Making a C_6 -free graph C_4 -free and bipartite

Ervin Győri

Scott Kensell

Casey Tompkins

June 3, 2014

Abstract

We show that every C_6 -free graph G has a C_4 -free, bipartite subgraph with at least 3e(G)/8 edges. Our proof is probabilistic and uses a theorem of Füredi, Naor and Verstraëte on C_6 -free graphs.

1 Introduction

For G a graph, let e(G) denote the number of edges in G. We say G is H-free if it does not contain H as a subgraph. For a family of graphs \mathcal{F} , let $ex(n, \mathcal{F})$ denote the maximum number of edges an n-vertex graph G can have such that G is F-free for all $F \in \mathcal{F}$.

Győri [2] proved that every bipartite, C_6 -free graph contains a C_4 -free subgraph with at least half as many edges. Extending this result, Kühn and Osthus [3] showed that every bipartite, C_{2k} free graph has a C_4 -free subgraph with at least 1/(k-1) of the original edges. In an extensive study of the Turán number $ex(n, C_6)$, Füredi, Naor and Verstraëte [1] gave another generalization of Győri's result by showing (Theorem 3.1) that a C_6 -free graph has a triangle-free, C_4 -free subgraph with at least half as many edges.

Using any of these results combined with the well-known fact that every graph has a bipartite subgraph with at least half as many edges, it is easy to show that any C_6 -free graph has a bipartite, C_4 -free subgraph with at least 1/4 the original edges. Improving the constant 1/4 is the main focus of this paper.

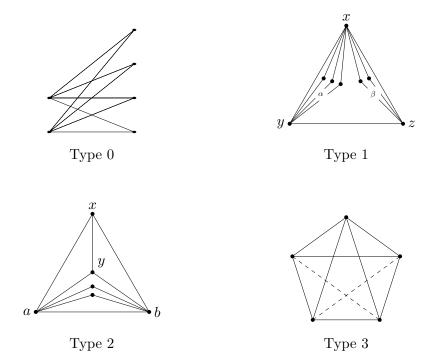
In general if we would like to make a C_6 -free graph C_4 -free and bipartite, we cannot hope to keep more than 2/5 of its edges (consider many disjoint K_5 's). We show that if c is the maximum constant such that every C_6 -free graph G has a C_4 -free subgraph on $c \cdot e(G)$ edges then $3/8 \le c \le 2/5$.

Theorem 1. Let G be a C_6 -free graph, then G contains a subgraph with at least 3e(G)/8 edges which is both C_4 -free and bipartite.

The result can also be phrased in the language of Turán theory: If C denotes the set of all odd cycles, then $ex(n, C_6) \leq 8 ex(n, C_4, C_6, C)/3$.

Our proof is a probabilistic deletion procedure consisting of several steps. First we two-color the vertices, and then, focusing on specific edge-disjoint subgraphs, we delete certain edges given the outcome of the coloring. These edge-disjoint subgraphs are the maximal subgraphs obtained by pasting together edge-intersecting C_4 's and were characterized by Füredi, Naor and Verstraëte. We use the following slightly weaker formulation of their theorem. **Theorem 2.** For a C_6 -free graph G, let H denote the graph whose vertex set is the collection of C_4 's in G and whose edge set represents edge-intersection. Each connected component of H corresponds to an induced subgraph of G of one of the following types:

- (0) the complete bipartite graph $K_{2,m}$ for some m > 0,
- (1) a triangle xyz with α additional vertices adjacent to x and y, and β more vertices adjacent to x and z,
- (2) a K_4 with $\gamma \ge 0$ paths of length 2 (outside the K_4) between two of the vertices,
- (3) a K_5 , K_5 minus an edge, or a K_5 minus two non-adjacent edges.



2 Proof of Theorem 1

Independently at random, color all vertices in G red or blue with probability 1/2 each. Deleting all monochromatic edges would yield a bipartite graph, but some C_4 's may remain. Thus, given the random coloring we will deterministically delete additional edges in such a way that, upon deletion of monochromatic edges, at least 3e(G)/8 edges remain in expectation, but all C_4 's are deleted. Notice that after coloring, the C_4 's which require further edge deletion are exactly the properly colored C_4 's (those with no monochromatic edges).

For each component H of type 0, 1, 2, or 3 from Theorem 2 we will show that our vertex-coloring and subsequent edge-deletion procedure preserves at least 3e(H)/8 edges in expectation. Since these components are edge-disjoint and cover all C_4 's, we are then done by linearity of expectation.

Case(*H* is of type 0): First, suppose *H* is a component of type 0. That is, *H* is a complete bipartite graph $K_{2,t}$. Let *x* and *y* be the vertices in the first class, and v_1, v_2, \ldots, v_t be the vertices

in the second class. If x and y are opposite colors, then there are no properly colored C_4 's, and the expected number of remaining edges is exactly e(H)/2.

Now suppose that x and y are the same color, say red. If none of the v_i 's are colored blue then we lose all edges in H. If exactly $s, s \ge 1$, of the v_i 's are colored blue, then we must delete all but one of the edges emanating from x to the v_i 's for otherwise we would have a properly colored C_4 . Thus, exactly s + 1 edges will remain in H. The probability that s of the v_i are blue is $\binom{t}{s}/2^t$. Let N_0 be the random variable equal to the number of edges which remain in H, then

$$\mathbb{E}(N_0 \mid x \text{ and } y \text{ same color}) = \frac{1}{2^t} 0 + \sum_{s=1}^t \frac{\binom{t}{s}}{2^t} (s+1)$$
$$= \frac{1}{2^t} \sum_{s=1}^t \binom{t}{s} s + \frac{1}{2^t} \sum_{s=1}^t \binom{t}{s}$$
$$= \frac{1}{2^t} t 2^{t-1} + \frac{1}{2^t} (2^t - 1)$$
$$\ge \frac{t}{2} + \frac{1}{2}.$$

It follows that,

$$\mathbb{E}(N_0) = \frac{1}{2} \mathbb{E}(N_0 \mid x \text{ and } y \text{ opposite color}) + \frac{1}{2} \mathbb{E}(N_0 \mid x \text{ and } y \text{ same color})$$
$$\geq \frac{e(H)}{4} + \frac{t}{4} + \frac{1}{4}$$
$$= \frac{3e(H)}{8} + \frac{1}{4}.$$

Case(*H* is of type 1): Now, assume that *H* is of type 1. Let x, y, z be as in the figure. Assume that there are α vertices adjacent to x and y (excluding z), and β vertices adjacent to x and z (excluding y). Notice that $2\alpha + 2\beta = e(H) - 3$.

First suppose x, y and z are the same color. This subcase occurs with probability 1/4. The edges $\{x, y\}, \{x, z\}$ and $\{y, z\}$ are all monochromatic, so all properly colored C_4 's are contained in one of two bipartite graphs, a $K_{2,\alpha}$ or a $K_{2,\beta}$. By the reasoning in the previous case we can preserve,

$$\frac{\alpha}{2} + \frac{1}{2} + \frac{\beta}{2} + \frac{1}{2} = \frac{e(H)}{4} + \frac{3}{4}$$

edges in expectation.

Now, suppose x is one color and both y and z are the opposite color. This subcase also occurs with probability 1/4. We have that exactly two of the edges in the triangle formed by x, y and z are preserved as are half of the remaining edges. Thus, in total we save (e(H)-3)/2+2 = e(H)/2+1/2 edges in expectation.

Next, assume that x and y are one color and z is the opposite color. This again happens with probability 1/4. In this subcase we must also consider C_4 's through x, y, z and one of the α vertices other than z adjacent to x and y. To this end, we immediately delete the edge $\{y, z\}$. Now, only one edge remains on the triangle through x, y and z which is not monochromatic. Each of the β vertices is on one monochromatic edge and one properly colored edge. The vertices x, y and their α common neighbors again form a $K_{2,\alpha}$ which we handle as before, saving at least $\alpha/2 + 1/2$ edges in expectation. It follows that the expected total number of edges preserved in this subcase is $\alpha/2 + \beta + 3/2$.

The final subcase in which x and z are the same color y is the opposite color is totally symmetric. In this case the expected number of preserved edges is thus $\beta/2 + \alpha + 3/2$.

Let N_1 be the random variable equal to the number of edges conserved in H, then

$$\mathbb{E}(N_1) = \frac{1}{4} \left(\frac{e(H)}{4} + \frac{3}{4}\right) + \frac{1}{4} \left(\frac{e(H)}{2} + \frac{1}{2}\right) + \frac{1}{4} \left(\frac{\alpha}{2} + \beta + \frac{3}{2}\right) + \frac{1}{4} \left(\frac{\beta}{2} + \alpha + \frac{3}{2}\right)$$
$$= \frac{3}{16} e(H) + \frac{3}{8} (\alpha + \beta) + \frac{15}{16}$$
$$= \frac{3}{16} e(H) + \frac{3}{16} (e(H) - 3) + \frac{15}{16}$$
$$> \frac{3}{8} e(H).$$

Case(H is of type 2): We will condition first on whether a and b are the same color or opposite and then on whether x and y are the same color or opposite.

Suppose first that a and b are opposite colors. Then all C_4 's lie in the subgraph induced by a, b, x and y. If x and y are the same color, no further edges need to be deleted. If x and y are opposite colors we must delete one additional edge. In either situation exactly e(H)/2 edges are preserved.

Now, assume that a and b are the same color, say red. Consider the subcase when x and y are also red, then all properly colored C_4 's must lie in a $K_{2,\gamma}$. By the reasoning we have used before, this implies that we can keep,

$$\frac{e(H) - 6}{4} + \frac{1}{2} = \frac{e(H)}{4} - 1,$$

edges in expectation.

If x and y are opposite colors, then 3 of the 6 edges in the K_4 defined by a, b, x and y remain. For each of the γ vertices which are blue we must delete an edge. Thus, we retain,

$$3 + \frac{e(H) - 6}{4} = \frac{e(H)}{4} + \frac{3}{2},$$

edges in expectation.

Finally, if x and y are both blue, then delete the edge $\{a, x\}$. By the same reasoning as the preceding subcase we retain,

$$3 + \frac{e(H) - 6}{4} = \frac{e(H)}{4} + \frac{3}{2}$$

edges in expectation. Letting N_2 be the random variable counting the number of preserved edges we have,

$$\mathbb{E}(N_2) = \frac{1}{2}\frac{e(H)}{2} + \frac{1}{8}\left(\frac{e(H)}{4} - 1\right) + \frac{1}{4}\left(\frac{e(H)}{4} + \frac{3}{2}\right) + \frac{1}{8}\left(\frac{e(H)}{4} + \frac{3}{2}\right)$$
$$= \frac{3}{8}e(H) + \frac{7}{16}$$
$$\ge \frac{3}{8}e(H).$$

Case(*H* is of type 3): *H* is either a K_5 , a K_5 minus an edge or a K_5 minus two nonadjacent edges. First, suppose *H* is a K_5 . There are three possibilities: all 5 vertices are the same color, there is a unique vertex of one color or there are two vertices of one color. These possibilities have probabilities 2/32, 10/32 and 20/32 respectively. In the first case we have 0 remaining edges and in the second we have 4. In the third we must delete 2 additional edges, again leaving a total of 4. Thus, if N_3 counts the expected number of edges remaining, we have

$$\mathbb{E}(N_3) = \frac{2}{32}0 + \frac{10}{32}4 + \frac{20}{32}4 = \frac{3}{8}e(H)$$

The analysis of K_5 minus one or two edges is similar.

References

- Zoltan Füredi, Assaf Naor, and Jacques Verstraëte. On the Turán number for the hexagon. Adv. Math., 203(2):476–496, 2006.
- [2] Ervin Győri. C_6 -free bipartite graphs and product representation of squares. Discrete Math., 165/166:371–375, 1997. Graphs and combinatorics (Marseille, 1995).
- [3] Daniela Kühn and Deryk Osthus. Four-cycles in graphs without a given even cycle. J. Graph Theory, 48(2):147–156, 2005.