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Abstract

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three
colors. The acyclic chromatic index y/,(G) of a graph G is the least number of colors in an acyclic edge coloring of G.
It was conjectured that y,(G) < A(G) + 2 for any simple graph G with maximum degree A(G). In this paper, we prove
that every planar graph G admits an acyclic edge coloring with A(G) + 6 colors.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. An acyclic edge coloring of a graph G is a proper
edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index Y, (G) of a graph
G is the least number of colors in an acyclic edge coloring of G. It is obvious that ¥/ (G) > %'(G) > A(G). Fiamc¢ik [5]
stated the following conjecture in 1978, which is well known as Acyclic Edge Coloring Conjecture, and Alon et al. [2]
restated it in 2001.

Conjecture 1. For any graph G, y,(G) < A(G) + 2.

Alon et al. [1] proved that y/(G) < 64A(G) for any graph G by using probabilistic method. Molloy and Reed [11]
improved it to %/, (G) < 16A(G). Recently, Ndreca et al. [12] improved the upper bound to [9.62(A(G) — 1)1, and Esperet
and Parreau [4] further improved it to 4A(G) — 4 by using the so-called entropy compression method. The best known
general bound is [3.74(A(G) — 1)] due to Giotis et al. [7]. Alon et al. [2] proved that there is a constant ¢ such that
%,(G) < A(G) + 2 for a graph G whenever the girth is at least cAlog A.

Regarding general planar graph G, Fiedorowicz et al. [6] proved that x/,(G) < 2A(G) + 29; Hou et al. [10] proved
that ¥/(G) < max{2A(G) — 2, A(G) + 22}. Recently, Basavaraju et al. [3] showed that ¥/(G) < A(G) + 12, and Guan
et al. [8] improved it to /(G) < A(G) + 10, and Wang et al. [14] further improved it to y(/(G) < A(G) + 7.

In this paper, we improve the upper bound to A(G) + 6 by the following theorem.

Theorem 1.1. If G is a planar graph, then %/, (G) < A(G) + 6.

2 Preliminary

Let S be a multiset and x be an element in S. The multiplicity muls(x) is the number of times x appears in S. Let S
and T be two multisets. The union of S and T, denoted by S @ T, is a multiset with mulgyr(x) = mulg(x) + mulg(x).
Throughout this paper, every coloring uses colors from [«] = {1,2,...,«}.

We use V(G), E(G), 6(G) and A(G) to denote the vertex set, the edge set, the minimum degree and the maximum
degree of a graph G, respectively. For a vertex v € V(G), Ng(v) denotes the set of vertices that are adjacent to v in G and
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deg;(v) (or simple deg(v)) to denote the degree of v in G. When G is a plane graph, we use F(G) to denote its face set
and deg;(f) (or simple deg(f)) to denote the degree of a face f in G. A k-, k*-, k™ -vertex (resp. face) is a vertex (resp.
face) with degree k, at least k and at most k, respectively. A face f = vjv; ... v¢ is a (deg(vy), deg(vy), . . ., deg(vy))-face.

A graph G with maximum degree at most « is k-deletion-minimal if ,(G) > « and y,(H) < « for every proper
subgraph H of G. A graph property P is deletion-closed if P is closed under taking subgraphs. Analogously, we can
define another type of minimal graphs by taking minors. A graph G with maximum degree at most « is k-minimal
if x,(G) > « and %, (H) < « for every proper minor H with A(H) < A(G). Obviously, every proper subgraph of
a k-minimal graph admits an acyclic edge coloring with at most « colors, and then every x-minimal graph is also a
k-deletion-minimal graph and all the properties of k-deletion-minimal graphs are also true for k-minimal graphs.

Let G be a graph and H be a subgraph of G. An acyclic edge coloring of H is a partial acyclic edge coloring
of G. Let Uy(v) denote the set of colors which are assigned to the edges incident with v with respect to ¢. Let
Cs() = [«]\ Ug(v) and Cy(uv) = [k] \ (Up(u) U Uy(v)). Let Ty(uv) = Uy ) \ {p(uv)} and Wy(uv) = {u; | uu; €
E(G) and ¢(uu;) € Ty(uv)}. Notice that Wy(uv) may be not same with Wy(vu). For simplicity, we will omit the
subscripts if no confusion can arise.

An (a,B)-maximal dichromatic path with respect to ¢ is a maximal path whose edges are colored by @ and 8
alternately. An (a, S, u, v)-critical path with respect to ¢ is an (a,8)-maximal dichromatic path which starts at u with
color @ and ends at v with color @. An (@, 8, u, v)-alternating path with respect to ¢ is an (a, 8)-dichromatic path starting
at u with color @ and ending at v with color .

Let ¢ be a partial acyclic edge coloring of G. A color « is candidate for an edge e in G with respect to a partial
edge coloring of G if none of the adjacent edges of e is colored with a. A candidate color « is valid for an edge e if
assigning the color a to e does not result in any dichromatic cycle in G.

Fact 1 (Basavaraju et al. [3]). Given a partial acyclic edge coloring of G and two colors a, 3, there exists at most one
(@, B)-maximal dichromatic path containing a particular vertex v. O

Fact 2 (Basavaraju et al. [3]). Let G be a «-deletion-minimal graph and uv be an edge of G. If ¢ is an acyclic edge

coloring of G —uv, then no candidate color for uv is valid. Furthermore, if U () NU(v) = 0, then deg(u) +deg(v) = «+2;

if [U@w) N U@)| = s, then deg(u) + deg(v) + Y deg(w) > k+2s+ 2. O
weW (uv)

We remind the readers that we will use these two facts frequently, so please keep these in mind and we will not
refer it at every time.

3 Structural lemmas

Wang and Zhang [13] presented many structural results on «-deletion-minimal graphs and x-minimal graphs. In this
section, we give more structural lemmas in order to prove our main result.

Lemma 1. If G is a k-deletion-minimal graph, then G is 2-connected and 6(G) > 2.

3.1 Local structure on the 2- or 3-vertices

Lemma 2 (Wang and Zhang [13]). Let G be a k-minimal graph with « > A(G) + 1. If v is a 2-vertex of G, then vy is
contained in a triangle.

Lemma 3 (Wang and Zhang [13]). Let G be a «-deletion-minimal graph. If v is adjacent to a 2-vertex vy and Ng(vp) =
{w, v}, then v is adjacent to at least k — deg(w) + 1 vertices with degree at least « — deg(v) + 2. Moreover,

(A) if k > deg(v) + 1 and wv € E(G), then v is adjacent to at least x — deg(w) + 2 vertices with degree at least
k —deg(v) + 2, and deg(v) > « — deg(w) + 3;

(B) if « = A(G) + 2 and v is adjacent to precisely « — A(G) + 1 vertices with degree at least k — A(G) + 2, then v is
adjacent to at most deg(v) + A(G) — k — 3 vertices with degree two and deg(v) > « — A(G) + 4.

Lemma 4 (Wang and Zhang [13]). Let G be a k-deletion-minimal graph with ¥ > A(G) + 2. If vy is a 2-vertex, then
every neighbor of vy has degree at least k — A(G) + 4.



Lemma 5 (Hou et al. [9]). Let G be a «k-deletion-minimal graph with x > A(G) + 2. If v is a 3-vertex, then every
neighbor of v is a (k — A(G) + 2)"-vertex.

Lemma 6 (Wang and Zhang [13]). Let G be a k-minimal graph with x > A(G) + 2. If v is a 3-vertex in G, then every
neighbor of v is a (k — A(G) + 3)"-vertex.

Lemma 7 (Wang and Zhang [13]). Let G be a «-deletion-minimal graph with « > A(G) + 2, and let wy be a 3-vertex
with Ng(wo) = {w, w;, w}, and deg(w) = k — A(G) + 3. If ww;, ww, € E(G), then deg(w;) = deg(w,) = A(G) and w is
adjacent to precisely one vertex (namely wy) with degree less than A(G) — 1.

Lemma 8. Let G be a k-deletion-minimal graph with maximum degree A, and let wy be a 3-vertex with Ng(wg) =
{w,wy,wp}. If degz(w) = k—A+4 = with8 < ¢ < 10 and Ng(w) = {wo, wy,ws,...,w,1}, then there exists no
4-set X* C {wy,ws,..., w1} satisfying the following four conditions: (1) every vertex in X* is a 5~ -vertex; (2) the
degree-sum of vertices in X is at most « — A + 9; (3) the degree-sum of any two vertices in X* is at most A; (4) X* has
at least two 4~ -vertices.

Proof. Suppose to the contrary that there exists a 4-set X* satisfying all the four conditions. Let X be the subscripts of
vertices in X*. Since G is «x-deletion-minimal, the graph G — wwy has an acyclic edge coloring ¢ with ¢(ww;) = i for
i€fl,...,¢—1}. The fact that deg;(w) + deg;(wp) < A + 3 < « + 2 and Fact 2 imply that U(w) N U(wp) # 0.

Case 1. |[Uw) N U(wp)| = 1.
It follows that |C(wwyp)| = A — 4.
Subcase 1.1. The common color is on ww; or wws.

Without loss of generality, we may assume that wow is colored with ¢ and wyw; is colored with 1. Note that there
exists a (1, @, w, wy)-critical path for every @ € {{+1,...,«}, so we have that {{+1,...,x} € U(w;)NU(w,). Notice that
the set {1,...,¢}\ (U(w;) U U(w,)) is nonempty. Now, reassigning £ to wwy and a color in {1,..., €} \ (Uw;) UU(w,))
to wow; results in an acyclic edge coloring of G, a contradiction.

Subcase 1.2. The common color is not on ww; and ww,.

Without loss of generality, we may assume that wow; is colored with £ and wow; is colored with 3. There exists
a (3, @, w, wy)-critical path for @ € {€ + 1,...,«}. It follows that {£ + 1,...,«} € T(wws3) N Y(wow,) and deg,(w3) >
A-3>5.

If 1 ¢ U(w,), then reassigning 1 to wow, will take us back to Case 1.1. Hence, we have that 1 € T(wow,) and
deg;(w2) > A—12>7. By Lemma 5, we have that deg;(w;) >k —A+2 > 6.

Note that w;,w, and w; are 5*-vertices, there exists a 4 -vertex w, with x € X \ U(w,). If £ ¢ U(w,), then
reassigning the color x to wow, results in a new acyclic edge coloring o of G —wwy, and then C,(wwp) = {€+1,...,k} C
T(wwy) and deg;(wy) = A — 3 > 5, which contradicts that w, is a 4™-vertex. Hence, Y(wow,) = {1,2} U {{, ..., «} and
deg;(w2) = A, which implies that X N V(wowy) = 0.

Claim 1. There exists a (3, £, w, wy)-alternating path.

Proof. Suppose to the contrary that there exists no (3, £, w, wy)-alternating path. We can revise ¢ by assigning ¢ to wwy
and erase the color from wyw;, and obtain an acyclic edge coloring of G—wow;. If some colora € {€+1,...,«} is absent
in Uy(wy), then we can further assign a to wow, since there exists a (3, @, w, wyp)-critical path with respect to ¢. If some
color a € {4,...,¢— 1} is absent in Us(w;), then we can further assign « to wow;. Hence, Uyg(w;) 2 {1} U {4,...,k}
and degg;(w;) > k — 2 > A(G), a contradiction. O

Therefore, {£, ..., «} C T(wws3) and deg;(w3) > A —2 > 6, which implies that X N U(w,) = 0.

There exists a (€, m, wy, w,)-critical path for every m € X; otherwise, reassigning m to wow, results in another new
acyclic edge coloring ¢,, of G — wwy, by the above arguments, {/,...,«} € T(ww,) and deg;(w,,) > A -2 > 6, a
contradiction. Thus, we have that X C T(wow;). By symmetry, we may assume that {4,5,6,7} = X C T(wow,).

Suppose that {3,8,9,...,¢ — 1} € U(w,), say A is a such color. There exists a (4, @, w, wy)-alternating path for
{+ 1 < a < k; otherwise, reassigning A to wow, (if A = 3 there is no change to wow,) and a to wwy results in an acyclic
edge coloring of G. Similar to Claim 1, there exists a (4, £, w, wp)-alternating path. Reassigning A to wow; and 4 to
wow, results in a new acyclic edge coloring ¢ of G — wwy. Since there is no (4, @, w, wp)-critical path with respect to



o, thus there exists a (4, @, wy, w)-critical path with respect to ¢ for @ € {¢, ..., «}, and then {¢, . .., k} C T(ww,4), which
contradicts the fact that wy is a 5~ -vertex. Hence, we have that {1} U (3,4, ..., ¢} € U(wy).

Let ¢, be obtained from ¢ by reassigning m to wwy and erasing the color on ww,,, where m € {4,5, 6, 7}. Note that
¢m 1s an acyclic edge coloring of G — ww,, for m € {4,5,6,7}. By Fact 2, we have that |Y(ww,,) N {1,2,...,{—-1}| > 1
form e {4,5,6,7}.

Let @ be an arbitrary color in {¢, ..., «} \ (T(wow;) U T(wws) U Y(wws) U T(wwe) U T(ww;)). Since there exists
neither (1, @, w, w,)-critical path nor (3, @, w, w,)-critical path (with respect to ¢,) for every x € X, thus there exists a
(Ax, @, w, wy)-critical path (with respect to ¢,), where A, € {2,8,9,...,¢ — 1}. Moreover, there exists (4, @, w, wy, )- and
(4, @, w, wy, )-critical path for some A € {2,8,9,...,¢— 1} since [X| > [{2,8,9,...,¢ — 1}|, but this contradicts Fact 1.

So we may assume that @ € Y (ww4) U T(wws) U Y(wwe) U T(wwy) for every a € {¢, ..., k} \ T(wow;).

K—A+9 >deg;(ws) + degg(ws) + deg;(ws) + deg(wy)

7
ZHE, .\ Cwown)] +4+ Y [Y@w) N {10~ 1)
=4
>k=AN)+4+(1+1+1+1)
=k—-A+8.

By symmetry, we may assume that [T(wws)N{1,...,f=1}] = |T(wws)N{L,...,{-1}] = |[T(wwe)N{1,..., -1} = 1.
Let Y(wwy)N{1,...,0—1} = {1}, T(wws)N{1,...,0—1} = {uz} and T(wwe)N{1,..., -1} = {us}. If 4 = u = u, then
there exists a (u, @, w, ws)- and (u, @, w, ws)-critical path, where @ € {£,...,k} \ (T(wws) U T (wws)), which contradicts
Fact 1. Thus u, up, u3 are distinct.

If u; €{4,5,6,7}, then every color a € {£, ..., k} \ (T(wws) U T (wwy,)) is valid for wwy with respect to ¢4; note that
{6, ...k} \ (T(wws) U Y(ww,,)) is a nonempty set. By symmetry, we may assume that {u1, uo, u3} N {4,5,6,7} = 0.

Since p, uy, 3 are distinct, we may assume that u; # 2. If 2 ¢ Y(wow,), then reassigning 2 to wow; and 4 to
wow, results in a new acyclic edge coloring ¢* of G — wwy. For every color 8 € {£,...,k} \ T(wow;), there exists no
(2,8, w, wy)-critical path with respect to ¢*, thus there exists a (4,3, w, wo)-critical path with respect to ¢*, and then
{€,....k}\ T(wow;) € T(wws) and degq,(w4) = L, ..., «} \ T(wow;)| + 2 > 6, which contradicts the degree of w,.

Hence, we have that {1,...,£{—1} C Y(wow;) and [{¢, . .., k}\ T(wow;)| > k — A+ 1. By similar arguments as above,
we can prove that T(ww7) N{1,...,¢ — 1} = {ua} and py, po, ps, pa are distinct. Moreover, we can also conclude that
{1, 2, 3, s} N {4,5,6,7) = 0.

Suppose that y; = 3. Since there exists no (3, @, w, ws)-critical path with respect to ¢4, where @ € {{ + 1,...,«},

thus {{ + 1,...,«} C Y(wwy), a contradiction. So, by symmetry, we may assume that {u, uo, u3, ug} = {1,2,8,9}.

By symmetry, we assume that y; = 1. Note that there exists no (1, @, w, w4)-critical path (with respect to ¢,) for
every @ € {(,...,k} \ T(wowy), thus {¢,...,k} \ T(wow;) € T(wws); otherwise, reassigning 4 to wwy and a color @ to
ww; results in an acyclic edge coloring. Now, we have that deg,(w4) > 2 + |{(, ..., «} \ T(wow;)| > 6, a contradiction.

Case 2. U(w) N U(wo) = {41, 2}, p(wowr) = A1 and p(wow,) = A.
If follows that |C(wwg)| = A — 3. First of all, we show the following claim:
(*) Clwwo) ={L,...,k} € Uw) N Uw,).

By contradiction and symmetry, assume that there exists a color ¢ in {¢,...,«} \ U(w;). Clearly, there exists a
(A2, £, wy, w)-critical path, and then there exists no (A, £, wy, wy)-critical path. Now, reassigning £ to wow; will take us
back to Case 1. Hence, we have {¢,...,«} € U(w); similarly, we have {¢, ...,«} € U(w,). This completes the proof
of (x).

Note that w; and w, have degree at least A — 1 > 7, this implies that {1,2} N X = @ and |X N Y(wow;)| < 1 and
[X N C(wow,)| < 1. Let {p, g} € X\ (Y(wow;) U T(wow,)). Reassigning p to wow; and g to wow, results in a new acyclic
edge coloring ¢ of G — wwp. Hence, we have that Cy(wwp) € T(ww,) U T(ww,), and then deg;(w,) + degs;(wy) =
(A-3)+2+2>A+ 1, which is a contradiction. |

3.2 Local structure on the 4-vertices

Lemma 9. Let G be a k-deletion-minimal graph with maximum degree A and k > A + 2, and let w be a 4-vertex with
NG(LU()) = {w7 U1, U2, 1)3}-



(a) If deg;(w) < k — A, then
Z deg;(x) > 2k — degg(wp) + 8 = 2« + 4. )

XENG(wo)

(b) If deg;(w) < k — A + 1 and wwy is contained in two triangles ww,wo and ww,wy, then

Z degq(x) > 2k — degg(wo) + 9 = 2k + 5. )

x€NgG(wo)
Furthermore, if the equality holds in (2), then all the other neighbors of w are 6*-vertices.
Proof. We may assume that

(*) The graph G — wwy admits an acyclic edge coloring ¢ such that the number of common colors at w and wy is
minimum.

Here, (a) and (b) will be proved together, so we may assume that deg;(w) < k— A+ 1. Since degg;(w) + degq(wop) <
k—=A+5 < k+2, we have that | Y(wwo) N T(wow)| = m > 1. It follows that |C(wwy)| = k—(deg;(w) +deg;(wo) —m—2) >
A — 2. Without loss of generality, let Ng(w) = {wo, w,w2,...} and ¢p(ww;) = i for 1 < i < degz(w) — 1. Let
S = T(wov1) W Y(wovy) W T(wov3).

Claim 1. For every color 6 in C(wwy), there exists a (4, 8, wy, w)-critical path for some 1 € Y (wwy) N Y(wow). Conse-
quently, every color in C(wwy) appears in S.

Case 1. Uw) N U(wp) = {1}
It follows that |C(wwy)| = « — (degs(w) + deggs(wo) — 3).

(a) Suppose that deg,(w) + deg;(wo) < k — A + 4. It follows that |C(wwg)| > A — 1. Without loss of generality, let
d(wovy) = 1, p(wovy) = k — A and ¢(wov3) = k — A + 1. By Claim 1, there exists a (1, 8, wy, w)-critical path for
every 6 in C(wwyp). Hence, we have that deg;(w) = k — A and deg;(v;) = degg(w;) = A and T(wovy) = Y(ww;) =
{k—A+2,...,«}. Notice that deg;(w) = k—A > 3 results from Lemma 4. Reassigning « — A, 1 and 2 to ww;, wwy
and wyv; respectively, and we obtain an acyclic edge coloring of G, a contradiction.

(b) Suppose that deg;(w) + deg;(wo) = k — A + 5 and wwy is contained in two triangles ww;wy and wwwy (wy = v
and wy = 1y).

Subcase 1.1. The common color A does not appear on wyvs3, but it appears on ww; or ww,.

By symmetry, assume that ¢p(wow;) = 2, p(wovz) = k — A + 1, ¢(wovz) = « — A + 2. By Claim 1, we have that
{k=A+3,...,k} € T(wow)NT(ww,) and deg;(w;) = deg,;(w2) = A. Now, reassigning k—A+1 to wow and reassigning
3 to wowy results in an acyclic edge coloring of G, a contradiction.

Subcase 1.2. The common color A does not appear on wyvs and it does not appear on ww,; or ww; either.

By symmetry, assume that ¢(wow;) = 3, d(wowz) = k — A + 1, p(wov3) = k — A + 2. By Claim 1, we have that
{k=A+3,...,k} € T(wow;) N YV(wws3), deg,(w1) = A and deg,;(w3) > A — 1. Reassigning 2 to wow; will take us back
to Subcase 1.1.

Subcase 1.3. The common color A appears on wyvs and it also appears on ww; or ww,.

By symmetry, assume that ¢(wow;) = k — A+ 1, p(wowr) = k — A + 2, ¢(wpv3) = 2. By Claim 1, we have that
{k=A+3,...,k} € Y(wwy) N Y(wovs), degs(w2) = A and deg;(v3) > A — 1. Now, reassigning « — A + 1 to ww, will
take us back to Subcase 1.1.

Subcase 1.4. The common color A appears on wyvs, but it does not appear on ww; or ww,.

By symmetry, assume that ¢(wow;) = k — A + 1, p(wow,) = k — A + 2, ¢(wpv3) = 3. By Claim 1, we have that
{k=A+3,...,k} € Y(wwsz) N T(wovs), deg;(w3) > A — 1 and deg;(v3) = A— 1. If {2,k = A + 1} N Y(wopv3) = O, then
reassigning 2 to wyvs will take us back to Subcase 1.3. So we may assume that {2,k — A + 1} N T(wov3) # 0. But we
can still reassign 1 to wyvs and go back to Subcase 1.3.

Case 2. Uw) N U(wy) ={A1,..., A and m > 2.



Let A(vr) = Clwwo) \ T(wov1) = {ar, @2, ...}, A) = Clwwo) \ T(wovz) = {B1,B2,...} and Avs) = Clwwy) \
T(w()l)3).

Claim 2. A(vy), A(vy), A(vz) # 0.

Proof. Suppose to the contrary that A(v,) = 0. It follows that A—1 > [T (wov.)| = |C(wwy)| = k—(deg;(w)+degq;(wo)—
m—=2)>k—(k-A+5-2-2)=A-1, thus deg;(w) + deg;(wo) = k — A+ 5, m = 2 and Y(wpv,) = C(wwp) with
[T(wovs)|l = A — 1. This implies that the graph G satisfies the condition (b) with v, = v3 (assume that w; = v; and
w; = vy). We may assume that U(wg) = {2}, o,k — A+ 1}.

If the color on wyw; is A; and the color on wow; is Ay, then reassigning «@;,8; and A, to wwy, wow, and wyvs,
respectively, yields an acyclic edge coloring of G.

But if the color on wow; is k — A + 1 and the color on wyw;, is A, then reassigning 2 to wovs and B to wwy results
in an acyclic edge coloring of G. O

Claim 3. Every color in C(ww) appears at least twice in S.

Proof. Suppose that there exists a color @ in C(wwy) appearing only once in S, say @ € T(wgv;). Without loss
of generality, assume that ¢(wov;) = A; and ¢(wovz) = A,. By Claim 1, there exists a (41, @, wy, w)-critical path.
Reassigning a to wov, results in a new acyclic edge coloring ¢* of G — wwq with [Uy-(w) N Uy (wo)| < [Uw) N U o),
which contradicts the assumption (x). m|

Let X = {a | @ € C(wwy) and mulg(a) = 3 }.

Z degg;(x)

xeNg(wo)

= deg(wo) + degg(w) — 1 + Z muls(a)

a€lk]

= degg(wp) + degg(w) — 1 + Z mulg(a) + Z muls (@)

aeC(wwy) aeU(w)UU(wpy)

= deg(wo) + degg(w) — 1 + 2|C(wwo)| + [X] + Z muls(a)
a€Uw)UU(wp)
= deg;(wo) + degs;(w) — 1 + 2(k — (degs(w) + degg(wo) — 2 — m)) + |X| + Z muls (@)
acUw)UU(woy)
= 2k - degg(wy) — degg(w) +2m+ 3+ X[+ > mulg(@)
a€U(w)UU(woy)
It is sufficient to prove that
degs(w) —2m+35, ifdegs(w) <k —A; 3)

mulg(a) + |X]| > { ) " A . . . nelegd
ettt deg;(w) —2m+ 6, ifdeg;(w) < x— A+ 1 and wwy is contained in two triangles4)

Subcase 2.1. U(w) N U(wy) = {11, A2}.

Claim 4. Every color in U (w) is in S.

Proof. Assume that wgv; is colored with A; and wgyv, is colored with A,. Notice that C(wwg) € Y(wovy) U T(wovs)
and A(v;) N A(vp) = 0. By Claim 2, we have that A(vy), A(v), A(vs) # 0. If 4, ¢ S, then reassigning B, @; and
Ay to wow, wov; and wovs respectively, results in an acyclic edge coloring of G, a contradiction. Thus, we have that
A1 € S. Similarly, we can prove that A, € S. Let 7 be an arbitrary color in U(w) \ (S U {1, A2}). Let o be obtained
from ¢ by reassigning 7 to wgv;. It is obvious that o is an acyclic edge coloring of G — wwy. So we can obtain a similar
contradiction by replacing ¢ with o-. O

Claim 5. The color in U(wy) \ {11, A2} appears at least twice in S.



Proof. Suppose that 4, A, and A* are on the edges wyv;, wov, and wyvs, respectively. There exists a (1%, a, wo, v1)-
critical path; otherwise, reassigning @ to wyv; will take us back to Case 1. Hence, we have 1* € Y(wpv;). Similarly,
there exists a (1%, 81, wy, vp)-critical path and A* € T(wpv,). Therefore, the color A* appears exactly twice in S. O

Now, we have
muls(a@) + 1X| > [UW)| + 2 + |X| = deg;(w) + 1 + |X].
aeUw)UU(wpy)

So conclusion (a) holds. Now, suppose that deg;(w) + deg;(wp) < k — A + 5 and wwy is contained in two triangles
wwow; and wwow, (w; = vy and wy = vy).

Subcase 2.1.1. The two common colors A; and A, are on wyw and w;wy.

There exists a (1, @, wy, w)- or (A, @, wy, w)-critical path for @ € C(wwy). Hence, we have that C(wwy) € U(w,),
and thus deg;(w;) > |C(wwo)| + [{41,A2}] = A + 1, a contradiction.

Subcase 2.1.2. The two common colors A; and A, are on ww and w,wy.
This is similar with Subcase 2.1.1.
Subcase 2.1.3. {1;,4,} N {1,2} = {1,} and A, appears on wyw; or wow,.

Without loss of generality, assume that ¢(wow;) = k — A + 1, p(wowy) = 1, p(wovz) = 3. If 2 ¢ Y(wow) U Y(wov3),
then reassigning 2 to wyv3 will take us back to Subcase 2.1.2. Hence, 2 € T(wow;) U T(wov3) and 2 appears at least
twice in S. Therefore, we have

muls(@) + |X| > [UW)| + 2 + |X] + [{2}] = degg(w) + 2.
a€U(w)VUwo)

Suppose that
D degg(x) = 2 — degg(wp) +9.
XENG(wo)
It follows that
mulg(@) + |X| = [UwW)| + 2 + |X] + |{2}] = degz(w) + 2,
acUw)UU(wpy)

and every color in U(w) \ {2} appears only once in S.

There exists a (3, k — A + 1, wp, w)-critical path, otherwise, reassigning x — A + 1 to wow and a; to wow; results in an
acyclic edge coloring of G, a contradiction. By Claim 5, we have that k — A+ 1 € T(wow,) N T(wpv3). And by Claim 4,
we have that 3 € T(wow;) U T(wow,). Since |C(wwy)| = A—1and {1,2,3,x—A+ 1} € T(wow;) U Y(wow,), this implies
that |[A(w)| + [A(w,)| > 4. There exists no (1, a, w, wy)-critical path for every @ € A(w;) U A(w,), thus there exists a
(3, @, w, wy)-critical path, and then A(w;) U A(w,) € Y(wws). Hence, deg,(w3) > [A(w)|+ | Aw)|+ {3, k—A+1}| > 6.

Suppose that 4 ¢ Y(wpv3) and there exists no (k — A + 1,4, wy, v3)-critical path. Reassigning 4 to wguvs results in a
new acyclic edge coloring 0; of G — wwy. Similarly, we can prove deg;(w4) > 6 by replacing ¢ with o;.

Suppose that 4 € Y(wyvs). This implies that {1,2,4,x — A + 1} € T(wow;) U Y(wpv3) and |A(w;)| + [A(v3)| = 4.
Reassigning 4 to wow, and reassigning 1 to wovs results in another acyclic edge coloring 7 of G — wwy. Hence, there
exists a (4, a, wy, w)-critical path with respect to & for @ € A(w;) U A(v3), and then A(w;) U A(v3) C Y(wwy). Similarly
as above, there exists a (4, k— A + 1, wy, w)-critical path with respect to 7. Hence, deg;(ws) > [A(w)| + [Avz)| + {4, k -
A+ 1} > 6.

Suppose that there exists a (k — A + 1,4, wy, v3)-critical path and 4 € Y(wow;). This implies that {1,2,4,k—A+ 1} C
T(wow;)U Y (wovs) and |[A(w; )| +|A(v3)| > 4. Reassigning 4 to wow, and reassigning 1 to wyv; results in another acyclic
edge coloring o, of G — wwy. Similarly as above, we can prove that deg;(ws4) > 6.

In one word, the degree of wy is at least six. By symmetry, we have that deg;(w;) > 6 for 4 < i < deg,(w) — 1.

Subcase 2.1.4. {1;, 4} N {1,2} = {4;} and A, appears on wyvs.

Without loss of generality, assume that ¢(wow;) = k — A + 1, p(wown) = 3, p(wovs) = 1. If 2 ¢ Y(wow;) U Y(wov3),
then reassigning 2 to wow; and reassigning 3 to wow, will take us back to Subcase 2.1.1. Hence, 2 € T (wow;)U T (wov3)
and 2 appears at least twice in S. Therefore, we have



mulg(@) + |X]| > [UwW)| + 2 + |X] + {2}] > degg(w) + 2.
a€U(w)UU(wy)

Suppose that
Z degq(x) = 2k — degg(wo) + 9.
XENG(wo)
It follows that
muls(a@) + 1X| = [UW)| + 2 + [X] + [{2}] = deg;(w) + 2,
a€Uw)UU(wo)

and every color in U(w) \ {2} appears only once in S.

There exists a (3, k — A + 1, wy, w)-critical path, otherwise, reassigning x — A + 1 to wow and a; to wow; results in an
acyclic edge coloring of G, a contradiction. Since |C(wwy)| > A — 1 and {1,2,3,x — A + 1} € Y(wow;) U Y(wov3), this
implies that |[A(w;)|+|A(vs)| > 4. There exists no (1, @, w, wy)-critical path for every @ € A(w;)UA(v3), thus there exists
a (3, a, w, wy)-critical path, and then A(w;)UA(v3) € T(wws). Hence, deg;(w3) > [A(w)|+[AWs3)|+1{3, k—A+1}| > 6.

Suppose that 4 ¢ Y(wow,) and there exists no (k — A + 1,4, wy, wy)-critical path. Reassigning 4 to wow, results in a
new acyclic edge coloring 03 of G — wwy. Similarly, we can prove deg;(w4) > 6 by replacing ¢ with os3.

If 4 € Y(wow,), then reassigning 1 to wyw, and reassigning 4 to wyvs will take us back to Subcase 2.1.3. If there
exists a (k — A + 1,4, wy, wy)-critical path and 4 € T (wyw;), then reassigning 1 to wow, and 4 to wyvs will take us back
to Subcase 2.1.3 again.

Hence, we have that deg;(w4) > 6. By symmetry, we also have that deg;(w;) > 6 for 4 <i < deg;(w) — 1.

Subcase 2.1.5. {1;,2;} N {1,2} = 0 and the color on wyv; is a common color.

Without loss of generality, assume that ¢(wow;) = k — A + 1, p(wowy) = 3, p(wovz) = 4. If 1 ¢ Y(wows) U Y(wov3),
then reassigning 1 to wow, will take us back to Subcase 2.1.3. Hence, 1 € T(wow,) U Y(wpv3) and 1 appears at least
twice in S. If 2 ¢ T(wow;) U Y(wov3), then reassigning 2 to wow; and B to wow, will take us back to Subcase 2.1.3.
Therefore, we have

muls(a) + |X| > [ UW)| + 2 + |X] + {1, 2}] > deg,(w) + 3.
aceUw)UUwo)

Subcase 2.1.6. {1;, 1} N {1,2} = 0 and the color on wyv; is not a common color.

Without loss of generality, assume that ¢(wow;) = 3, p(wows) = 4, p(wovs) = k — A + 1.

Suppose that 1 ¢ T(wow,) U T(wovs). Thus, there exists a (3, 1, wy, wy)-critical path; otherwise, reassigning 1 to
wow, and @) to wwy results in an acyclic edge coloring of G. But reassigning @1, and 1 to wwy, wow, and wyv;
respectively, yields an acyclic edge coloring of G. Hence, 1 € Y(wow,) U T(wov3) and 1 appears at least twice in S.
Similarly, we have that 2 € Y(wow;) U T(wov3). Therefore, we have

mulg(e) + |X] > [Uw)| + 2 + 1X| + [{1,2}] > degg(w) + 3.
acUw)UU(wpy)

Subcase 2.2. |Uw) N U(wy)| = 3.

Claim 6. Every color in U(w) is in S.

Proof. Assume that wyv;, wov, and wovs are colored with A;, A, and A3, respectively. Suppose that 1; ¢ S. If there
is no (A, @, wy, vy )-critical path, then reassigning a; and 4; to wov; and wyvs respectively, results in a new acyclic
edge coloring of G — wwy, which contradicts (x). Hence, there exists a (1, @1, wy, v1)-critical path, and hence there
exists a (A3, @y, wo, w)-critical path. But reassigning a; and A; to wyv; and wyv,, yields another acyclic edge coloring
of G — wwy, which contradicts (x).

Hence, we have that 4; € S. By symmetry, we have that {1;,1,, 43} € S. Let 7 be an arbitrary color in U (w) \
(S U {ay, A2, 43}). Let o be obtained from ¢ by reassigning 7 to wyv;. It is obvious that o is an acyclic edge coloring of
G — wwy. So we can obtain a similar contradiction by replacing ¢ with o. So we conclude that U(w) C S. O



mulg(0) + [X| > |[Uw)| = deg,(w) — 1,
OeU(w)UU(wo)

In the following discussion, suppose that deg;(w) + deg;(wo) < « — A + 5 and wwy is contained in two triangles
wwow; and wwow, (w; = vy and wy = vy).

Subcase 2.2.1. U(wy) N{1,2} ={1,2}.

By symmetry, assume that ¢g(wow;) = 3, p(wows) = 1, p(wovs;) = 2. Since a; ¢ U(wy), it follows that there exists a
(2, a1, wp, w)-critical path. Reassigning a; to wow; will take us back to Subcase 2.1.2.

Subcase 2.2.2. U(wy) N{1,2} = {A*} and A* is not on wyvs.

By symmetry, assume that ¢g(wow;) = 3, p(wow,) = 1, p(wov3) = 5. Since a; ¢ U(wy), it follows that there exists a
(5, a1, wy, w)-critical path. Reassigning a; to wow; will take us back to Subcase 2.1.3.

Subcase 2.2.3. U(wp) N {1,2} = {1*} and 2* is on wyvs.

By symmetry, assume that ¢g(wow;) = 3, p(wow,) = 4, p(wov3) = 1. Since a; ¢ U(wy), it follows that there exists a
(4, a1, wy, w)-critical path. Reassigning @; to wow; will take us back to Subcase 2.1.4.

Subcase 2.2.4. U(wgy) N{1,2} = 0.

By symmetry, assume that ¢(wow;) = 3, d(wowz) = 4, d(wovz) = 5. Suppose that 1 only appears once in S. Reas-
signing 1 to wow, will create a (3, 1)-dichromatic cycle containing wow,, for otherwise, we go back to Subcase 2.2.2.
But Reassigning 1 to wgvs will take us back to Subcase 2.2.3. Hence, the color 1 appears at least twice in S. Similarly,
the color 2 appears at least twice in S. Hence, we have

mulg(0) + [X| = deg;(w) — 1 + |{1,2}| = deg,(w) + 1. m]
OeU(w)UU(wo)
3.3 Local structure on 5-vertices
Lemma 10. Let G be a «-deletion-minimal graph with « > A + 5 and let u be a 5-vertex.

(a) If u is contained in a triangle wuw;w with deg,(w) < « — A and deg(w;) < 6, then

Z deg(x) > 2k — deg(u) + 12 = 2k + 7. 5)
XENG(u)

(b) If uis contained in a triangle wuww with deg;(w) < k — A — 1 and deg(w;) < 7, then

Z degG(x) 2 2K - degG(u) +12 = 2K +7. (6)

XENG(u)

Proof. We may assume that

(*) The graph G — wu admits an acyclic edge coloring ¢ such that the number of common colors at w and u is
minimum.

Here, (a) and (b) will be proved together, so we may assume that deg;(w) < k—A. Since deg;(w)+deg;(u) < k—A+
5 < k+2, we have that [Y(wu)NY(uw)| = m > 1. It follows that |C(wu)| = k—(deg,(w)+deg,(u)—m—2) > A-2. Without
loss of generality, let Ng(w) = {u,w;,w, ...} and ¢p(ww;) = i for 1 < i < deg;(w) — 1. Let Ng(u) = {w, uy, uz, u3, us}
and S = T(uup) W T(uuy) W Y(uuz) W Y(uug).

Let Au1) = Clwu) \ Uu) = {ar, az,... 5 Aluz) = Cwu) \ Uuz) = {B1,2, ...} Aluz) = Clwu) \ Uus) =
{61,862, ...}, Alwa) = Cwu) \ Uug) = {41, 8, - .- Fand Awy) = Clwu) \ Uws) =1{{7, 4, 1

Claim 1. For every color 6 in C(wu), there exists an (4, 0, u, w)-critical path for some A € U(w) N U(u). Consequently,
mulg(6) > 1.

Case 1. U(w) N U(u) = {1}. By symmetry, we may assume that w; = u;.



It follows that |C(wu)| = k — (degs(w) + degs;(u) —3) > A —2.

Subcase 1.1. The edge ww is colored with A. By symmetry, assume that ¢p(uw,) = k—A+2, p(uuy) = 1, p(uuz) = k—A,
d(uuy) =k — A+ 1.

By Claim 1, we have that {k—A+3,...,«} C T(ww;)NT(uuy). Moreover, U(w;) = {l,k—A+2}U{k—A+3,...,k},
deg,(w;) = A and degg;(42) > A — 1. Notice that |T(uup) N {2,3,...,k — A —1}] < 1, thus there exists a color { which
isin{2,3,...,k—A—1}\ Y(uuy) (note that this set is nonempty). But assigning x — A + 2 to uw and ¢ to uw, results in
an acyclic edge coloring of G, a contradiction.

Subcase 1.2. The edge uw; is colored with A. By symmetry, assume that ¢(uw) = 2, p(uuy) = k—A, ¢p(uuz) = k—A+1,
duug) =k — A+ 2.

By Claim 1, we have that {x — A+ 3,...,«} € T(uw;) N Y(ww,) and deg;(w;) = A and deg;(w;) > A — 1. Modify
¢ by reassigning 1 to wu and reassigning a color in {k — A,k — A+ 1,k — A + 2} \ U(w,) to ww;, we obtain an acyclic
edge coloring of G, a contradiction.

Subcase 1.3. Neither w;w nor wyu is colored with 4. By symmetry, assume that ¢p(uw,) = « — A, ¢p(uuy) = 2,
duuz) =k — A+ 1, pluug) =k — A+ 2.

By Claim 1, we have that C(wu) € Y(uuz) N Y(ww,) and deg;(w2) > A — 1 and deg;(u2) > A — 1. Notice that
{1,k =AYy & Uwo).

If deg;(w) <k —A—1,then U(w) ={1,2,...,k — A —2} and deg(w,) = deg(uz) = A, but reassigning 1 to uu, will
take us back to Subcase 1.1.

So we may assume that deg(w) = k — A, C(wu) = {k — A +3,...,«} and deg(w;) < 6.

Suppose that C(wu) € U(w;). Thus U(w;) = {1,k — A} U C(wu). If 1 ¢ U(w,), then reassigning 1,x — A and
3 to wu, ww; and wju respectively results in an acyclic edge coloring of G, a contradiction. So we may assume that
1 € U(wy) and Y(ww,) = {1} U {k — A +3,...,«}. But reassigning x — A to wu and 3 to w;u results in an acyclic edge
coloring of G, a contradiction. Hence, we have that C(wu) € U(w,).

We further suppose that 1 € U(up) and YV(uuy) = {1} U {k — A + 3,...,«}. If there is a (2, 1, u, w)-critical path,
then degg(w,) = A(G) and Y(wwp) = {1} U {k — A + 3,...,k}, but reassigning x — A to ww, will take us back to
Subcase 1.2. So we may assume that there is no (2, 1, u, w)-critical path. There exists a (7%, @}, w, wy )-critical path with
some 7" € Uw) \ {1,2}, otherwise reassigning «; to ww; and 1 to uw will result in an acyclic edge coloring of G.
By symmetry, assume that 7 = 3 and there exists a (3, a1, w, w;)-critical path. But reassigning 3 to uu, and @, to wu
results in an acyclic edge coloring of G.

So we may assume that 1 ¢ U(u,). There exists a (k—A+ 1, 1, u, up)- or (k—A+2, 1, u, up)-critical path; otherwise,
reassigning 1 to uu, will take us back to Subcase 1.1. By symmetry, assume that there exists a (k—A+2, 1, u, u,)-critical
path and 1 € T(uu4), thus deg,(u2) = A(G) and T(uup) = {k —A+ 2,k —A+3,...,«}.

There exists a (k —A+ 1, ay, u,w;)- or (k —A+2, ay,u,w;)-critical path; otherwise, reassigning a; to uw; and « — A
to uw will result in an acyclic edge coloring of G. Hence, {k — A + 1,k — A + 2} N U(w,) # 0. Similarly, there exists a
(7, @1, w, wy)-critical path with some 7 € U(w)\ {1, 2}. By symmetry, assume that 7 = 3 and there exists a (3, @, w, w;)-
critical path. Hence, |U(w;) N (Uw) U U(u))| > 4 and |U(w;) N C(wu)| < 2, and then |C(wu) \ U(w;)| > A — 4.

Suppose that A(ug) N A(w;) # 0, say { € A(ug) N A(w;). Thus there exists a (k — A + 1, , u, wy)-critical path;
otherwise, reassigning £ to uw; and « — A to uw will result in an acyclic edge coloring of G. There exists a (2,k — A +
2, u, w)-critical path, otherwise reassigning £ to uuy and « — A + 2 to uw will result in an acyclic edge coloring of G.
Hence, we have that Y(ww,) = Y(uuy) = {k — A+ 2,k — A+ 3,...,k}. But reassigning x — A to ww, will take us back
to Subcase 1.2. So we have that A(uy) N A(w;) = 0.

There exists a (k — A + 2,3, u, uy)-critical path, for otherwise reassigning 3 to uu, and @ to uw will result in an
acyclic edge coloring of G. It follows that {1, 3} U A(w;) € Y(uuy). If 2 ¢ U(uy) and there exists no (k—A+ 1,2, u, uy)-
critical path, then reassigning 2, 1 and a; to uuy, uu, and uw, respectively, will result in an acyclic edge coloring of G.
Hence, U(uy) ={1,2,3, k= A+ 2} UA(w;) or U(ug) = {1,3,k— A+ 1,k— A +2}U A(w,). Consequently, we have that
[A(w)] = A — 4, and then U(w) N (Uw) U Uw)) = {1,3,k = A,k —A+1}or{1,3,k— A,k — A +2}.

There exists a (k — A+ 1,2, u,w;)- or (k — A + 2,2, u, w;)-critical path, for otherwise we reassign @;,2 and k — A to
uw, uwy and uuy. Thus, U(uy) = {1,2,3,k — A+ 2} U A(wy). If U(w) N (Uw) U Uu)) = {1,3,k— A,k — A+ 2}, then
we reassign a1, 2,3 and k — A to uw, uw, uuy and uuy. Therefore, U(w) N (Uw) U U(w)) = {1,3,k— A, «— A+ 1}, but
reassigning « — A + 2, 1 and 4 to uw, uu, and uuy results in an acyclic edge coloring of G.

Case2. Uw)NUw) ={A,...,,} and m > 2.
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We can relabel the vertices in {u;, uy, u3, us} as {v, v2,v3,v4}. By symmetry, we may assume that ¢(uv;) = A; for
ie{l,...,m}.

Claim 2. The sets A(vy), Ay), ..., A(v,,) are pairwise disjoint.

Proof. Suppose, to the contrary, that @ € A(v;) N A(vz). By Claim 1 and the symmetry, we may assume that there
exists a (A3, @, u, w)-critical path and m > 3, which implies that there exists no (A3, @, u, vp)-critical path. Consequently,
there exists a (¢(uvq), @, u, vp)-critical path; otherwise, reassigning @ to uv, to obtain a new acyclic edge coloring of
G — wu, which contradicts the minimality of m. Now, reassigning @ to uv; to obtain an acyclic edge coloring 7 of
G — wu, but | U, (u) N U, (w)| < |U@) N U(w)|, which is a contradiction. |

Claim 3. Every color in C(wu) appears at least twice in S.

Proof. Suppose that there exists a color @ in C(wu) such that muls(e) = 1. By Claim 1 and symmetry, we may assume
that there exists a (4, @, u, w)-critical path and @ € U(v;). But reassigning @ to uv, results in a new acyclic edge
coloring of G — wu, which contradicts the assumption (x). O

Let X ={6| 0 € C(wu) and mulg(d) > 3}.

D7 degs(n)

XENG (1)

= deg,(u) + degg(w) — 1 + Z mulg(6)
Oe[«]

= degg(w) + deggw) = 1+ > muls@)+ > mulg(6)
0eC(wu) OcU(w)UU (u)

> deg, (1) + deg(w) — 1 + 2|C(wu)| + |X]| + Z muls(6)

OeU(w)UU (u)

=deg;(u) + degs(w) — 1 + 2(k — (degs(w) + deg;(u) — 2 —m)) + |X| + Z muls (6)
OcU(w)UU (1)

= 2« - deg(u) — deg(w) + 2m+ 3+ [X|+ > mulg(6)
OcU(w)UU (1)

It is sufficient to prove that
mulg(0) + |X| > degg(w) — 2m + 9. @)
GeU(w)UU(u)

Subcase 2.1. U(w) N U(u) = {11, A;} and w, = u;. Note that A(w,) # 0.
Subcase 2.1.1. The two colors on the edges w;w and w;u are all common colors.

Without loss of generality, assume that ¢p(uw;) = 2, ¢p(uuy) = 1, p(uuz) = k—A and ¢(uus) = k—A+1. Consequently,
we conclude that {k — A+ 2,...,k} € U(w;) and deg;(w;) > A + 1, a contradiction.

Subcase 2.1.2. The color on w;w is a common color and the color on w;« is not a common color.

Without loss of generality, assume that ¢(uw;) = k — A, ¢p(uuy) = 1, p(uus) = 2 and ¢(uuy) = k — A + 1.

For every color a; € A(w,), there exists a (6;, a;, w, w)-critical path with some 6; € U(w) \ {1,2}; otherwise,
reassigning «; to ww; will take us back to Case 1. By symmetry, we may assume that there exists a (3, ", w, w;)-
critical path with some «*, and then 3 € U(w;). If Y(ww,) € C(wu), then reassigning « — A to ww, will take us back
to Subcase 2.1.1. So we have that T(ww,) € C(wu) and A(w>) # 0. Consequently, for every color £’ € A(w,), there
exists a (u;, {7, w, wo)-critical path with some u; € U(w) \ {1, 2}; otherwise, reassigning ;' to ww, will take us back to
Case 1. Hence, {1,3,xk — A} € U(wy) and {2, 1} € U(w), and then [A(w,)| > 2 and [A(wy)| > 1.

If Y (uuz) € C(wu), then reassigning p; to uu, and {7 to wu results in an acyclic edge coloring of G, a contradiction.
Thus, we have that Y (uu;) € C(wu) and A(u,) # 0. For every color §; € A(u,), there exists an (&;, B;, u, up)-critical
path with some ¢; € {k — A,k — A + 1}; otherwise, reassigning 3; to uu, will take us back to Case 1.

If Y(uuz) € C(wu), then reassigning 3 to uus and @* to wu results in an acyclic edge coloring of G, a contradic-
tion. Thus, we have that T(uuz) € C(wu) and A(uz) # 0. Consequently, for every color & € A(us), there exists a
(my, &;, u, uz)-critical path with some m; € {k — A, k— A+ 1}; otherwise, reassigning &; to uuz will take us back to Case 1.
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Claim 4. A(uy) N Aluy) = 0.

Proof of Claim 4. Suppose that 8; € A(uy) N A(ug). It follows that there exists a (« — A, By, u, up)-critical path,
k — A € Y(uup) and By € Y(uwy). Also, there exists a (1,x — A+ 1, w, u)- or (2,xk — A + 1, w, u)-critical path; otherwise,
reassigning B; to uuy and k — A + 1 to wu results in an acyclic edge coloring of G. Suppose that there exists a
1,k — A+ 1, w, u)-critical path and «k — A + 1 € Y(ww;) N Y (uuy). It follows that {1,x — A,k — A+ 1} € U(uy) and
|A(uz)| > 2. Furthermore, we can conclude that {1, 3, k—A, k—A+1, 81 }UA(w,) € U(w;). Note that A(w,)NA(uy) = 0,
thus U(wy) = {1,3,k = A,k = A+ 1,81} U A(w;) and U(wz) N (U(w) U U(w)) = {2, 11}. Recall that B, ¢ A(w,), thus
& = k— A+ 1 and there exists a (k — A + 1, B>, u, up)-critical path. Now, reassigning 8, to uw; and x — A to wu results
in an acyclic edge coloring of G.

So, we may assume that there exists a (2, k — A + 1, w, u)-critical path. Hence, {1,x— A, 3,81} U A(w,) € U(w;) and
{2, 11, k—A+1} C Y(wwy). It follows that U(w;) = {1,x—A, 3, 81 }UA(w,) and U(w))N(Uw)UU (u)) = {2, 1, k—A+1}.
Now, reassigning a; to uw; and k — A to wu results in an acyclic edge coloring of G. This completes the proof of
Claim 4. m|

Claim 5. A(uy) N A(w) = 0.

Proof of Claim 5. By contradiction, assume that a@; = B;. It follows that there exists a (k — A + 1,8, u, up)-critical
path and «k — A + 1 € U(uy). There exists a (2, k — A, w, u)-critical path; otherwise, reassigning 8 to uw; and k — A to
uw results in an acyclic edge coloring of G, a contradiction. So we have that k — A € Y(wwy) N T (uu3).

Note that {1, k—A, 3} € U(w;) and {2, u;, k—A} € U(w,). If deg;(w) < k—A and deg,(w;) < 6, then A(w,) € U(w)
with |[A(w,)| > 2, and then | U (w )NU(w)| < 3; similarly, if deg;(w) < k—A-1and deg;(w;) < 7, then A(w,) € U(w)
with |[A(w,)| > 3, and then |U(w;) N Uw)| < 3. If U(w) N U(w) = {1, 3}, then {2,k — A} € U(uz) N (Uw) U U));
otherwise, reassigning a;, @, and 3 to uw,, uw and uus respectively results in an acyclic edge coloring of G. Suppose
that U(w;) N Uw) = {1,3, s}. Since |A(w;)| > 3, thus there exists a T € {3, s} and @;, @; such that both (7, @;, w, w)-
and (7, aj, w, wy)-critical path exist, and thus {2,k — A} € U(uz) N (Uw) U U(w)); otherwise, reassigning a;, a; and 7
to uw;, uw and uuz respectively. Anyway, we have that |U(uz) N (Uw) U U(w))| = 3.

If k — A only appears only once (at u3) in S, then reassigning x — A to uu, and B3 to uw; will take us back to Case
1. So we conclude that the color x — A appears at least twice in S.

If 1 ¢ S\ U(w,), then reassigning 1,5 and &; to uua, uu, and wu respectively, results in an acyclic edge coloring
of G, a contradiction. Therefore, the color 1 appears at least twice in S.

Suppose that 4 ¢ S. Thus there exists a (4, &, w, up)-alternating path; otherwise, reassigning 4 to uu, and &) to wu
results in an acyclic edge coloring of G, a contradiction. Now, reassigning 4, 8 and &; to uuy, uu, and wu respectively,
results in an acyclic edge coloring G, a contradiction. So we conclude that 4 € S. By symmetry, we can also obtain
that every color in U(w) \ {1, 2, 3} appears in S.

Suppose that every color in U (w) \ {1, 2} appears exactly once in S. Suppose that U(w;) N (Uw) \ {1,2}) = {3, s}.
Thus, U(wy) = {1,k = A, 3,5} U A(wp) and k — A + 1 ¢ U(w;). Since |[A(w;)| > 3, thus there exists a 7 € {3, s}
and «;, a; such that both (7, @;, w, w)- and (7, @, w, wy)-critical path exist. Reassigning 7, @; and «; to uus, uw; and wu
respectively, results in an acyclic edge coloring of G, a contradiction. So we may assume that [ (w;)N(Uw)\{1,2})| =
1, that is U(w) N (Uw) \ {1,2}) = {3}. Reassigning 3, @ and @, to uusz, uw; and wu respectively, results in an acyclic
edge coloring of G, a contradiction. Hence, we may assume that the color 3 appears at least twice in S.

Suppose that &; € A(uq). Thus, there exists a (k — A, &1, u, uz)-critical path; otherwise, reassigning &; to uus will
take us back to Case 1. Furthermore, xk — A + 1 € T(ww;) U T(uu3); otherwise, reassigning &; to uuy and k — A + 1 to
wu results in an acyclic edge coloring of G. If 2 ¢ S, then reassigning a1, 2 and & to wu, uw; uus respectively, results
in an acyclic edge coloring of G. So we have that 2 € S. Hence,

muls(6) + |X| > [{4,...,degs(w) — 1} + 2|{1, 3,k — A,k — A + 1}| + [{2}] = degs(w) + 5.
OeU(w)UU (1)

So we may assume that A(uz) N A(uy) = 0. It is obvious that A(uz) C X. Hence,

muls(6) + |X] > [{4,...,degs(w) — 1}| + 2[{1, 3,k — A}l + [{k = A + 1}| + |A(u3z)| > deg,(w) + 4.
OeU(w)UU(u)

The equality holds only if k — A + 1 appears only once in S and 2 does not appear in S; but reassigning a,2 and &)
to wu, uw; and uus respectively, results in an acyclic edge coloring. Therefore, inequality (7) holds, we are done. This
completes the proof Claim 5. O

12



By Claim 5, the three sets A(w;), A(uy) and A(us) are pairwise disjoint.

(1) Suppose that there exists no (2, « — A, w, u)-critical path. This implies that there exists a (k — A + 1, a;, u, w))-
critical path; otherwise, reassigning «; to uw; and x — A to wu results in an acyclic edge coloring of G. Thus, {1, 3,k —
Ak — A+ 1} € Uwy) and A(wy) € U(uy). Note that A(uy) U A(uz) S U(w,), thus [A(uy)| = [A(us)l = 1 and
Uw) N (Uw) U Uw)) = {1,3,k— A,k — A + 1}. Similarly, we know that A(uy) U A(w,) € U(w,), which implies
that [A(w,)| = [A(uz)| = 1 and A(w,) = A(uz). Hence, U(w;) N (Uw) U U(u)) = {2,u;}. By Claim 4, we conclude
that U(ug) 2 A(wy) U A(uy) U {k — A + 1}. If T(uuy) S C(uw), then reassigning 3, a* and k — A to uuy, uw; and
wu respectively results in an acyclic edge coloring of G. Note that [A(w;)| + [A(uy)| = A — 2, so we may assume that
[T (uug) N(Uw)UU(w))| = 1. In addition, Y (uus)NC(uw) = A(w;)UA(uy) and U (u ) N(U(w)UUw)) = {1, &1}. Recall
that A(w), A(uy) and A(u3) are pairwise disjoint, thus A(uz) N U(uy) = 0, and then there exists a (k — A, &1, u, uz)-
critical path and k — A € Y'(uu3). There exists a (1,x — A + 1, u, w)-critical path; otherwise, reassigning &; and k — A + 1
to uuy and uw results in an acyclic edge coloring of G. Hence, U(up) N (U(w) U U(w)) = {l,&1} = {1,k — A+ 1}.
There exists a (k — A + 1, u1, u, up)-critical path, otherwise, reassigning u; to uus and £} to uw results in an acyclic edge
coloring of G. Hence, Y(uuy) N (Uw) U Uw)) = {11,k — A + 1}. Now, reassigning {7, a1, 41 and k — A to uw, uwr, uus
and uu, respectively, yields an acyclic edge coloring of G.

(2) Now, we may assume that there exists a (2,x — A, w, u)-critical path and x — A € T(uuz) N L(ww,). Clearly,
Uw;) 2 A(uz) U A(wr) U {1,3,k — A} If deg;(w) < k — A — 1, then deg,(w;) > 2 + 3 + 3 = 8, a contradiction. Thus,
deg;(w) = k — A, which implies that U(w;) = Auz) U A(w,) U {1, 3,k — A}, |[A(uz)| = 1 and [A(w,)| = 2. It is easy to
see that U(wy) N (Uw) U U(w)) = {2,k — A, i1} and U(up) N (Uw) U Uw)) = {1, e1}. If 3 ¢ U(us), then there exists
a (k — A + 1,3, u, u3)-critical path; otherwise, reassigning ay, @, and 3 to uw;, uw and uuz respectively results in an
acyclic edge coloring of G. Hence, we have that {3,x — A + 1} N U(u3) # 0 and [A(uz)| > 2. Recall that A(w,), A(uy)
and A(u3) are disjoint, thus U(w,) 2 A(uz) U A(uz) U {1, 3, k — A}. Moreover, U(w,) = A(uz) U A(uz) U {1,3,k — A},
A(uz) = A(w,). If there exists a &; ¢ U(uy), then there exists a (k — A, &;, u, uz)-critical path, and then reassigning &; to
uuy and k — A + 1 to uw results in an acyclic edge coloring of G. So we have that A(uy) U A(uz) S U(ug).

There exists a (k — A, u1, u, uz)- or (k — A + 1, uy, u, up)-critical path; otherwise, reassigning p; to uuy and {7 to uw
results in an acyclic edge coloring of G. If there exists a (k — A, u1, u, up)-critical path, then y; = 3 and £ = k — A; but
reassigning p, " and {7 to uu,, uw; and uw results in an acyclic edge coloring. So there exists a (k — A + 1, uy, u, up)-
critical path, thus &1 = k — A + 1 and U(ug) N (UwW) U U(u)) = {1,k — A + 1}. Now, reassigning k — A, u, a" and £}
to uug, uu,, uw; and uw respectively, yields an acyclic edge coloring of G.

Subcase 2.1.3. The color on w;w is not a common color and the color on w;u« is a common color.

Without loss of generality, assume that ¢p(uw;) = 3, ¢(uuy) = 2, p(uuz) = k — A and ¢(uuy) = k — A + 1.

For every color «; € A(w,), there exists a (6;, @;, u, wy)-critical path with some 6; € {x — A,k — A + 1}; otherwise,
reassigning «; to uw; will take us back to Case 1. If T(uuy) € C(wu), then reassigning 1 to uu, will take us back to
Subcase 2.1.1. So we have that Y'(uu,) € C(wu) and A(u,) # 0. Consequently, for every color §5; € A(u,), there exists
a (&, Bi, u, up)-critical path with some ¢; € {k— A, k— A+ 1}; otherwise, reassigning §; to uu, will take us back to Case 1.
Hence, we have {k — A,k — A+ 1} N YV (uuy) # 0.

Subcase 2.1.3.1. Suppose that {x — A,k — A + 1} € U(wy).

If {k — A,k —A+1} C Uuy), then Uw;) = {1,3,k = A,k = A+ 1} U A(up) and U(up) N (Uw) U U(u)) =
{k — A,k — A + 1,2}; but reassigning «; to ww; and 1 to uw results in an acyclic edge coloring of G. This implies that
k= A,k = A+ 1} N Uuy)| = 1, say k — A € U(uy). Hence, we have g; = k — A and A(uy) C U(us).

Suppose that there exists no (2, 1, u, w)-critical path. Thus, there exists a (u;, @;, w, w;)-critical path with y; €
Uw) \ {1,2,3}; otherwise, reassigning «; to ww,; and 1 to wu will result in an acyclic edge coloring of G. Note that
Uwr) 2{1,3,k—A, k—A+1, u1 JUA(uy), it follows that U (ux) N(U ) VU w)) = {2, k—A} and | U (u )N C(wu)| = A-2.
Moreover, U(wy) = {1,3, k= A,k —A+ 1,1} U A(uy) and [A(uy)| = 1, say u; = 4. Thus, there exists a (k — A, 1, u, up)-
critical path; otherwise, reassigning 1 to uu, will take us back to Subcase 2.1.1. So, we have 1 € U(u3). Furthermore,
there exists a (k — A, 4, u, up)-critical path; otherwise, reassigning 4 to uu, and a; to wu results in an acyclic edge
coloring of G. Hence, {1,4,x — A} C U(u3). Recall that [A(uz)| > 2 and |A(uy)| = 1, it follows that A(w;) N A(uz) # 0,
say a1 € U(uz). If 1 ¢ U(uy), then reassigning 1 to uuy and a; to uw; will take us back to Subcase 2.1.2. Thus,
we have 1 € U(ug). If 2 ¢ S, then reassigning 2,5, and a; to uuz, uu, and uw respectively results in an acyclic edge
coloring of G. Thus 2 € S. If 3 ¢ S, then reassigning 3, a; and S to uuy, uw; and uw respectively results in an acyclic
edge coloring of G. Thus 3 € S. If 5 ¢ S, then there exists a (5, a;, w, up)-alternating path, otherwise, reassigning 5 to
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uu, and «; to uw results in an acyclic edge coloring of G; but reassigning 5, 8; and «@; to uus, uu, and uw results in an
acyclic edge coloring of G. Thus 5 € S. Similarly, {5, 6, ...,degs(w) — 1} C S. Therefore, we have

muls(6) + [X| > 3[{1}| + 2l{4,k — A} + {2,3,k = A+ 1,5,6,...,deg;(w) — 1}| = degy(w) + 5.
OeU(w)UU (u)

Suppose that there exists a (2, 1, w, u)-critical path. It follows that {1,2,x — A} € U(uz) N (Uw) U U(w)). It is
obvious that A(uz) € U(wy), thus U(wy) = {1,3,k = A,k = A+ 1} U Auz), U(uz) N (Uw) U Uu)) = {1,2,k — A}
and |[U(uy) N C(wu)] = A — 3. If A(w;) € U(uz), then U(uz) = Awy) U A(uy) U {k — A} = C(wu) U {k — A}; but
reassigning 2, 8 and «; to uus, uu, and uw respectively results in an acyclic edge coloring of G. So we may assume
that A(w;) € U(uz) and a; ¢ U(uz). If 3 ¢ S, then reassigning 3, a; and B to uuy, uw; and uw respectively results in
an acyclic edge coloring of G. Thus, we have 3 € S. For every color 6 in U(w) \ {3}, we have that 6 € S; otherwise,
reassigning 6, and a; to uus, uu, and uw respectively results in an acyclic edge coloring of G. If 1 ¢ U (u3) U U(us),
then reassigning 1 to uuy and «; to uw; will take us back to Subcase 2.1.1. Hence, the color 1 appears exactly three
times in S. If k — A + 1 appears at least twice in S or |X| > 1, then

mulg () + [X| > deg;(w) + 5.
OeU(w)UU(u)

So we may assume that k — A + 1 appears precisely once (at w;) and X = (. Note that 8; ¢ U(uy). But reassigning 5,
to uuy and k — A + 1 to uu, will take us back to Case 1.

Subcase 2.1.3.2. Now, we may assume that {k — A,k —A+ 1} € U(w;) and k — A+ 1 ¢ U(w).

Thus, there exists a (k — A, ;, u, wy)-critical path for every «;; otherwise, reassigning «; to uw; will take us back to
Case 1. It follows that k — A € U(wy) and A(w;) € U(uz) N U(uy). If T(uuz) C C(uw), then reassigning a; to uw; and
1 to uus will take us back to Subcase 2.1.2. So we may assume that T(uu3) € C(wu) and C(wu) € Y(uus).

(1) Suppose that A(uy) N A(usz) = 0. It follows that A(w, ), A(uy) and A(uz) are pairwise disjoint. Suppose that
there exists no (2, 1, u, w)-critical path. Thus, there exists a (7, @, w, w;)-critical path, where 7 € U(w) \ {1,2,3};
otherwise, reassigning 1 to uw and «@; to ww results in an acyclic edge coloring of G. Since U(u3) 2 A(w;) U A(uy)
and C(wu) € U(us), it follows that |[A(w;)| = A = 3, [A(up)| = 1 and [U(u3) N (Uw) U Uw))| = 2. If 1 ¢ U(us),
then there exists a (k — A + 1, 1, u, u3)-critical path; otherwise, reassigning 1 to uu3 and a; to uw; will take us back
to Subcase 2.1.2. Thus, Y(uuz) N (Uw) U U(u)) = {1} or {x — A + 1}. If there exists no (k — A + 1, 3, u, uz)-critical
path, then reassigning 3, @ and ) to uus, uw; and uw results in an acyclic edge coloring of G. Hence, there exists a
(« = A+ 1,3, u, u3)-critical path and Y(uuz) N (Uw) U U(u)) = {x — A + 1}. But reassigning 1 to uu, will take us back
to Subcase 2.1.1.

Now, we consider the other subcase: suppose that there exists a (2, 1, u, w)-critical path and 1 € U(u,). Since
U(uz) 2 A(wy) U A(uy) and C(wu) € U(us), so we have that |[A(wy)| = A — 4, [A(uy)| = 2 and U(w;) N (U (w) U
Uw) = {1,3,k = A}, Uuz)) N (Uw) U Uw)) = {1,2,&1} and |[Uu3) N (Uw) U Uw))| = 2. If 1 € U(us), then
U(uz) N (Uw) U Um)) = {1,k — A}, and then reassigning S, @; and 3 to uw, uw; and uuz results in an cyclic edge
coloring. Thus, 1 ¢ U(uz). There exists a (k — A + 1, 1, u, uz)-critical path; otherwise, reassigning 1 to uuz and a; to
uw will take us back to Subcase 2.1.2. This implies that U(uz) N (U(w) U U(u)) = {x — A,k — A + 1} and 1 appears
three times in S. There exists a (k — A + 1, 3, u, u3)-critical path, otherwise, reassigning S, a; and 3 to uw, uw; and uus
results in an acyclic edge coloring of G. Now, we have {1, 3} C T(uus). If 8 € A(uy) N A(us), then &, = k — A and there
exists a (k — A, 8, u, up)-critical path; but reassigning 3 to uuy and k — A + 1 to uw results in an acyclic edge coloring
of G. This implies that A(up) € U(us) and A(up) € X. Suppose that {4,5,...,deg,;(w) — 1} € S. So, by symmetry,
we may assume that 4 ¢ S. There exists a (4, 81, w, w;)-alternating path; otherwise, reassigning 4 to uw; and §; to uw
results in an acyclic edge coloring of G. But reassigning 4, @; and §; to uusz, uw; and uw results in an acyclic edge
coloring of G. Hence, {3,4,...,degs;(w) — 1} C S.

muls(0) + [X| > [{3,4,...,degg(w) — 1} + {1} + Her} + Hk = A} + [{k = A + 1}] + [A(uo)| > degs(w) + 5.
OcU(w)UU (u)

(2) So we may assume that A(uy) N Auz) # 0, say By € A(uz) N A(uz). Thus, there exists a (k — A + 1,81, u, up)-
critical path; otherwise, reassigning 3 to uu, will take us back to Case 1. So, we have k — A + 1 € U(u,).
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Suppose that the color 1 only appears once (at wy) in S. If there exists no (3, 1, u, up)-critical path, then reassigning
1 to uu, will take us back to Subcase 2.1.1. But if there exists a (3, 1, u, uy)-critical path, then reassigning 1 to uuy and
B to uu, will take us back to Subcase 2.1.1 again. Hence, the color 1 appears at least twice in S.

If 2 ¢ S, then reassigning 2, 81 and a; to uuy, uu, and uw respectively results in an acyclic edge coloring of G. If
3 ¢ S, then reassigning 3, @; and 3 to uus, uw; and uw respectively, results in an acyclic edge coloring of G. Suppose
that 4 ¢ S. There exists a (4,81, w, w;)-alternating path; otherwise, reassigning 4 to uw; and 8 to uw results in an
acyclic edge coloring of G. Now, reassigning 4, @; and 8 to uusz, uw; and uw respectively results in an acyclic edge
coloring of G. Thus, {2, 3,4} € S. By symmetry, we have that U (w) \ {1,2,3} C S.

Suppose that k — A appears only once (at w;) in S. Thus, there exists a (3,x — A, u, w)-critical path; otherwise,
reassigning x — A to uw and ; to uus results in an acyclic edge coloring of G. But reassigning 3; to uuz and xk — A to
uu, will take us back to Case 1. Hence, the color x — A appears at least twice in S.

Note that |[A(w;)| > 2. If A(w;) € U(uy), then A(w;) C X, and then

muls(8) + [X] > [k — A+ 1,2,3,...,degg(w) — 1}] + 2|{1,k — A}| + | Aw;)| > deg,(w) + 5.
OeU(w)UU(u)

So we may assume that A(w;) € U(ua), say a; ¢ U(us). There exists a (2,k — A+ 1, w, u)-critical path; otherwise,
reassigning a; to uuy and k — A + 1 to uw results in an acyclic edge coloring of G. Consequently, there exists a
(k= A,k — A+ 1,u,w;)-critical path and « — A + 1 € U(u3); otherwise, reassigning @ to uuy and k — A + 1 to uw; will
take us back to Case 1. Hence, the color x — A + 1 appears exactly twice in S.

Suppose that there exists no (2, 1, u, w)-critical path. Thus, there exists a (7, @, w, w; )-critical path with 7 € U(w) \
{1,2,3}; otherwise, reassigning 1 to uw and a; to ww; results in an acyclic edge coloring of G. If 7 only appears once
(at wy) in S, then reassigning 7, @; and 8 to uuz, uw; and uw respectively results in an acyclic edge coloring of G.
Hence, the color T appears at least twice in S. Hence,

Z mulg(0) + [X| > [{2,3,...,degg(w) — 1} + 2{1,k — A,k — A + 1}| + [{7}]| = degs(w) + 5.
OeU(w)UU (u)

Suppose there exists a (2, 1, u, w)-critical path and 1 € U(uy). If 1 ¢ U(uz) U U(uy), then reassigning 1 to uuz and
a; to uw; will take us back to Subcase 2.1.1. Hence, the color 1 appears at least three times in S,

muls(0) + [X] > 12,3, ... degg(w) — 1}] + 3[{1}] + 2l{k — A,k — A + 1}] = degg(w) + 5.
OeU(w)UU (u)

Subcase 2.1.4. Neither the color on w;w nor the color on wu is a common color.

By symmetry, assume that ¢(uw;) = k — A, ¢(uuy) = 2, p(uuz) = 3 and ¢(uus) =k — A+ 1.

If YV (uuy) € C(wu), then reassigning 1 to uu, will take us back to Subcase 2.1.2. This implies that V' (uuy) € C(wu)
and A(uy) # 0. Thus, there exists a (&;, B;, u, up)-critical path with g; € {x — A,k — A + 1}; otherwise, reassigning 3;
to uu, will take us back to Case 1. Similarly, we have that Y'(uus3) € C(wu) and A(uz) # 0, and thus there exists a
(my, &;, u, uz)-critical path with m; € {k — A,k — A+ 1}. If 1 ¢ U(uz) U U(us), then reassigning 1 to uu, will create a
(1,4 — A + 1)-dichromatic cycle containing uu,, otherwise, it will take us back to Subcase 2.1.2; but reassigning 1 to
uus will take us back to Subcase 2.1.2 again. It follows that 1 € U(u,) U U(u3) and 1 appears at least twice in S.

Subcase 2.1.4.1. Suppose that A(uy) U A(uz) € U(wy) and B; = a1 € U(w,).

Hence, there exists a (3, 81, u, w)-critical path and (« — A + 1, 8y, u, up)-critical path, thus k — A + 1 € U(u,).

There exists a (2, k — A, u, w)- or (3, k— A, u, w)-critical path; otherwise, reassigning 3, to uw; and x — A to uw results
in an acyclic edge coloring of G. It follows that xk — A € U(uz) U U(u3). Moreover, k — A appears at least twice in S;
otherwise, assume that k — A only appears at u,, thus reassigning « — A to uus and 3 to uw; will take us back to Case 1.

If 2 ¢ S, then reassigning 3,2 and &; to uu,, uus and uw respectively results in an acyclic edge coloring of G. Thus
2€eS.

Suppose that 4 ¢ S. There exists a (4, &, w, up)-alternating path for every & € A(us); otherwise, reassigning
4 to uu, and &) to uw results in an acyclic edge coloring of G. Now, reassigning 3,4 and & to uu,, uus and uw
respectively results in an acyclic edge coloring of G again. Hence, the color 4 appears in S. Similarly, we can prove
that U(w) \ {1,2,3} C S.

Suppose that 3 ¢ S. If there exists no (k — A + 1,&;, u, u3)-critical path, then reassigning 3 to uw; and &; to uus
will take us back to Subcase 2.1.3. Hence, there exists a (k — A + 1,&;, u, u3)-critical path for every & € A(uz),
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and then x — A + 1 € U(uz) and A(uz) € U(uy). If there exists no (x — A, &;, u, uz)-critical path, then reassigning
3,&; and B to uug, uus and uw respectively, results in an acyclic edge coloring of G. Hence, both (k — A, &;, u, u3)- and
(k=A+1,&;, u, uz)-critical path exist for every & € A(usz), and then {k—A, k—A+1} C U(uz) and A(uz) € U(w )NU(uy).
Clearly, every color in A(uz) appears precisely three times in S. Therefore,

muls(0) + [X] > {2} U {4,...,degs(w) — 1}| + 2{1,k = A,k = A + 1}| + |A(u3z)| > deg,(w) + 5.
OeU(w)UU(u)

So, in the following, we may assume that 3 € S.

If there exists a (2, 1, u, w)-critical path (or (3, 1, u, w)-critical path) and 1 appears only twice in S, then reassigning 1
to uuz (to uuy) will take us back to Subcase 2.1.2. In other words, if there exists a (2, 1, u, w)-critical path or (3, 1, u, w)-
critical path, then the color 1 appears at least three times in S.

Suppose that neither (2, 1, u, w)-critical path nor (3, 1, u, w)-critical path exists. If there exists no (7,8, w, w;)-
critical path with some 7 € U(w) \ {1, 3}, then reassigning 1 to uw and ; to ww, results in an acyclic edge coloring of
G. Hence, there exists a (7, 81, w, wy)-critical path with some 7 € U(w) \ {1, 3}. Suppose that there exists a (2, 81, w, w;)-
critical path and 2 appears only once in S. This implies that there exists a (k — A, 2, u, ug)-critical path; otherwise
reassigning 2,3, and & to uus, uup and uw respectively results in an acyclic edge coloring of G. But reassigning
2,B1,¢1 and £F (7 = Bo if |[A(uy)| = 2, otherwise, {* = k — A) to uuy, uw;, uw and uu, respectively, and we obtain an
acyclic edge coloring of G. Thus, if there exists a (2, 81, w, w;)-critical path, then the color 2 appears at least twice in
S. Suppose that there exists a (4, 81, w, wy)-critical path and 4 only appears once in S. Hence, there is a (x — A, 4, u, u3)-
critical path, otherwise, reassigning 4 to uus and ; to uw results in an acyclic edge coloring of G. Now, reassigning
4,81 and &) to uug, uu, and uw will create a (4, &;)-dichromatic cycle containing uw; otherwise, the resulting coloring
is an acyclic edge coloring of G. But reassigning 4 to uu, and &; to uw results in an acyclic edge coloring of G.
Thus, if there exists a (4, 81, w, w;)-critical path, then the color 4 appears at least twice in S. Similarly, if there exists a
(7, B1, w, wy)-critical path with 7 > 4, then the color 7 appears at least twice in S. Therefore, the color T appears at least
twice in S.

By the above arguments, regardless of the existence of (2, 1, u, w)-critical path or (3, 1, u, w)-critical path, if k—A+1
appears at least twice or |X| > 1, then

mulg () + [X] > degs;(w) + 5.
OeUw)UU(u)

So we may assume that the color « — A + 1 appears only once (at up) in S and X = 0. If A(uz) € U(w,), say
&) ¢ U(w)), then there exists a (2, &), u, w)-critical path and (k—A+1, &}, u, u3)-critical path, and then k—A+1 € U(u3),
a contradiction. So we may assume that A(uz) € U(w;) and A(uz) N U(ug) = 0.

Clearly, there exists a (2, &1, u, w)-critical path. Thus, there exists a (k — A, &1, u, u3)-critical path; otherwise, reas-
signing &; to uus will take us back to Case 1. Hence, there exists a (2, k—A+ 1, u, w)-critical path; otherwise, reassigning
&) to uuy and k — A + 1 to uw will result in an acyclic edge coloring of G. Now, reassigning &; to uus and k — A + 1 to
uus will take us back to Case 1.

Subcase 2.1.4.2. A(uy) U A(uz) € U(wy).

Firstly, suppose that A(uy) U A(uz) € U(ug) and By = ¢ ¢ U(uy). Hence, there exists a (3, 81, u, w)-critical path
and a (k — A, 81, u, up)-critical path, and then k — A € U(uy).

If{2,3,« — A+ 1} N U(w;) = 0, then reassigning S; to uu, and 2 to uw; will take us back to Subcase 2.1.3. Hence,
2,3, k=A+1}NU(w,) # 0. Recall that 1 € U(uz) UU(u3). Since A(uz) UA(u3) € U(w,), it follows that deg; (w;) = 6,
deg;(w) = k — A, and [A(uy)| + |A(uz)l = 3. Furthermore, we have that {x — A,k — A+ 1} N U(uy) = {k — A} and
l{x — A,k — A+ 1} N U(us)| = 1. Thus, there exists a (3,x — A + 1, w, u)-critical path; otherwise reassigning S to uuy
and k — A + 1 to uw will result in an acyclic edge coloring of G. Hence, {k — A,k — A+ 1} N U(u3) = {k — A + 1}.

If 1 ¢ U(uy), then U(uy) N (Uw) U Uw)) = {2,k — A}, but reassigning 1 to uu, will take us back to Subcase 2.1.2.
This implies that U(u,) N (Uw) U Uw)) = {1,2,« — A} and U(uz) N (U(w) U U(w)) = {3,« — A + 1}. Now, there
isa (k — A+ 1,1, u,u3)-critical path; otherwise, reassigning 1 to uuz will take us back to Subcase 2.1.2. Thus, there
exists a (k — A,k — A + 1, u, up)-critical path; otherwise, reassigning 31 to uuy and k — A + 1 to uu, will take us back to
Case 1. Hence, U(wy) N (Uw) U Uwm)) = {1,k — A,k — A + 1}. Moreover, there exists a (k — A + 1,2, u, wy)-critical
path; otherwise, reassigning 31,2 and « — A to uu,, uw; and uw respectively, results in an acyclic edge coloring of G. It
is obvious that 2 € U(uyg). If k — A ¢ U(uy), then reassigning k — A, 81,2 and &) to uuy, uuy, uw; and uw respectively,
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results in an acyclic edge coloring of G. Thus, k — A € U(uy). Recall that {1,2} C U(uy). If there exists a color 7 in
U(w) \ U(uy), then reassigning 7, & and B to uua, uus and uw respectively, will result in an acyclic edge coloring of
G. Hence, U(w) € U(uy). Then

muls(0) + [X] > [UW)| + 2/{1,k = A,k — A + 1)] = degg(w) + 5.
OeU(w)UU (u)

Secondly, suppose that A(uy) U A(uz) € U(uy). Thus, every color in A(u,y) U A(uz) appears three times in S,
and then A(up) U A(uz) € X. Recall that 1 € U(up) U U(uz). Since A(up) U A(uz) € U(w,), it follows that
fk—Ak=A+1}NnUwy)| =1orl{ik—A,k—A+ 1} N U(uz)| = 1.

Suppose that 1 € T(uuy) N Y(uusz). It follows that deg;(w) = 6 and U(w;) = {1,k — A} U A(uz) U A(uz). Moreover,
we have that [{k —A,k—A+1}NY(uup)| = 1 and [{k— A,k —A+ 1} N Y(uuz)| = 1. if «k = A+ 1 ¢ T(uu,), then reassigning
B1,2 and & to uuy, uw; and wu respectively results in an acyclic edge coloring of G. So we have that k — A+ 1 € Y(uuy).
Similarly, we have that k — A+ 1 € T(uu3). But reassigning «; to uw; and x — A to wu results in an acyclic edge coloring
of G.

So we may assume that 1 ¢ Y(uuy) N V(uusz) and 1 € Y(uuy). If there is a (2, 1, u, uz)-critical path, then U(w;) =
{1,k = A} U A(uz) U A(uz) and 2 € U(uz), but reassigning a; to ww; and 1 to wu results in an acyclic edge coloring
of G. Hence, there exists no (2, 1, u, u3)-critical path. Thus, there exists a (k — A + 1, 1, u, u3)-critical path, otherwise,
reassigning 1 to uus will take us back to Subcase 2.1.2. This implies that the color 1 appears at least three times in S.

Suppose that 3 ¢ S. Thus, there exists a (2,k — A + 1, w, u)-critical path; otherwise, reassigning 3,1 and xk — A + 1
to uuy, uuz and uw respectively, results in an acyclic edge coloring of G. Hence, xk — A + 1 € U(up) N U(us). If
k — A ¢ U(us), then reassigning 3,¢; and S to uus, uuz and uw respectively, results in an acyclic edge coloring of
G. So we may assume that k — A € U(uz). Hence, |[A(uy)| = |A(us)| = 2 and U(w,) = {1,k — A} U A(uz) U U(uz).
Now, reassigning 3, 1,8 and a; to uug, uus, uw and ww;, results in an acyclic edge coloring of G. Therefore, we can
conclude that 3 € S.

Suppose that 4 ¢ S. Thus, there is a (4,51, w, uz)-alternating path; otherwise, reassigning 4 to uuz and g; to uw
will result in an acyclic edge coloring of G. Similarly, there exists a (4, &, w, up)-alternating path. Moreover, there
exists a (k — A, &1, u, uz)-critical path; otherwise, reassigning 4, &; and 3 to uus, uuz and uw respectively, results in
an acyclic edge coloring of G. Thus, U(uz) N (Uw) U Uw)) = {3,k — A,k — A + 1}, |[A(us)| = 2 and |A(uy)| = 2.
Hence, [U(u) N{k — A,k — A+ 1}] = 1. If k — A ¢ U(uy), then reassigning 4, 81 and & to uuy, uu, and uw respectively,
results in an acyclic edge coloring of G. Hence, we have that U(u) N (U(w) U (1)) = {1,2,x — A}. But reassigning
¢1,4 and B to uw, uw; and uu, respectively, results in an acyclic edge coloring of G. So, 4 € S. Similarly, we have that
Uw)\ {1,2,3} CS.

Recall that |[A(ur) U A(uz)| = 3, ik = A,k = A+ 1} N Uwy)| > 1 and [{k — A,k — A+ 1} N U(u3)| = 1. Hence,

mulg(0) + |X| > 1{3,4,...,degg(w) — 1}| + 31} + 1 + 1 + [A(up) U A(u3)| > degy(w) + 5.
GeU(w)UU(u)

Subcase 2.2. U(w) N U(u) = {1, A2, A3} and wy = u;. Note that |C(wu)| > A.
Subcase 2.2.1. The color on uw,; is a common color.

By symmetry, assume that ¢p(uw) = Ay, ¢(uuy) = Az, p(uuz) = Az and ¢p(uug) = k — A.

If T(uuy) € C(wu), then reassigning B to uu, will take us back to Subcase 2.1. So we have that (' (uuy) € C(wu)
and |U(uz) N C(wu)] < A —2; similarly, we also have that [U(u3) N C(wu)| < A-2. If U(w) N (UW)UU)) = {1, 4,},
then reassigning a to uw; will take us back to Subcase 2.1 again. Hence, |U(w;) N(Uw)UU(u))| > 3. By Claim 2, we
have A(uy) UA(u3) € U(w) and A(up) N\A(uz) = 0. Further, we have that U (wy)| > 3+ [ A(uz)|+ [ A(uz)| > degs(wy),
which is a contradiction.

Subcase 2.2.2. The color on uw; is not a common color, but the color on ww; is a common color.

By symmetry, assume that ¢p(uw) = k — A, ¢p(uu) = 2, p(uus) = 3 and ¢(uuy) = 1.

If Y(uupy) € C(wu), then reassigning S to uu, will take us back to Subcase 2.1. So we have that Y(uuy) € C(wu)
and |U(up) N C(wu)| < A — 2; similarly, we also have that U (u3) N C(wu)| < A —2 and |U(us) N C(wu)| < A -2.

If Uw) N (Uw) U Uw)) = {1,k — A}, then reassigning «; to ww; will take us back to Subcase 2.1 again. Hence,
[Uw) N (Uw) U U)I = 3.
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Furthermore, we have that A(uy) U A(usz) € U(w;). Otherwise, if deg,(w) < k — A, then |U(w;)| = 3 + |[Au)| +
[Aws)l > 3 +2+2 > 6; and if degg(w) < k — A — 1, then [Uwy)| = 3 + [A(u)| + |A(uz)l > 3 +3 +3 > 7. Without
loss of generality, assume that 8; ¢ U(w;). Since 51 ¢ U(w;) U U(uy), it follows that there exists a (3, 51, u, w)-critical
path. There exists a (1, 8, u, up)-critical path; otherwise, reassigning 3; to uu, will take us back to Subcase 2.1. Hence,
1 € U(u,) and 1 appears at least twice in S.

There exists a (2, « — A, u, w)- or (3, k — A, u, w)-critical path; otherwise, reassigning x — A to uw and 3 to uw; will
result in an acyclic edge coloring of G. If k — A appears only once in S, then reassigning 3, to uw; and « — A to uuy will
take us back to Subcase 2.1. Hence, the color « — A appears at least twice in S.

Lett € Uw) \ {1,3}. If ¢ ¢ S, then reassigning B; to uu, and ¢ to uuy will take us back to Subcase 2.1. Hence, we
have that U(w) \ {1,3} C S.

If A(uz) € U(w,), then every color in A(u3) appears precisely three times in S, and then

muls(6) + |X| > [{2,4,5,...,deg;(w) — 1}| + 2|{1, k — A}| + |A(u3)| > deg;(w) + 3.
OcU(w)UU (1)

So we may assume that A(uz) € U(w;) and & ¢ U(w;) U U(usz). Similar to above, we can prove that there exists
a (2,&1,w,u)- and (1, &1, u, us)-critical path, and then 1 appears precisely three times in S. If 3 ¢ S, then reassigning 3
to uuy and &) to uuz will take us back to Subcase 2.1. Thus, the color 3 appears at least once in S. Therefore, we have

muls(0) + [X] > {2,3,...,degs(w) — 1} + 2|{x — A}| + 3|{1}] = deg;(w) + 3.
BeU (w)UU (1)

Subcase 2.2.3. Neither the color on w;w nor the color on wyu is a common color.

By symmetry, assume that ¢p(uw) = « — A, ¢p(uuy) = 2, ¢(uuz) = 3 and ¢(uuy) = 4.

If T(uuy) € C(wu), then reassigning 5 to uu, will take us back to Subcase 2.1. So we have that V(uuy) € C(wu)
and |U(up) N C(wu)| < A — 2; similarly, we also have that [T (u3) N C(wu)| < A —2 and |U(ug) N C(wu)| < A —2.

Suppose that the color 1 appears at most twice in S; by symmetry, assume that 1 ¢ U(u3) U U(us). Thus there
exists a (2, 1, u, uy)-critical path; otherwise, reassigning 1 to uuy will take us back to Subcase 2.2.2. But reassigning 1
to uus will take us back to Subcase 2.2.2 again. Hence, the color 1 appears at least three times in S.

Furthermore, A(uy) U A(uz) U A(uy) € U(w;); otherwise, we have |U(w;)| = 2 + [A(uy)| + [A(us)| + |A(ug)| >
deg;(w;), which is a contradiction. Without loss of generality, assume that 8; ¢ U(w;). Clearly, there exists a
(3,81, u, w)- or (4, B, u, wy-critical path. By symmetry, assume that there exists a (3, 81, u, w)-critical path. There exists
a (4,01, u, up)-critical path; otherwise, reassigning 3, to uu, will take us back to Subcase 2.1. It follows that 4 € U(uy).

If 2 ¢ S, then reassigning 2 to uuy and B to uu, will take us back to Subcase 2.1. So we have 2 € S; similarly, we
can obtain that U (w) \ {1,3,4} C S.

If3 ¢ S, then 4 € U(w;) U U(usz); otherwise, reassigning 3,4 and ) to uuy, uuz and uu, respectively, and then we
go back to Subcase 2.1. Anyway, we have that mulg(3) + mulg(4) > 2.

There exists a (2,k — A, u, w)- or 3,k — A, u, w)- or (4, k — A, u, w)-critical path; otherwise, reassigning 3 to uw;
and k — A to uw results in an acyclic edge coloring of G. If k — A ¢ U(uz) U U(uy), then reassigning x — A to uuz
and B; to uw; will take us back to Case 2.1. This implies that xk — A € U(u3) U U(uy); similarly, we can prove that
k—A € Uuy) U U(uy) and k — A € U(uy) U U(uz). Hence, the color k — A appears at least twice in S. Therefore, we
have

muls(6) + [X| > 3[{1}| + 2{x — A}| + Z muls(6) > degg(w) + 3.
O (w)UUW) OeU(w)\(1)

Subcase 2.3. |[U(w) N U(u)| = 4.

In other words, U(u) € U(w). It follows that |C(wu)| = k — degy(w) + 1 > A+ 1 and |A(w;)| > 2 fori = 2,3,4.
By Claim 2, we have that A(u,), A(uz) and A(ug) are pairwise disjoint and U(w;) 2 A(uz) U A(uz) U A(us), which
implies that |[U(w;)| = 2 + |[A(uz)| + [A(uz)| + A(us)| > deg;(w1), a contradiction. O

4 The main result

Now, we are ready to prove the main result, Theorem 1.1.
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Fig. 1: Discharging rules
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Proof of Theorem 1.1. Suppose that G is a counterexample with |V| + |E| is minimum, and fix x = A(G) + 6. Since
the hypothesis is minor-closed, it follows that G is a k-minimal graph. Let G* be obtained from G by removing all the
2-vertices. By Lemma 1 and Lemma 3, the minimum degree of G* is at least three. Take a component H of G* and
embed it in the plane. In the following, we will do arguments on the graph H to obtain a contradiction.

By Lemma 3 (A), we have the following claims.

Claim 1. If degy(v) < deg;(v), then degy(v) > 8 4+ m, where m is the number of adjacent 7~ -vertices in H.
Claim 2. If degy(v) < 7, then deg;(v) = degy(v).

From the Euler’s formula, we have the following equality:

D, (2degy()=6)+ ) (degy(f)~6)=~12 ®)

veV(H) feF(H)

Assign the initial charge of every vertex v to be 2 degy(v) — 6 and the initial charge of every face f to be deg,(f) —
6. Clearly, the sum of the initial charge of vertices and faces is —12. We design appropriate discharging rules and
redistribute charge among the vertices and faces, such that the final charge of every vertex and every face is nonnegative,
which derive a contradiction.

Discharging Rules:

(R1) If wis a 4-vertex adjacent to a 5~ -vertex u, then w sends % to each face incident with wu, and sends % to each
other face.

(R2) If wis a4-vertex adjacent to a 6-vertex u, then w sends % to each face incident with wu, and sends % to each other
face.

(R3) If wis a 4-vertex which is not adjacent to 6™ -vertices, then w sends % to each incident face.
(R4) All the rules regarding 3-faces are in the Fig (a)—(s).

(R5) Every 9"-vertex sends 1 to each incident 4" -face.

(R6) Every vertex with degree 5, 6,7 or 8 sends % to each incident 4*-face.

Computing the final charge of faces.

Let f = wywyws be a 3-face with degy (w;) < degy(wy) < degy(ws).

If w; is a 3-vertex, then Lemma 6 implies that both w, and ws are 9*-vertices in G, and they also are 9*-vertices in
H by Claim 1, thus fis a (3,9%,9%)-face in H and the final charge is —=3 + 2 x % =0.

If wyw, is a (4,4)-edge, then Lemma 9 implies that ws is a 12*-vertex in G, and it is a 10*-vertex in H by Claim 1,
thus f is a (4,4, 10*)-face and the final charge is =3 + 2 X ;—1 + % =0.

If wyw, is a (4, 5)-edge, then Lemma 9 implies that ws is a 11*-vertex in G, and it is a 10"-vertex in H by Claim 1,
thus the final charge of fis =3 + % + i1 + Z = 0if degj(w3) = 11, 0r =3+ 2x 2 + I = 0if w3 is a 10- or 12*-vertex
in H.

If wyw, is a (4, 6)-edge, then Lemma 9 implies that ws is a 10*-vertex in G, and it is a 10*-vertex in H by Claim 1,
and then the final charge is -3 + % +1+ % =0.

If degy(wy) = 4, degy(w») € {7, 8} and deg,(ws3) € {7, 8,9}, then the final charge of f is -3 + % +2 X % =0.

If deg,,(w)) = 4, deg;,(w>) € {7,8} and deg;(w3) > 10, then the final charge of fis -3+ 1+ Z+ 3 =0.

Suppose that f is a (4,9%,9%)-face. If w; is adjacent to a 5~ -vertex u, then w; sends % to f, and then the final
charge of fis -3 + % +2 X % = 0; if w; is adjacent to a 6-vertex u, then w; sends % to f, and then the final charge of
fis -3+ % +2X % = 0; if wy is not adjacent to 6~ -vertices, then w; sends % to f, and then the final charge of f is
-3+3+2x32=0.

If degy(w;) = degy(w,) = 5 and degy (w3) € {5, 6,7}, then the final charge of fis -3 +3 x 1 =0.

If fis a (5,5,8%)-face, then the final charge is =3 + 2 x { + 2 = 0.

If fis a (5, 6, 6)-face, then the final chargeis -3 +3 x 1 = 0.

If f is a (5,6, 7)-face, then the final charge is =3+ 2 + 1+ Z = 0.
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If fis a (5,6, 8%)-face, then the final charge is —3 + % +1+ % =0.

If fisa(5,7,7)-face, then the final charge is -3 + % +2 X % 0.

If fis a (5,7,8%)-face, then the final chargeis -3+ 7 + 3 + 3 =0

If fis a(5,8%,8%)-face, then the final charge is —3 + % +2x2=0

If fisa (6%,6%,6%)-face, then the final chargeis -3 + 3 x 1 = 0.

Next, we compute the final charge of 4-faces. Let wjw,wsw4 be a 4-face with w, having the minimum degree on
the boundary. If deg,(w;) > 5, then the final charge of f is at least =2 + 4 X % = 0. If degy(w;),degy(w3) > 9, then
the final charge is at least =2 + 2 x 1 = 0. So we may assume that deg (w») € {3,4} and deg,(w;) < 8. By Lemma 6
and Claim 1, we have that deg, (w;) = 4 and deg;(w;) = degy(w;) < 8. By Lemma 9 and discharging rules, the face f
receives at least % from each incident vertex, so the final charge of f is at least =2 + 4 X % =0.

Suppose that f is a 5-face. If f is incident with a 9" -vertex, then the final charge is at least —1 + 1 = 0. So we may
assume that f is incident with five 8 -vertices. It is obvious that f is incident with at least two 5*-vertices, and then
the final charge is at least —1 + 2 X % =0.

If f is a 6*-face, then the final charge is at least deg,(f) — 6 > 0.

INTTEN ]|

Computing the final charge of vertices.
Let v be a 3-vertex. Clearly, the final charge is zero.

Let v be a 4-vertex. If vis adjacent to a 5™-vertex, then Lemma 9 and Claim 1 implies that v is adjacent to three
9*-vertices, and then the final charge is 2 — 2 X ‘31 -2X % = 0. If v is adjacent to a 6-vertex, then Lemma 9 and Claim 1
implies that v is adjacent to three 9*-vertices, and then the final charge is 2 — 2 x % -2x % = 0. If v is not adjacent to
6~ -vertices, then the final charge is 2 — 4 x % =0.

Let v be a 5-vertex with neighbors v}, v, ..., v5 in anticlockwise order. If v sends at most ‘5—‘ to each incident
face, then the final charge is at least 4 — 5 X g = 0. So we may assume that v sends more than % to some face f.

If fisa(5,5,5)-face, then Lemma 10 and Claim 1 implies that the other three vertices adjacent to v are 9" -vertices,
and then the final charge of v is at least 4 — 1 — 2 X % -2x % > 0.

If fisa (5,5, 6)-face, then Lemma 10 and Claim 1 implies that the other three vertices adjacent to v are 8" -vertices,
and then the final charge of vis atleast4 — 1 — 3 — 3 — 2 X % > 0.

If fisa(5,5,7)-face, then Lemma 10 and Claim 1 implies that the other three vertices adjacent to v are 7" -vertices,
and then the final charge of v is at least 4 —2 X 1 — 3 X % =0.

If fisa(5,6,6)-face, then Lemma 10 and Claim 1 implies that the other three vertices adjacent to v are 7" -vertices,
and then the final charge of v is at least 4 — 1 — 2 X g -2x % =0.

If v sends at most % to an incident face, then the final charge of v is at least 4 — 4 x % - % = 0. So we may assume
that the 5-vertex v sends more than % to each incident face, thus v is incident with five 3-faces.

Suppose that f = vvjv; is a 3-face with degy,(v1) = 5 and degy(v2) > 8. By the excluded cases in the above,
the vertex vs is an 8*-vertex. Since v sends more than % to the 3-face vv,vs3, the vertex v3 is a 7~ -vertex. Similarly,
the vertex vy is also a 7~ -vertex. Now, the 3-face vvsvy is a (5,77, 77 )-face. By the excluded cases, we only have to
consider the edge vsvy is a (6, 7)- or (7,6)- or (7,7)-edge. If v3vy is a (7,7)-edge, then the final charge of v is at least
4-2x%-2x4 -2 >0.1f v304 is (6,7)- or (7, 6)-edge, then the final charge of vis atleast 4 —2x Z — 3 -2 — 17 > 0.

Suppose that f = wvjv; is a (5,6,7)-face with degy,(v1) = 6 and degy(v,) = 7. By the excluded cases, the
vertex v is a 67-vertex and the vertex vs is a 7" -vertex. By Lemma 6 and Claim 1, the vertex v4 is a 4*-vertex. If
deg(v4) = 4, then Lemma 9 and Claim 1 implies that both v3 and vs are 11*-vertices, thus the final charge of v is at
least 4 — % - % - % -2 X % > 0. By the excluded cases, the vertex v4 cannot be a 5-vertex. If degy(v4) = 6, then
degy(v3) > 7, and then the final charge of v is at least 4 — % —4x % = 0. If degy;(v4) = 7, then the final charge is at least
4-2-4x32=0.

Suppose that f = vvjv, is a (5,4, 11)-face. By Lemma 9 and Claim 1, the vertex vs is a 10*-vertex. If one of v3 and
vy is a 8*-vertex, then v sends % to an incident 3-face, a contradiction. So we may assume that deg, (v3), deg(vs) < 7.

By the excluded cases, the edge vsv4 is a (7, 7)-edge, and then the final charge of v is at least 4 — 2 X é—; - % -2X % > 0.

Let v be a 6-vertex. The final charge is at least 6 —6 x 1 = 0.
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Let v be a 7-vertex. If v sends at most % to an incident face, then the final charge is at least 8 — 6 X fT - % =0. So
we may assume that v sends more than % to each incident face, thus v is incident with seven 3-faces. By Lemma 9 (b)
and Claim 1, the vertex v is not incident with (4,7, 97)-faces. Now, the vertex v sends at most % to each incident face.
If v is incident with a (57,57,7)- or (6%, 6%, 7)-face, then the final charge is at least 8 — 6 X % —1 = 0. So every face
incident with vis a (57, 6%, 7)-face, but the vertex v is a 7-vertex and the number 7 is odd, a contradiction.

Let v be an 8-vertex. Every 8-vertex sends at most st to each incident face, thus the final charge is at least
10 - 8 % % =0.

Let v be a 9-vertex. If deg;(v) > 9, then Claim 1 implies that v is adjacent to at most one 7~ -vertex in H, and
then the final charge of vis atleast 12 -7 x 1 -2 x % > 0. So we may assume that deg;(v) = degy(v) =9.

Suppose that (3, 9)-edge uv is incident with two 3-faces. By Lemma 7, the vertex v is adjacent to eight 8*-vertices,
and then the final charge is at least 12 -7 x 1 -2 X % > 0. So every (3,9)-edge uv is incident with at most one 3-face.

Let 7 be the number of incident 4*-faces. If T > 4, then the final charge is at least 12 — 5 X % —4x1>0. Since
deg;(v) = degy(v) = 9, Lemma 9 implies that v is not incident with face (h) or (i). If 7 < 3, then the final charge is at
least 12— 7-2rx3 - (9-371)x 2 > 0.

Let v be a 10-vertex. If deg,(v) > 10, then Claim 1 implies that v is adjacent to at most two 7~ -vertices, and then
the final charge is at least 14 — 4 x % —6x 1> 0. So we may assume that deg;(v) = deg(v) = 10. Hence, the vertex v
is not incident with face (b), (d) or (h), and thus v sends % %, % or 1 to each incident face.

If v is incident with at least two 4*-faces, then the final charge is at least 14 — 8 x % —2x 1 = 0. Hence, the vertex
v is incident with at most one 4*-face. Lemma 9 implies that v is adjacent to at most five 4~ -vertices. Let s be the
number of incident (10, 3, 9%)-faces, and let s* be the number of incident (10, 4, 6%)-faces.

If s < 4, then the final charge is at least 14 — s X % - (10-s)x % =2- z 2 0. So we may assume that s > 5, and

3
then the number of adjacent 3-vertices is at least three.

(1) se€{5,6}.

If s* = 0, then the final charge is at least 14 — 6 X % -4 x % = 0. If v is incident with exactly one 4*-face, then
the final charge is at least 14 — 6 X % -1-3x % = 0. So we may assume that s* > 1 and v is not incident with
any 4*-face. Clearly, the vertex v is incident with exactly six (10, 3,9%)-faces and s = 6. It is obvious that v is
adjacent to at least one 4-vertex. Lemma 8 implies that the vertex v is adjacent to exactly three 3-vertices, one
4-vertex and six 6*-vertices. Hence, it is incident with exactly two (10, 6, 6*)-faces, and then the final charge is
atleast 14— 6x 3 -2x 3 -2x1>0.

2) s>17.

Clearly, the vertex v is adjacent to at least four 3-vertices. Lemma 8 implies that the vertex v is adjacent to
exactly four 3-vertices and six 6*-vertices. Hence, the vertex v is incident with two (10, 6%, 6*)-faces, or one
(10, 6%, 67)-face and one 4*-face, thus the final charge is at least 14 — 8 x % -2x1=0.

Let v be an 11-vertex. If deg;(v) > 11, then v is adjacent to at most three 7~ -vertices in H, and then the final
charge is at least 16 — 6 X % —5x 1> 0. So we may assume that deg;(v) = degy(v) = 11.

If v sends at most 1 to an incident face, then the final charge is at least 16 — 10 X % — 1 = 0. So we may assume
that v is not incident with 4*-faces and is not incident with (11,6%,6%)-faces. Since the degree of v is odd, the vertex
v cannot be incident with eleven (11,57, 6%)-faces. So v is incident with a (11,57, 57)-face f. Lemma 6 and Lemma 9
implies that the face f is a (4,5, 11)-face or (5, 5, 11)-face. Hence, the vertex v is adjacent to at most four 3-vertices. If
v is adjacent to at most three 3-vertices, then the final charge is at least 16 — 6 X % -5x % = (. Hence, the vertex v is
adjacent to exactly four 3-vertices, see Fig. 2. If fisa (5,5, 11)-face, then the final charge of vis 16 — 8 X % -3x% % > 0.

Let v be a 12*-vertex. The final charge is at least 2 deg(v) — 6 — degy(v) X % = % deg,(v) —6 > 0. |
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Fig. 2: The vertex x is a 4- or 5-vertex.
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