1 if task Tj is executed on machine Mi in the vth position

0 otherwise.

The problem is to minimize max
i,j,v
{cijvxijv} subject to

∑
i,v

xijv = 1 ∀j∑
j

xijv 6 1 ∀i, v

xijv > 0 ∀i, j, v

The problem (Pm,Pk) | qj = q, pj = 1 | Cmax can therefore be solved in

O (n3) [9], since m+ k ≤ n.
Another method can be extended to solve (Pm,Pk) | qj = q, pj = 1 |

Cmax, based on an approach developed for the problem Q | pj = 1 | Cmax by
Sevastjanov [11] leading to a time complexity of O

(
(m+ k)2

)
.

The rationale of the solving algorithm is as follows: the minimum schedule
length is

C∗max = sup

{
t | m+ k

⌊
t

q

⌋
< n

}
.

A lower bound on the schedule length for the problem (Pm,Pk) | qj =
q, pj = 1 | Cmax is C ′ = n

m+ k
q

6 C∗max.

If we assign vi =

{
bC ′c , i = 1, . . . ,m

bC ′qc , i = m+ 1, . . . ,m+ k
tasks to machine Mi,

and then these tasks are processed in the interval [0, C ′]. However, l =

n−
m+k∑
i=1

vi tasks remain unassigned. We have l 6 m−1 since C ′−bC ′c < 1 and

7

C ′q−bC ′qc < 1. The remaining l tasks are assigned one by one to the machine

Mi for which min
i

{
vi + 1 for i = 1, . . .m; vi+1

q
for i = m+ 1, . . . ,m+ k

}
is

attained at a given stage, where, of course, vi is increased by one after the
assignment of a tasks to a particular machine Mi. This procedure is repeated
until all the tasks are assigned, and we obtain the optimal schedule in time
O
(
(m+ k)2

)
.

We can note that the time complexity of these methods has not varied
from the classical case Q | pj = 1 | Cmax. The problem (Pm,Pk) | qj =
q, pj = 1 | Cmax is polynomial and can be solved as efficiently as a classical
platform of uniform cores.

3.1.2. (Pm,Pk) | qj = q | Cmax
Let us now study the problem when constraint pj = 1 is relaxed.

Complexity. (P1, P1) | qj = q | Cmax is equivalent to the classical problem
Q2 || Cmax, which is NP-hard [12]. Therefore, (Pm,Pk) | qj = q | Cmax is
also NP-hard.

Solving Method. We look at approximation methods from the literature that
can be used for this problem. If we consider the (Pm,P1) | qj = q | Cmax
problem, we notice that it corresponds to a specific instance of Q || Cmax,
where m + 1 machines are considered with a very specific set of machine
speedups: the first m machines have the same processing speed of 1 and
the last one has a speedup of q. This special instance of Q || Cmax will be
denoted here by Q(m+ 1) || Cmax. Liu et al. [13] developed a list scheduling
algorithm for Q(m + 1) || Cmax: tasks are ordered on the list in the non-
increasing order of their longest processing times and processors are ordered
in the non-increasing order of their processing speeds. Whenever a machine
becomes free, it gets the first non-assigned task of the list. If there are
two or more free processors, the fastest is chosen. The performance ratio is{

2(m+q)
q+2

for q 6 2
m+q
2

for q > 2
, with q the speedup of the GPU.

To address the more generic problem (Pm,Pk) | qj = q | Cmax, we can
use the generalization of the LPT rule developed by Gonzalez et al. [14] for
the problem Q || Cmax. The algorithm is as follows: assign each task, in
the order of non-increasing (longest) processing time, to the machine it will
be completed soonest. The ratio is then 2− 2

m+k+1
. Additionally, they gave

examples for which Cmax(LPT)
C∗max

approaches 3
2

as m+ k tends to infinity.

8

3.1.3. (Qm,Qk) | qj = q | Cmax
The problems (Pm,Pk) | qj = q, pj = 1 | Cmax and (Pm,Pk) | qj =

q | Cmax described in Sections 3.1.1 and 3.1.2 respectively were particular
cases of the classical problems Q | pj = 1 | Cmax and Q || Cmax. We
can show in a similar manner that (Qm,Qk) | qj = q, pj = 1 | Cmax and

(Qm,Qk) | qj = q | Cmax are also particular cases of Q | pj = 1 | Cmax
and Q || Cmax, respectively. The proofs would be similar and the time
complexities would remain unchanged.

3.2. Minimizing the Mean Flow Time with Independent Tasks

Another objective to consider on hybrid platforms is the Mean Flow Time.

3.2.1. (Pm,Pk) ||
∑
Cj

Complexity. The problem (Pm,Pk) ||
∑
Cj is a specific case of the classical

problem R ||
∑
Cj which is polynomial. Therefore (Pm,Pk) ||

∑
Cj is also

a polynomial problem.

Solving method. We adapt an approach to the solution of R ||
∑
Cj [15]

to (Pm,Pk) ||
∑
Cj: the method is based on the observation that task Tj

processed on machine Mi in the last position contributes its processing time

pij =

{
pj if i ∈ {1, . . . ,m}
pj if i ∈ {m+ 1, . . . ,m+ k}

to the mean flow time F for problem

(Pm,Pk) ||
∑
Cj. The same task processed in the last but one position on

the same processor contributes 2pij to F and so on. This reasoning allows
us to construct an (2n)× n matrix Q presenting contributions of particular
tasks processed in different positions on different processors to the value of
F :

Q =



p1 . . . pj . . . pn
2p1 . . . 2pj . . . 2pn

...
...

...
np1 . . . npj . . . npn
p1 . . . pj . . . pn
2p1 . . . 2pj . . . 2pn

...
...

...
np1 . . . npj . . . npn



9

The problem is now to choose n elements from matrix Q in order to
minimize

n∑
j=1

n∑
l=1

(
m∑
i=1

Ql,j +
m+k∑
i=m+1

Ql+m,j

)
xijl

under the constraints

m+k∑
i=1

n∑
l=1

xijl = 1 ∀j ∈ {1, . . . , n}

n∑
j=1

xijl 6 1 ∀i ∈ {1, . . . ,m+ k} , l ∈ {1, . . . , n}

xijl > 0 ∀i ∈ {1, . . . ,m+ k} , j, l ∈ {1, . . . , n}

where

xijl =

{
1 if Tj is executed on Mi in the lth position, starting counting from the end

0 otherwise

The problem is a transportation problem solved using classical trans-
portation algorithms, in O (n3) [15].

3.2.2. (Pm,Pk) | ppmtn |
∑
Cj

Since R | pmtn |
∑
Cj is NP-hard and R ||

∑
Cj is polynomial, we

analyze the complexity of (Pm,Pk) | ppmtn |
∑
Cj, to see if this also

increases the complexity of the problem or if it remains easy to solve.

Complexity. In the problem (Pm,Pk) | ppmtn |
∑
Cj, preemptions are only

allowed on the CPUs that are considered identical. If we look at the problem
P | pmtn |

∑
Cj, it is polynomially solvable since preemptions are not

profitable when minimizing the mean flow time. The scheduling of the tasks
of P | pmtn |

∑
Cj is done in the same way as those of P ||

∑
Cj. With

that in mind, the scheduling of the tasks of (Pm,Pk) | ppmtn |
∑
Cj can be

done with the method used with the previous problem, (Pm,Pk) ||
∑
Cj,

solved in Section 3.2.1. Therefore, the problem remains easy to solve when
partial preemptions are allowed.

In Section 3, all the studied problems can be linked to classical scheduling
problems. However, if we relax some of the considered constraints, problems

10

on hybrid platforms cannot be seen as classical problems. Hence, new algo-
rithms need to be developed for these problems.

4. New Algorithms to Minimize the Makespan with Independent
Tasks and Task-dependent speedups

In this section, we study some problems that have no classical counterpart
in the existing literature. The algorithms proposed in this section are all
based on the dual approximation technique [16]. A g-dual approximation
algorithm for a generic problem takes a real number λ (guess) as an input
and either delivers a schedule of makespan at most gλ, or answers correctly
that there exists no schedule of length at most λ. A binary search is used to
try different guesses to approach the optimal makespan as follows: we first
take an initial lower bound Bmin and an initial upper bound Bmax of the
optimal makespan. We start by solving the problem with a λ equal to the
average of these two bounds and then the bounds are updated as follows:

• If the algorithm returns “NO”, then λ becomes the new lower bound.

• If the algorithm returns a schedule of makespan at most gλ, then there
exists a schedule of makespan at most λ and λ becomes the new upper
bound.

The number of iterations of the binary search is bounded by log2 (Bmax −Bmin) .
Hence, a g-dual approximation algorithm can be converted, by bisection
search, in a g(1 + ε)-approximation algorithm with a similar running time.

4.1. (Pm,Pk) | ppmtn | Cmax
Complexity. (Pm,Pk) | ppmtn | Cmax is NP-hard, since if we consider the
problem with m = 1, k = 1 and only one type of tasks, i.e. qj = q, the
problem is equivalent to the classical Q2 || Cmax problem, which is NP-hard.

Solving Method. We develop a dual approximation algorithm running in
O (n log n). Depending on the value of k, the approximation ratio of the
algorithm varies.

11

4.1.1. Single GPU Case

For (Pm,P1) | ppmtn | Cmax, the algorithm have the following steps for
each guess λ of the dual approximation scheme:

• Extract from the set of tasks those which necessarily fit in the GPU
(pj > λ), and complete them by the tasks with the largest acceleration

factor qj =
pj
pj

up to the guess.

• Put all the remaining tasks on the m CPUs.

Lemma 1. This algorithm has an approximation ration of 1 + 1
m

.

Proof. If at one step of the algorithm the current guess λ is lower than the
optimal makespan of the schedule, then the workload of the CPUs cannot
be lower than m

(
1 + 1

m

)
C∗max with the task assignment given by the algo-

rithm. If the guess is larger than C∗max, the assignment of the tasks with
the largest acceleration factors to the GPU ensures that the workload of
the CPUs is lower than m

(
1 + 1

m

)
C∗max. Therefore, the dual approximation

scheme narrows the value of λ down to C∗max.
When λ = C∗max, let us consider the last task assigned to the CPUs, Tlast.
If Tlast was assigned to the GPU, the makespan of this processor would
go over C∗max, and therefore the remaining tasks on the CPUs would have
a workload lower than the optimal one. Indeed, this workload cannot be
lowered by swapping a task on the CPUs with a task on the GPU, the
acceleration factors of the tasks assigned to the GPU being larger than the
ones remaining on the CPUs. Therefore, we have

W−
C

m
6 C∗max,

where W−
C represents the workload of the CPUs without the last task

assigned to the CPUs by the algorithm. We have W−
C = WC − plast (WC

being the workload of the CPUs), and it follows that

WC

m
6
plast
m

+ C∗max.

WC

m
corresponds to the makespan of the CPUs for the schedule determined

by the algorithm, since preemptions are allowed on these processors. Since
all the tasks too large to fit on one CPU have been assigned to the GPU,
plast 6 C∗max, hence leading to the approximation ratio of 1 + 1

m
for this

algorithm.

12

Remark. One sub-problem of (Pm,P1) | ppmtn | Cmax worth investigating is
(Pm,P1) | qj = q, ppmtn | Cmax. It is a particular case of Q2 || Cmax, so the
problem is still NP-hard, but, for this particular case, the dual approximation
scheme is not necessary in order to obtain a similar approximation ratio.
Here, a lower bound of the makespan of the schedule is

∑n
i=1 pi/(m + q).

The tasks with the largest processing times are assigned to the GPU up to
this bound, and one more task is assigned to the GPU. This additional task
plays the same part as Tlast in the previous proof. Since the additional task
is placed on the GPU here, the approximation ratio becomes 1 + 1

q
, and the

time complexity of the algorithm is still O(n log n).

4.1.2. Multiple GPUs Case

For problem (Pm,Pk) | ppmtn | Cmax, with k > 2, the algorithm pro-
posed for k = 1 provides a ratio of 1 + max

(
1
m
, 1− 1

k

)
: the computing area

on the GPUs is filled up to kλ, but for k > 2 the scheduling of the tasks as-
signed to the GPUs cannot be done as easily as before since the performance
ratio of the scheduling algorithm on the GPUs is similar to the one of the
classical list algorithm: 2− 1

k
.

Another dual approximation algorithm with dynamic programming has
been developed for the problem (Pm,Pk) || Cmax in [17] and can be extended
to the problem (Pm,Pk) | ppmtn | Cmax, with an approximation ratio of
4
3

+ 1
3k

with a time complexity in O (n2k3).
Assuming that there exists a schedule of length lower than λ, λ being the

current guess of the dual approximation, the idea is to partition the set of
tasks on the GPUs into two sets, each consisting in two shelves: a first set
with a shelf S1 of length λ and the other S2 of length λ

3
, occupying κ GPUs

and a second set with two shelves S3, S4 of length 2λ
3

, occupying k−κ GPUs
as depicted in Figure 1.

The partition ensures that the makespan on the GPUs is lower than 4λ
3

.
Since the tasks are independent, the scheduling strategy is straightforward
when the assignment of the tasks has been determined. Preemption being
allowed on the CPUs, the makespan of the CPUs is WC

m
6 λ, yielding directly

a solution of length at most 4λ
3

+ λ
3k

. The main problem is to assign the tasks
to the CPUs or to each shelf on the GPUs in order to obtain a feasible
solution. This is done using dynamic programming, solving the following

13

k GPUs

S4S3

κ

λ/3 2λ/3 4λ/30 λ

S1
S2

Figure 1: Partitioning the set of tasks on the GPUs into two sets of two shelves, the first
one occupying κ GPUs, the second k − κ GPUs.

problem:

W ∗
C = min

n∑
j=1

pjxj (1)

s.t.
1

2

∑
2λ/3>pj>λ/3

(1− xj) +
∑

pj>2λ/3

(1− xj) 6 k (2)

n∑
j=1

pj (1− xj) 6 kλ (3)

xj ∈ {0, 1} (4)

where xj is a binary decision variable such that xj = 1 if task Tj is
assigned to a CPU or 0 if Tj is assigned to a GPU.

Equation (1) represents the minimal workload on all the CPUs. Con-
straint (2) imposes that no more than k tasks can be executed on the
GPUs with a processing time strictly greater than 2λ

3
(occupying S1), we

note κ =
∑

pj>2λ/3

(1− xj) their number; and that there cannot be more than

2(k−κ) tasks on the GPUs with a processing time lower than 2λ
3

and strictly

14

greater than λ
3

(occupying S3 and S4). Constraint (3) imposes an upper
bound on the computational area on the GPUs which is kλ.

In order to obtain a time complexity in O (n2k3), the processing times

of the tasks on the GPUs are discretized. We introduce νj =
⌊

pj

λ/(3n)

⌋
to

represent the number of integer time intervals of length λ
3n

required for a
task Tj if it is executed on the GPUs, as shown in Figure 2. N =

∑
Tj / xj=0

νj

denotes the total integer number of these intervals on the GPUs. We thus
define the error on the processing time of each task εj = pj − νj λ3n induced
by this time discretization.

0 1 2 3 4 5 6 7 8 9 10

GPU

Task T1 Task T2

λ
3n

λ
3n

ν2 times︷ ︸︸ ︷
p1

Figure 2: Rounded allocation of two tasks T1 with p1 = 6.5 and T2 with p2 = 4.7 on a
GPU

This result allows us to consider only N states in the dynamic program-
ming regarding the workload on the GPUs. The error εj on each task is at
most λ

3n
, so if all the tasks were assigned to one of the GPUs, we would have

underestimated the total processing time on this GPU by at most n λ
3n

= λ
3
.

Constraint (3) becomes:

N =
∑

Tj / xj=0

νj 6 3kn (5)

The approximated computational area of the GPUs is at most kλ. Thus,
the full computational area on GPU remains lower than kλ + λ

3
. The tasks

15

remaining to be assigned on the GPUs after the construction of S1, S3, S3, S4,
fit in the remaining free computational space WR between these shelves. If
all the working processors complete their tasks at 4λ

3
+ λ

3k
, with an idle time

interval between the end of S1 and the starting time of S2, the load of a
GPU is equal to 4λ

3
+ λ

3k
minus the length of the idle time interval. If a task

with processing time lower than λ
3

remains to be assigned, the least loaded
processor has a load at most λ+ λ

3k
since the total work area is bounded by

k
(
λ+ λ

3k

)
, so the idle time interval on the least loaded GPU has a length of

at least λ
3

and can contain the task to be assigned.
By construction of the shelves, the makespan on the GPUs does not go

over 4λ
3

+ λ
3k

. Since preemptions are allowed on CPUs, the makespan on the

CPUs equals to WC

m
, where WC is the computational area on the CPUs.

We define WC(j, κ, κ′, N) as the minimum sum of all the processing times
of the tasks on the CPUs when the first j tasks are considered, with among
the tasks on the GPUs, κ of them having processing times greater than 2λ

3

and κ′ with λ
3
< pj 6 2λ

3
, and where N time intervals are occupied on the

GPUs.
We use a dynamic programming algorithm to compute the value ofWC(j, κ, κ′, N).

The optimal value of the computational area WC on the CPUs will be given
by W ∗

C = minWC (n, κ, κ′, N)
0, 06κ6k, 06κ′62(k−κ), 06N63kn

. If W ∗
C is greater than mλ, then there

exists no solution with a makespan at most λ, and the algorithm answers
“NO” in the dual approximation framework. Otherwise, the guess λ is large
enough, we construct a feasible solution with a makespan at most 4λ

3
+ λ

3k
,

with the shelves and the corresponding κ, κ′ and N values.
Solving the dynamic programming algorithm for a fixed value of λ requires

to consider O (n2k3) states, since 1 6 j 6 n, 1 6 κ 6 k, 1 6 κ′ 6 2(k − κ),
and 0 6 N 6 3kn. Therefore, the time complexity of each step of the binary
search is O (n2k3).

4.2. (Pm,Pk) || Cmax
Complexity. If we look at problem (P1, P1) | qj = q | Cmax, all tasks Tj
have a processing time pj on the GPU and a processing time pj = qpj on the
CPU. This is equivalent to consider the CPU and the GPU as two uniform
machines with different speeds: a speed of 1 for the CPU, and a speed of
q for the GPU. So (P1, P1) | qj = q | Cmax is equivalent to the classical
problem Q2 || Cmax, which is NP-hard. Therefore problem (Pm,Pk) || Cmax
is NP-hard.

16

Solving Method. The dual approximation algorithm running in O (n log n)
presented in the previous section can be used for this problem without partial
preemption. An approximation ratio of 2 can be achieved, since we face here
on the CPUs the same problem which was encountered on the k > 2 GPUs
for the previous problem (Pm,Pk) | ppmtn | Cmax, only solved with the
performance ratio of the classical list scheduling algorithm.

Using dual approximation and dynamic programming, as mentioned in
the previous section, an algorithm was developed in [17] to reach a ratio of 4

3

in time O (n2m2k3). Here, the CPUs have to be filled with shelves similar to
the ones used on the GPUs in the previous section, since preemption is no
longer allowed. There is however no need to count discretize the processing
times of the tasks assigned to the CPUs since the computational area on
CPUs is the objective to minimize and not a constraint, as it is the case for
the GPUs. Therefore we introduce a new factor of m2 in the time complexity
of the algorithm. In [17], it has been shown that the approximation ratio
of 4

3
can be improved with an increase in time complexity. The different

possible ratios and their corresponding time complexities are given in Table
2 of Section 6.

5. Further Extensions

The scheduling model discussed so far from Sections 2 to 4 can be fur-
ther refined, taking into account the forthcoming development of computer
architecture. The most important extensions are listed below.

• Preemptions are not allowed between CPUs and GPUs because of too
many differences in the programming and the execution of the tasks.
However, a recent study [10] has shown that a granular preemption is
possible on the latest models of GPUs.

The idea of a granular preemption (g − pmtn) is the following: the
preemption should be allowed on the GPU only after the tasks have
been processed continuously for a given amount g of time. The value
for g (preemption granularity) should be chosen large enough so that
the costs are negligible. Note that if g = 1, this is equivalent to the
regular preemption. However, when speaking of granular preemption,
we have g > 2.

17

The problem P | g − pmtn | Cmax is NP-hard except for the case of
two machines that can be solved in O(n) [18]. Our problem is therefore
NP-hard.

Let us notice that the trend of the computer companies is to create
GPUs that are closer to usual processors (both at the language level
and resource manager), therefore it is likely that the future GPUs will
allow preemptions.

• We are working on integrating the dual approximation algorithm de-
scribed in Section 4.2 into a search procedure for the critical path of the
problem (Pm,Pk) | prec | Cmax. We are aiming at a time complexity
of O (n4 (1 + n+ |E|)) , E being the number of edges in our precedence
graph, and an approximation ratio of 2.

If we allow preemptions on the CPUs, we may reduce the ratio to 1+ 1
m

in the special case of k = 1, but the ratio would remain 2 for k > 2.

For the problem (Pm,Pk) | qj = q, prec | Cmax, only polynomial
optimization algorithms are known for the preemptive case. For Q |
prec | Cmax, Chudak and Shmoys [19] give an O (logm)-approximation
algorithm similar to the list scheduling algorithm of Graham for the
problem P | prec | Cmax [20].

• The communications between the CPUs and the GPUs or even between
the GPUs themselves incur a cost, and sometimes the time delay cre-
ated by these communications is not negligible compared to the very
short processing times of a GPU. We are currently considering several
models for integrating these communications into our problems.

One of these models considers the communication as a standard time
delay that adds up to the processing time. The processing times become
pj =

pj
qj

+ βj, βj being the communication cost for the transfer of data.

Another possibility is that the GPU can at the same time process one
task and communicate with another processor. With this model there
are again two possible configurations that are actually encountered on
platforms: the first one is that there can be one communication chan-
nel for each GPU, and a complete communication/processing overlap
is possible. However, sometimes there are hardware restrictions and
some GPUs have to share a communication channel: the case of par-
tial communication/processing overlap has to be considered too. We

18

are currently working assuming a complete communication/processing
overlap.

6. Conclusion

In the paper, a new computer architecture and related scheduling prob-
lems were presented and analyzed. Most of the new computing platforms to-
day are built with a hybrid structure constituted of multi-core coupled with
several GPU accelerators. Several new applications as for example DNA as-
sembling problem highly benefit from these hybrid architectures. These plat-
forms create a need for generic scheduling algorithms on such heterogeneous
systems. Some CPU/GPU problems can be linked to existing problems in the
literature but for other problems, this is impossible. For simple criteria, as
for example makespan, some algorithms based on classical approaches could
be used. For more complicated cases, new approaches had to be considered.
Below, we summarize the results presented in the paper: those related to
algorithms equivalent to the classical model are listed in Table 1, those being
new are given in Table 2. Possible refinements of the approaches presented,
have been discussed in Section 5.

Problem Hardness Algorithm cost Reference

(Pm,Pk) | qj = q, pj = 1 | Cmax P O
(
(m+ k)2

)
3.1.1

(Pm,Pk) | qj = q | Cmax NP-hard considered as Q || Cmax 3.1.2

(Qm,Qk) | qj = q, pj = 1 | Cmax P O
(
(m+ k)2

)
3.1.3

(Qm,Qk) | qj = q | Cmax NP-hard considered as Q || Cmax 3.1.3
(Pm,Pk) ||

∑
Cj P O (n3) 3.2.1

(Pm,Pk) | ppmtn |
∑
Cj P O (n3) 3.2.2

Table 1: Problems related to the classical ones and the corresponding algorithm costs.

19

Problem Algorithm optimality ratio Algorithm cost
2 O (n log n)

(Pm,Pk) || Cmax 4
3

+ 1
3k

O (n2m2k3)
2r+1
2r

+ 1
2rk
, r > 0 O (n2mrkr+1)

2(r+1)
2r+1

+ 1
(2r+1)k

, r > 0 O (n2mr+1kr+2)

(Pm,P1) | ppmtn | Cmax 1 + 1
m

O (n log n)
(Pm,P1) | qj = q, ppmtn | Cmax 1 + 1

q
O (n log n)

1 + max
(

1
m
, 1− 1

k

)
O (n log n)

(Pm,Pk) | ppmtn | Cmax 1 + max
(

1
m
, 1
2r

+ 1
2rk

)
, r > 0 O (n2kr+1)

1 + max
(

1
m
, 1
2r+1

+ 1
(2r+1)k

)
, r > 0 O (n2kr+2)

Table 2: Problems with no equivalent counterpart in the literature.

References

[1] J. Blazewicz, P. Formanowicz, F. Guinand, M. Kasprzak, Bioinformatics
18 (2002) 652–660.

[2] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M. Kasprzak, E. Kir-
ton, D. Platt, J. Przybytek, A. Swiercz, L. Szajkowski, Computational
Biology and Chemistry 33 (2009) 224–230.

[3] M. Kierzynka, J. Blazewicz, W. Frohmberg, P. Wojciechowski, Journal
of Parallel and Distributed Computing 73 (2013) 32–41.

[4] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
P. Dubey, in: A. Seznec, U. C. Weiser, R. Ronen (Eds.), ISCA, ACM,
2010, pp. 451–460.

[5] A. Boukerche, J. M. Correa, A. Melo, R. P. Jacobi, IEEE Transactions
on Computers 59 (2010) 808–821.

[6] J. C. Phillips, J. E. Stone, K. Schulten, in: SC.

[7] R. McNaughton, Management Sci. 6 (1959) 1–12.

[8] J. Blazewicz, P. Dellolmo, M. Drozdowski, M. Speranza, Information
Processing Letters 49 (1994) 269–270.

20

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
Annals of Discrete Mathematics 5 (1979) 287–326.

[10] C. Basaran, K.-D. Kang, Euromicro Conference on Real-Time Systems
(ECRTS) (2012) 287–296.

[11] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Handbook on
Scheduling, From Theory to Applications, International Handbooks on
Information Systems, Springer, 2007.

[12] J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Ann. of Discrete
Math. 1 (1977) 343–362.

[13] J. W. S. Liu, C. L. Liu, Information Processing, J. L. Rosenfeld, ed.,
North-Holland, Amsterdam 74 (1974) 349–353.

[14] T. Gonzalez, O. H. Ibarra, S. Sahni, SIAM Journal on Computing 6
(1977) 155–166.

[15] J. Bruno, E. G. Coffman, R. Sethi, Comm. ACM 17 (1974) 155–178.

[16] D. S. Hochbaum, D. B. Shmoys, J. ACM 34 (1987) 144–162.

[17] S. Kedad-Sidhoum, F. Monna, G. Mounié, D. Trystram, Proc. Het-
eroPar 2013, Aachen (2013).

[18] K. H. Ecker, R. Hirschberg, Proc. PARLE93 - Parallel Architectures and
Langueges, Munich (1993).

[19] F. A. Chudak, D. B. Shmoys, Journal of Algorithms 30 (1999) 323–343.

[20] R. L. Graham, Bell System Technical Journal 45 (1966) 1563–1581.

21

