Making a C_{6}-free graph C_{4}-free and bipartite

Ervin Győri Scott Kensell Casey Tompkins

June 3, 2014

Abstract

We show that every C_{6}-free graph G has a C_{4}-free, bipartite subgraph with at least $3 e(G) / 8$ edges. Our proof is probabilistic and uses a theorem of Füredi, Naor and Verstraëte on C_{6}-free graphs.

1 Introduction

For G a graph, let $e(G)$ denote the number of edges in G. We say G is H-free if it does not contain H as a subgraph. For a family of graphs \mathcal{F}, let $\operatorname{ex}(n, \mathcal{F})$ denote the maximum number of edges an n-vertex graph G can have such that G is F-free for all $F \in \mathcal{F}$.

Győri [2] proved that every bipartite, C_{6}-free graph contains a C_{4}-free subgraph with at least half as many edges. Extending this result, Kühn and Osthus [3] showed that every bipartite, $C_{2 k^{-}}$ free graph has a C_{4}-free subgraph with at least $1 /(k-1)$ of the original edges. In an extensive study of the Turán number ex $\left(n, C_{6}\right)$, Füredi, Naor and Verstraëte [1] gave another generalization of Győri's result by showing (Theorem 3.1) that a C_{6}-free graph has a triangle-free, C_{4}-free subgraph with at least half as many edges.

Using any of these results combined with the well-known fact that every graph has a bipartite subgraph with at least half as many edges, it is easy to show that any C_{6}-free graph has a bipartite, C_{4}-free subgraph with at least $1 / 4$ the original edges. Improving the constant $1 / 4$ is the main focus of this paper.

In general if we would like to make a C_{6}-free graph C_{4}-free and bipartite, we cannot hope to keep more than $2 / 5$ of its edges (consider many disjoint K_{5} 's). We show that if c is the maximum constant such that every C_{6}-free graph G has a C_{4}-free subgraph on $c \cdot e(G)$ edges then $3 / 8 \leq c \leq 2 / 5$.

Theorem 1. Let G be a C_{6}-free graph, then G contains a subgraph with at least $3 e(G) / 8$ edges which is both C_{4}-free and bipartite.

The result can also be phrased in the language of Turán theory: If \mathcal{C} denotes the set of all odd cycles, then $\operatorname{ex}\left(n, C_{6}\right) \leq 8 \operatorname{ex}\left(n, C_{4}, C_{6}, \mathcal{C}\right) / 3$.

Our proof is a probabilistic deletion procedure consisting of several steps. First we two-color the vertices, and then, focusing on specific edge-disjoint subgraphs, we delete certain edges given the outcome of the coloring. These edge-disjoint subgraphs are the maximal subgraphs obtained by pasting together edge-intersecting C_{4} 's and were characterized by Füredi, Naor and Verstraëte. We use the following slightly weaker formulation of their theorem.

Theorem 2. For a C_{6}-free graph G, let H denote the graph whose vertex set is the collection of C_{4} 's in G and whose edge set represents edge-intersection. Each connected component of H corresponds to an induced subgraph of G of one of the following types:
(0) the complete bipartite graph $K_{2, m}$ for some $m>0$,
(1) a triangle xyz with α additional vertices adjacent to x and y, and β more vertices adjacent to x and z,
(2) a K_{4} with $\gamma \geq 0$ paths of length 2 (outside the K_{4}) between two of the vertices,
(3) a K_{5}, K_{5} minus an edge, or a K_{5} minus two non-adjacent edges.

Type 0

Type 2

Type 1

Type 3

2 Proof of Theorem 1

Independently at random, color all vertices in G red or blue with probability $1 / 2$ each. Deleting all monochromatic edges would yield a bipartite graph, but some C_{4} 's may remain. Thus, given the random coloring we will deterministically delete additional edges in such a way that, upon deletion of monochromatic edges, at least $3 e(G) / 8$ edges remain in expectation, but all C_{4} 's are deleted. Notice that after coloring, the C_{4} 's which require further edge deletion are exactly the properly colored C_{4} 's (those with no monochromatic edges).

For each component H of type $0,1,2$, or 3 from Theorem 2 we will show that our vertex-coloring and subsequent edge-deletion procedure preserves at least $3 e(H) / 8$ edges in expectation. Since these components are edge-disjoint and cover all C_{4} 's, we are then done by linearity of expectation.

Case(H is of type 0): First, suppose H is a component of type 0 . That is, H is a complete bipartite graph $K_{2, t}$. Let x and y be the vertices in the first class, and $v_{1}, v_{2}, \ldots, v_{t}$ be the vertices
in the second class. If x and y are opposite colors, then there are no properly colored C_{4} 's, and the expected number of remaining edges is exactly $e(H) / 2$.

Now suppose that x and y are the same color, say red. If none of the v_{i} 's are colored blue then we lose all edges in H. If exactly $s, s \geq 1$, of the v_{i} 's are colored blue, then we must delete all but one of the edges emanating from x to the v_{i} 's for otherwise we would have a properly colored C_{4}. Thus, exactly $s+1$ edges will remain in H. The probability that s of the v_{i} are blue is $\binom{t}{s} / 2^{t}$. Let N_{0} be the random variable equal to the number of edges which remain in H, then

$$
\begin{aligned}
\mathbb{E}\left(N_{0} \mid x \text { and } y \text { same color }\right) & =\frac{1}{2^{t}} 0+\sum_{s=1}^{t} \frac{\binom{t}{s}}{2^{t}}(s+1) \\
& =\frac{1}{2^{t}} \sum_{s=1}^{t}\binom{t}{s} s+\frac{1}{2^{t}} \sum_{s=1}^{t}\binom{t}{s} \\
& =\frac{1}{2^{t}} 2^{t-1}+\frac{1}{2^{t}}\left(2^{t}-1\right) \\
& \geq \frac{t}{2}+\frac{1}{2} .
\end{aligned}
$$

It follows that,

$$
\begin{aligned}
\mathbb{E}\left(N_{0}\right) & =\frac{1}{2} \mathbb{E}\left(N_{0} \mid x \text { and } y \text { opposite color }\right)+\frac{1}{2} \mathbb{E}\left(N_{0} \mid x \text { and } y \text { same color }\right) \\
& \geq \frac{e(H)}{4}+\frac{t}{4}+\frac{1}{4} \\
& =\frac{3 e(H)}{8}+\frac{1}{4} .
\end{aligned}
$$

Case(H is of type 1): Now, assume that H is of type 1 . Let x, y, z be as in the figure. Assume that there are α vertices adjacent to x and y (excluding z), and β vertices adjacent to x and z (excluding y). Notice that $2 \alpha+2 \beta=e(H)-3$.

First suppose x, y and z are the same color. This subcase occurs with probability $1 / 4$. The edges $\{x, y\},\{x, z\}$ and $\{y, z\}$ are all monochromatic, so all properly colored C_{4} 's are contained in one of two bipartite graphs, a $K_{2, \alpha}$ or a $K_{2, \beta}$. By the reasoning in the previous case we can preserve,

$$
\frac{\alpha}{2}+\frac{1}{2}+\frac{\beta}{2}+\frac{1}{2}=\frac{e(H)}{4}+\frac{3}{4}
$$

edges in expectation.
Now, suppose x is one color and both y and z are the opposite color. This subcase also occurs with probability $1 / 4$. We have that exactly two of the edges in the triangle formed by x, y and z are preserved as are half of the remaining edges. Thus, in total we save $(e(H)-3) / 2+2=e(H) / 2+1 / 2$ edges in expectation.

Next, assume that x and y are one color and z is the opposite color. This again happens with probability $1 / 4$. In this subcase we must also consider C_{4} 's through x, y, z and one of the α vertices other than z adjacent to x and y. To this end, we immediately delete the edge $\{y, z\}$. Now, only one edge remains on the triangle through x, y and z which is not monochromatic. Each of the β vertices is on one monochromatic edge and one properly colored edge. The vertices x, y and their α common neighbors again form a $K_{2, \alpha}$ which we handle as before, saving at least $\alpha / 2+1 / 2$ edges
in expectation. It follows that the expected total number of edges preserved in this subcase is $\alpha / 2+\beta+3 / 2$.

The final subcase in which x and z are the same color y is the opposite color is totally symmetric. In this case the expected number of preserved edges is thus $\beta / 2+\alpha+3 / 2$.

Let N_{1} be the random variable equal to the number of edges conserved in H, then

$$
\begin{aligned}
\mathbb{E}\left(N_{1}\right) & =\frac{1}{4}\left(\frac{e(H)}{4}+\frac{3}{4}\right)+\frac{1}{4}\left(\frac{e(H)}{2}+\frac{1}{2}\right)+\frac{1}{4}\left(\frac{\alpha}{2}+\beta+\frac{3}{2}\right)+\frac{1}{4}\left(\frac{\beta}{2}+\alpha+\frac{3}{2}\right) \\
& =\frac{3}{16} e(H)+\frac{3}{8}(\alpha+\beta)+\frac{15}{16} \\
& =\frac{3}{16} e(H)+\frac{3}{16}(e(H)-3)+\frac{15}{16} \\
& >\frac{3}{8} e(H) .
\end{aligned}
$$

Case(H is of type 2): We will condition first on whether a and b are the same color or opposite and then on whether x and y are the same color or opposite.

Suppose first that a and b are opposite colors. Then all C_{4} 's lie in the subgraph induced by a, b, x and y. If x and y are the same color, no further edges need to be deleted. If x and y are opposite colors we must delete one additional edge. In either situation exactly $e(H) / 2$ edges are preserved.

Now, assume that a and b are the same color, say red. Consider the subcase when x and y are also red, then all properly colored C_{4} 's must lie in a $K_{2, \gamma}$. By the reasoning we have used before, this implies that we can keep,

$$
\frac{e(H)-6}{4}+\frac{1}{2}=\frac{e(H)}{4}-1,
$$

edges in expectation.
If x and y are opposite colors, then 3 of the 6 edges in the K_{4} defined by a, b, x and y remain. For each of the γ vertices which are blue we must delete an edge. Thus, we retain,

$$
3+\frac{e(H)-6}{4}=\frac{e(H)}{4}+\frac{3}{2},
$$

edges in expectation.
Finally, if x and y are both blue, then delete the edge $\{a, x\}$. By the same reasoning as the preceding subcase we retain,

$$
3+\frac{e(H)-6}{4}=\frac{e(H)}{4}+\frac{3}{2},
$$

edges in expectation. Letting N_{2} be the random variable counting the number of preserved edges we have,

$$
\begin{aligned}
\mathbb{E}\left(N_{2}\right) & =\frac{1}{2} \frac{e(H)}{2}+\frac{1}{8}\left(\frac{e(H)}{4}-1\right)+\frac{1}{4}\left(\frac{e(H)}{4}+\frac{3}{2}\right)+\frac{1}{8}\left(\frac{e(H)}{4}+\frac{3}{2}\right) \\
& =\frac{3}{8} e(H)+\frac{7}{16} \\
& \geq \frac{3}{8} e(H) .
\end{aligned}
$$

Case (H is of type 3): H is either a K_{5}, a K_{5} minus an edge or a K_{5} minus two nonadjacent edges. First, suppose H is a K_{5}. There are three possibilities: all 5 vertices are the same color, there is a unique vertex of one color or there are two vertices of one color. These possibilities have probabilities $2 / 32,10 / 32$ and $20 / 32$ respectively. In the first case we have 0 remaining edges and in the second we have 4 . In the third we must delete 2 additional edges, again leaving a total of 4 . Thus, if N_{3} counts the expected number of edges remaining, we have

$$
\mathbb{E}\left(N_{3}\right)=\frac{2}{32} 0+\frac{10}{32} 4+\frac{20}{32} 4=\frac{3}{8} e(H)
$$

The analysis of K_{5} minus one or two edges is similar.

References

[1] Zoltan Füredi, Assaf Naor, and Jacques Verstraëte. On the Turán number for the hexagon. Adv. Math., 203(2):476-496, 2006.
[2] Ervin Győri. C_{6}-free bipartite graphs and product representation of squares. Discrete Math., 165/166:371-375, 1997. Graphs and combinatorics (Marseille, 1995).
[3] Daniela Kühn and Deryk Osthus. Four-cycles in graphs without a given even cycle. J. Graph Theory, 48(2):147-156, 2005.

