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Abstract

Colour degree matrix problems, also known as edge-disjoint realisation and edge packing
problems, have connections for example to discrete tomography. Necessary and sufficient
conditions are known for a demand matrix to be the colour degree matrix of an edge-
coloured forest. We will give necessary and sufficient conditions for a demand matrix to
be realisable by a graph with at most one cycle, and a polynomial time algorithm to check
these conditions.
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1. Introduction

A demand sequence (d1, d2, . . . , dn) of non-negative integers is called graphical if
there is a (simple) graph G such that vertex v has degree dv for each v ∈ [n], where
[n] := {1, . . . , n}. Necessary and sufficient conditions are known for a sequence to be
graphical [1], with corresponding polynomial time algorithms to test these conditions and
to find a realisation if there is one [2, 3].

We consider an extension involving edges coloured with c colours. Let c and n be
positive integers. An n × c demand matrix is a matrix D = (dv,q : v ∈ [n], q ∈ [c]) of
non-negative integers. We call D a colour degree matrix if there exists a c-edge coloured
graph G on n vertices, which realises D; that is, for each s ∈ [c], each vertex v ∈ [n]
has dv,q incident edges coloured q. Note that this colouring will not be proper if some
dv,q ≥ 2. Finding a realisation of a demand matrix is also known as finding an edge-disjoint
realisation [4], edge packing [5] or degree constrained edge-partitioning [6]. This problem
is closely connected to discrete tomography [6] with many applications in industry [7].

Recently it was shown that for any fixed c ≥ 2 deciding whether a demand matrix is a
colour degree matrix is NP-hard [8, 9, 10]. However, we may be interested in realisations
where the graph G has some specific structure. We will focus on colour degree matrices of
graphs with at most one cycle, but first we consider briefly the already studied case of
forests.

1.1. Colour degree matrices of forests

The following result was observed by Harary and Menon [11, 12].
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Proposition 1.1. A non-zero sequence (d1, d2, . . . , dn) of non-negative integers is the
degree sequence of a forest if and only if the total demand

∑
v dv is even and at most

2s− 2, where s is the number of v such that dv 6= 0.

The conditions are trivially necessary; and they are easily seen to be sufficient using
an inductive argument, since if a non-zero sequence satisfies the conditions then there is a
vertex v with dv = 1.

When is a demand matrix the colour degree matrix of a forest? There are simple
necessary conditions. Let c and n be positive integers, and consider an n × c demand
matrix D = (dv,q : v ∈ [n], q ∈ [c]). For each I ⊆ [c], denote the demand of v in the set I
of colours by dv,I =

∑
q∈I dv,q. Observe that (d1,I , . . . , dn,I) is the demand sequence we

obtain when we ignore colours not in I and identify colours in I. Clearly it is necessary
that each such sequence (d1,I , . . . , dn,I) is the degree sequence of a forest. These conditions
were shown to be sufficient by Bentz et al. in [6] for the case c = 2, and by Carroll and
Isaak in [13] for the general case.

Theorem 1.2. [6, 13] The demand matrix D = (dv,q : v ∈ [n], q ∈ [c]) is the colour degree
matrix of a forest if and only if, for each I ⊆ [c], the sequence (d1,I , . . . , dn,I) is the degree
sequence of a forest.

We may restate this theorem in an apparently more quantitative way. For each I ⊆ [c],
let

S(I) = SD(I) = {v : dv,I > 0} = {v : dv,q > 0 for some q ∈ I}

be the support of I, and s(I) = sD(I) = |SD(I)|; and let

t(I) = tD(I) =
∑
v∈[n]

dv,I =
∑
q∈I

∑
v∈[n]

dv,q

be the total demand of I. For a single element q ∈ [c] we will write simply S(q), s(q) and
t(q).

Theorem 1.3. [6, 13] The demand matrix D = (dv,q : v ∈ [n], q ∈ [c]) is the colour degree
matrix of a forest if and only if

1. t(q) is even for each q ∈ [c], and

2. t(I) ≤ 2s(I)− 2 for each I ⊆ [c] with t(I) > 0.

Bentz et al. showed that these conditions can be checked in polynomial time and a
realisation found if there is one for the case c = 2 [6]. See Section 4 for a polynomial time
algorithm for the general case.

1.2. Colour degree matrices of graphs with at most one cycle

The following result was given by Harary and Boesch [14].

Proposition 1.4. A sequence (d1, d2, . . . , dn) of non-negative integers is the degree se-
quence of a graph with at most one cycle if and only if the total demand

∑
v dv is even

and at most 2s (where s is the number of v such that dv 6= 0), and if the total demand is
2s > 0 then there are at least 3 vertices with demand at least 2.
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The conditions are clearly necessary; and they are easily seen to be sufficient by an
inductive argument as for forests, since if a non-zero sequence satisfies the conditions then
either each demand is 2 or there is a vertex v with dv = 1.

When is a demand matrix D the colour degree matrix of a graph with at most one
cycle? This is the question on which we focus in this paper. As with forests, there are
simple necessary conditions.

Clearly, for each I ⊆ [c], it is necessary that (d1,I , . . . , dn,I) is the degree sequence of
a graph with at most one cycle. Further, call I ⊆ [c] critical if t(I) = 2s(I) > 0. If I is
critical then in any realisation G there must be a cycle where each edge has a colour in I.
Thus another necessary condition is that there are no two disjoint critical sets of colours.
We shall see that these conditions are also sufficient.

Theorem 1.5. The demand matrix D = (dv,q : v ∈ [n], q ∈ [c]) is the colour degree
matrix of a graph with at most one cycle if and only if (a) for each I ⊆ [c] the sequence
(d1,I , . . . , dn,I) is the degree sequence of a graph with at most one cycle, and (b) there are
no two disjoint critical sets.

Let us restate Theorem 1.5, much as we restated Theorem 1.2 for forests. Theorems 1.5
and 1.6 together form our main result. We shall also consider algorithms briefly in
Section 4.

Theorem 1.6. The demand matrix D = (dv,q : v ∈ [n], q ∈ [c]) is the colour degree matrix
of a graph with at most one cycle if and only if

(U1) t(q) is even for each q ∈ [c] ,

(U2) t(I) ≤ 2s(I) for all I ⊆ [c],

(U3) each critical set I contains at least 3 vertices v with dv,I ≥ 2 , and

(U4) there are no two disjoint critical sets.

This version is the one which we shall prove, and which fits better with algorithms. We
call (U1) - (U4) the unicycle conditions. We have already seen that they are necessary.
Let us end this section by noting a condition equivalent to condition (U3).

Given a demand matrix D, for each set I of colours and each j = 1, . . . , s(I), let ∆j,I

denote the jth largest demand dv,I in I. The new condition is:

(U5) s(I) ≥ 2 and ∆1,I + ∆2,I ≤ s(I) + 1 for each critical set I ⊆ [c].

The fact that conditions (U5) and (U3) are equivalent follows immediately from:

Lemma 1.7. Let I be a critical set. Then s(I) ≥ 2 and ∆1,I + ∆2,I ≤ s(I) + 1 if and
only if there are at least 3 vertices v with dv,I ≥ 2.

Proof. If at most 2 vertices v have dv,I ≥ 2 then

2s(I) = t(I) = ∆1,I + ∆2,I + s(I)− 2,

and so ∆1,I + ∆2,I = s(I) + 2 > s(I) + 1. Conversely, if at least 3 vertices v have dv,I ≥ 2,
then s(I) ≥ 3 and

2s(I) = t(I) ≥ ∆1,I + ∆2,I + s(I)− 1,

and so ∆1,I + ∆2,I ≤ s(I) + 1.
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Observe that if condition (U3) or (U5) holds, then

∆1,I ≤ s(I)− 1, (1)

since ∆2,I ≥ 2.

We introduce some preliminary results in Section 2. We show that the unicycle
conditions are sufficient in Section 3, and we consider related algorithmic questions in
Section 4.

2. Preliminary results

In this section we discuss some preliminary results for vertices with set degrees.
Throughout the section we shall assume that D = (dv,q : v ∈ [n], q ∈ [c]) is a demand
matrix for which the unicycle conditions hold.

We denote the restriction of condition (Ui), i ∈ [5], to a specific I ⊆ [c] by (Ui)I . E.g.
for a fixed I ⊆ [c], we denote t(I) ≤ 2s(I) by (U2)I .

2.1. Forced edges

For distinct v, w ∈ [n] and q ∈ [c], we will call vw a forced edge in colour q if
t(q) = 2s(q)− 2 and dv,q + dw,q = s(q).

Lemma 2.1. Let D satisfy the unicycle conditions. Suppose that I ⊆ [c] is such that
t(I) ≤ 2s(I) − 2, and v and w are distinct and satisfy dv,I + dw,I = s(I). Then there
exists a colour q ∈ I, such that vw is a forced edge in colour q, and each x ∈ S(q) \ {v, w}
satisfies dx,q = 1.

Proof. t(I) = 2s(I)− 2 because by assumption

2s(I)− 2 ≥ t(I) ≥ dv,I + dw,I + s(I)− 2 = 2s(I)− 2.

Moreover, for every x ∈ S := S(I) \ {v, w}, dx,I = 1, and any I ′ ⊆ I has at most two
vertices with degree at least 2. Thus by condition (U3), I has no critical subsets. Suppose
that dv,q + dw,q < s(q) for all q ∈ I. Condition (U1) gives dv,q + dw,q ≤ s(q) − 2 if
v, w ∈ S(q) and dv,q +dw,q ≤ s(q)−1 otherwise; and so dv,q +dw,q ≤ |S(q)\{v, w}|. Hence

s(I) =
∑
q∈I

(dv,q + dw,q) ≤
∑
q∈I

|S(q) \ {v, w}| = |S(I) \ {v, w}| = s(I)− 2,

because each x ∈ S appears in S(q) for exactly one q ∈ I. This contradiction shows that
there exists q ∈ I such that dv,q + dw,q ≥ s(q). Now

t(q) = dv,q + dw,q + s(q)− 2 ≥ 2s(q)− 2 ≥ t(q)

(since {q} is not critical), and it follows that t(q) = 2s(q)− 2 and dv,q + dw,q = s(q), as
required.
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2.2. Forced triangles

Let D satisfy the unicycle conditions. Observe that for I ⊆ [c] and distinct x, y, z ∈
S(I), by condition (U2) we have

dx,I + dy,I + dz,I + s(I)− 3 ≤ t(I) ≤ 2s(I). (2)

Hence
dx,I + dy,I + dz,I ≤ s(I) + 3, (3)

and if equality holds then I is critical and dx,J = 1 for each x ∈ S(J) \ {u, v, w}.
For distinct u, v, w ∈ [n] and J ⊆ [c], we call uvw a forced triangle with colours J if

du,J + dv,J + dw,J = s(J) + 3, and J is minimal with this property.

Lemma 2.2. Let D satisfy the unicycle conditions. Suppose that uvw is a forced triangle
with colours J , and let ∆ = (dt,q : t ∈ S(J), q ∈ J). Then ∆ is the colour degree matrix of
a unicyclic graph.

To show this we will use the following lemma.

Lemma 2.3. Let D satisfy the unicycle conditions. Let uvw be a forced triangle with
colours J and let B = {u, v, w} and S = S(J)\B. Then for each ∅ 6= I ⊆ J , dB,I ≥ dS,I+2.

Proof. Observe that dB,J = dS,J + 6 = s(J) + 3. Suppose that ∅ 6= I ⊂ J satisfies
dB,I ≤ dS,I . Set K = J \ I (so ∅ 6= K ⊂ J). As dS,I = |S ∩ S(I)| = s(I)− |S(I) ∩B| and
|S(I) ∩B| ≥ |S(I) ∩ S(K)|,

dB,K = dB,J + dS,J ≥ s(J) + 3− dS,I

= s(J)− (s(I)− |S(I) ∩B|) + 3

≥ s(J)− s(I) + |S(I) ∩ S(K)|+ 3 = s(K) + 3

Thus by (3) dB,K = s(K) + 3, contradicting minimality of J . Hence for each ∅ 6= I ⊆ J ,
we have dB,I > dS,I and since their sum is even dB,I ≥ dS,I + 2.

Proof of Lemma 2.2. We have du,J , dv,J , dw,J ≥ 2 (since J is critical). Set B = {u, v, w} =
{x, y, z} and S = S(J) \B. Lemma 2.3 shows that |J | ≤ 3, since

6 = dB,J − dS,J =
∑
q∈J

(dB,q − dS,q) ≥ 2|J |.

Moreover dS,J = |S ∩ S(J)|, and the values DS,q for q ∈ J determine the colours required
on the triangle. If a triangle through u, v and w with the right colours can be formed,
then connecting x ∈ S to u, v or w appropriately gives the required realisation.

There are three possible cases:

1. |J | = 1, say J = {q}, and dB,q = dS,q + 6; Then the required (uni-coloured) triangle
can be formed, as du,q, dv,q, dw,q ≥ 2.
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2. |J | = 2, say J = {q, r}, and dB,q = dS,q + 4 and dB,r = dS,r + 2; We are looking
for a two-coloured triangle with two edges in q and one in r. If we have dx,q ≥ 2
and dy,q, dz,q ≥ 1, and dy,r, dz,r ≥ 1, for distinct x, y, z ∈ B, the required triangle
can be formed. There must be x ∈ B, such that dx,q ≥ 2, as dB,q ≥ 4. Let it be u.
Suppose there is x ∈ B, x 6= u, such that dx,q = 0, then d{y,z},q = dS,q + 4 ≥ s(q) + 2,
contradicting condition (U5). Thus dx,q ≥ 1 for all x ∈ B. Suppose now that
dx,r = 0. Then

d{y,z},r = dB,r = dS,r + 2 = s(r) + 2− |B ∩ S(r)| = s(r). (4)

But dy,r, dz,r < s(r) by Eq. 1, so dy,r, dz,r ≥ 1. Thus we can form the required
triangle, as any x ∈ B for which dx,r = 0, must have dx,q ≥ 2, as dx,J ≥ 2,∀x ∈ B.

3. |J | = 3, say J = {q, r, s} and dB,q = dS,q + 2, dB,r = dS,r + 2 and dB,s = dS,s + 2; We
are looking for a three-coloured triangle with colours q, r, and s. We need for all
i ∈ {q, r, s} that there exists a distinct pair x, y ∈ B such that dx,i, dy,i ≥ 1. If there
is x ∈ B and i ∈ J such that dx,i = 0, then by Eq. 4, dy,i, dz,i ≥ 1. If dx,i = dx,j = 0,
for i 6= j and i, j ∈ J , then {i, j} is cycle critical

t({i, j}) = s(i) + s(j) + dS,{i,j} = s(i) + s(j) + s({i, j})− 2 = 2s({i, j}).

But then by condition (U3), u, v, w ∈ S({i, j}) contradicting dx,i = dx,j = 0 for
some x ∈ B; and so every x ∈ B misses at most one colour. Moreover these colours
are distinct. Consider the bipartite graph with parts B and J (each of size 3) and
an edge xj whenever dx,j ≥ 1. The edges missing form a matching, so the edges
present must contain a 6-cycle, which specifies a coloured triangle as required.

2.3. Sufficiency when each total degree is two

Lemma 2.4. Let D = (dv,q : q ∈ [c], v ∈ [n]) satisfy the unicycle conditions, and suppose
that dv,[c] = 2,∀v ∈ [n]. Then D can be realised by a single cycle through all vertices.

Proof. Let each demand for a colour at a vertex v ∈ [n] correspond to a half-edge of this
colour. We will try to find a realisation by pairing the half-edges. There is an even number
t(q) of half-edges of each colour q by condition (U1). Arbitrarily pairing half-edges gives
a (not necessarily simple) realisation of D, which consists of a disjoint union of cycles.
Consider a realisation G with a minimal number of cycles and suppose there are at least
two cycles. If two cycles have a colour in common on edges x1y1, x2y2 say, then switching
these edges to x1x2, y1y2 gives a realisation of D with fewer cycles. If a cycle C has no
common colours with G \C, then the colours on C and the remaining colours are disjoint
critical sets, contradicting condition (U4). Thus G is a single (simple) cycle through all
vertices.

3. The unicycle conditions are sufficient

We will consider a counterexample D = (dv,q : v ∈ [n], q ∈ [c]), which is minimal with
respect to n. In a series of claims we will show more and more properties of D, and
eventually obtain a contradiction.
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The main steps are as follows. First we show that the full colour set [c] is the unique
critical set. D. Lemma 2.2 then implies that there is no forced triangle. By Lemma 2.4
there is a leaf v1 ∈ [n], which only has demand for colour 1 say. We fix v1: the rest of the
proof involves looking for a suitable partner w ∈ S(1) for v1, so that we can make v1w
an edge with colour 1 in a unicyclic realisation of D. We consider D̃ = D̃(w), which is
D with v1 removed and dw,1 reduced by one. If the unicycle conditions hold in D̃, then
a unicyclic realisation of D̃ exists by minimality of D. This realisation will extend to a
realisation of D, by appending v1 to w with colour 1.

We see quickly that conditions (U1) and (U4) must hold in D̃. Further we see that, if
w or I satisfy some extra conditions then (U2)I and (U3)I hold in D̃.

There are some sets I ( [c], that we shall call dangerous, for which we need to be
careful how we pick w. We see that s(1) = 4, and for each dangerous set I, we consider
the set W (I) = S(1) ∩ S(I \ 1) of ‘good’ vertices. We finish the proof by showing that for
any two dangerous sets I and J , we have W (I) = W (J) (using the fact there is no forced
triangle), and picking w from this set yields the desired contradiction.

Proof of Theorem 1.6. Suppose the conditions are not sufficient and consider a counterex-
ample D = (dv,q : v ∈ [n], q ∈ [c]), for which conditions (U1)-(U4) hold but there is no
realisation as required, such that n is minimal.

There must exist a critical I ⊆ [c], or D would be the degree sequence of a forest by
Theorem 1.3. By condition (U3), n ≥ 3.

Claim 1. [c] is the unique critical set in D.

Proof. Suppose I ( [c] is a critical set. We will show that a unicyclic realisation can be
found.

Set Ic = [c] \ I. Note that t(Ic) ≥ 2, s(Ic) ≥ 2; and s(I) ≤ n− 1, since s(I) = n

2n = t([c]) = t(I) + t(Ic) ≥ 2s(I) + s(Ic) ≥ 2s(I) + 2.

Let D1 = (dv,q : v ∈ S(I), q ∈ I) and let a be a new vertex with degrees da,q =∑
v∈S(I) dv,q, for each q ∈ Ic. Let D2 = (dv,q : v ∈ ([n] \ S(I)) ∪ {a}, q ∈ Ic).

By assumption conditions (U1) - (U4) hold for D1, so by minimality of D there exists
a unicyclic realisation G1 of D1. For all J ⊆ Ic, let s2(J) = sD2(J) and t2(J) = tD2(J).
Observe that t(J) = t2(J). If for all J ⊆ Ic, t2(J) ≤ 2s2(J)− 2, a forest realisation T2 of
D2 exists by Theorem 1.3. A unicyclic realisation of D can then be found by replacing a
by G1.

Let J ⊆ Ic. If S(J) ∩ S(I) = ∅, t(J) = t2(J) and s(J) = s2(J). By condition (U4), J
is not critical because it is disjoint from I. If S = S(J)∩S(I) 6= ∅, s2(J) = s(J)−|S|+ 1.
Suppose t2(J) ≥ 2s2(J), then since s(I ∪ J) = s(I) + s(J)− |S|, we have

t(I ∪ J) = t(I) + t2(J) ≥ 2s(I) + 2s2(J) = 2s(I) + 2s(J)− 2|S|+ 2 = 2s(I ∪ J) + 2.

Thus t2(J) ≤ 2s2(J)− 2, as required.

Claim 2. There is no forced triangle.

Proof. There can be no forced triangle in I ( [c], as [c] is the only critical set by Claim 1.
By Lemma 2.2 a forced triangle in [c] can be realised.
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Claim 3. There is a leaf, that is, a vertex v ∈ [n] with dv,[c] = 1.

Proof. If the minimal total degree is 2, then condition (U2) implies all total degrees are
exactly 2 and D can be realised by a single cycle through all vertices by Lemma 2.4.

Fix a leaf v1. We may suppose without loss of generality dv1,1 = 1 and dv1,q = 0 for all
q 6= 1 and S(1) \ {v1} 6= ∅. We aim to find a suitable partner w for v1, such that we can
make v1w an edge with colour 1 in a unicyclic realisation of D.

Given w 6= v1, w ∈ S(1), let D̃ = D̃(w) be obtained from D by deleting v and
decreasing dw,1 by 1. Note that D̃ is a demand matrix on ñ = n − 1 vertices, so if the
unicycle conditions hold for D̃, then a unicyclic realisation G̃ of D̃ can be found by
minimality of D. This can be extended to a realisation of D by appending v1 to w with
colour 1.

Claim 4. Let w 6= v1 be in S(1). Then (U1) and (U4) hold in D̃.

Proof. It is clear that (U1) holds. If 1 6∈ I then t̃(I) = t(I) and s̃(I) = s(I), so if I is not
critical in D then I is not critical in D̃. Thus any critical set in D̃ must contain 1, hence
(U4) holds.

Note also that 1 6∈ I then (U2)I and (U3)I must hold, since (as noted above) t̃(I) = t(I)
and s̃(I) = s(I). Therefore by Claim 4 it is enough to show that, for a suitable choice of
w 6= v1 in S(1), for all I ⊆ [c] with 1 ∈ I,

(U2)I and (U3)I hold in D̃. (5)

Claim 5. Let w 6= v1 be in S(1), let I ⊆ [c] contain 1, and suppose that t(I) < 2s(I)− 2.
Then (5) holds.

Proof. Since t(I) ≤ 2s(I)− 4 by (U1), and s̃(I) ≥ s(I)− 2,

t̃(I) = t(I)− 2 ≤ 2s(I)− 4− 2 ≤ 2s̃(I)− 2.

Thus I is not critical for D̃, and (5) holds.

Claim 6. Let w 6= v1 be in S(1), let I ⊆ [c] contain 1, and suppose that w ∈ S̃(I). Then
(5) holds.

Proof. Consider first the case I ( [c]. Then I is not critical (since [c] is the unique critical
set), and s̃(I) = s(I)− 1. Hence

t̃(I) = t(I)− 2 ≤ 2s(I)− 2− 2 = 2s̃(I)− 2.

Thus I is not critical for D̃, and (5) holds.
Now consider the case I = [c]. Note that s([c]) = n and s̃([c]) = ñ. Then

t̃([c]) = t([c])− 2 = 2n− 2 = 2ñ.

Also, ∆1,[c] + ∆2,[c] + ∆3,[c] ≤ n + 2, because there is no forced triangle by Claim 2, and
and ∆3,[c] ≥ 2 by (U3). Therefore

∆̃1,[c] + ∆̃2,[c] ≤ ∆1,[c] + ∆2,[c] ≤ n = ñ + 1.

Thus (U5)I holds, and so also (5) holds.
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It now follows that dx,1 = 1 for each x ∈ S(1): for otherwise we could pick w with
dw,1 ≥ 2 and then w ∈ S̃(I) for each I ⊆ [c] that contains 1. Also, observe from the last
claim that, if we pick w from S(1) ∩ S([c] \ 1) and I = [c], then (5) holds. We want to
pick such a w.

Claim 7. S(1) ∩ S([c] \ 1) 6= ∅.

Proof. If S(1) ∩ S([c] \ 1) = ∅, then since s(1) ≥ 2 and [c] \ 1 is not critical,

2n = t([c]) = t(1) + t([c] \ 1) ≤ s(1) + 2s([c] \ 1)− 2 = 2n− s(1)− 2 ≤ 2n− 4,

which is a contradiction.

Claim 8. s(1) ≥ 4.

Proof. Note that s(1) is even. Suppose s(1) = 2. Then t(1) = 2, s([c] \ 1) ≤ s([c])− 1 =
n− 1, and 2s([c] \ 1) ≥ t([c] \ 1) = t([c])− 2 = 2n− 2 ≥ 2s([c] \ 1). So [c] \ 1 is critical,
contradicting Claim 1. Thus s(1) ≥ 4.

We say that I ⊆ [c] is dangerous if 1 ∈ I ( [c] and

∆1,I + ∆2,I = s(I).

Claim 9. Let w 6= v1 be in S(1), let 1 ∈ I ( [c], and suppose that I is not dangerous.
Then (5) holds.

Proof. By Claims 5 and 6 we may assume that t(I) = 2s(I)− 2 and w 6∈ S̃(I). Thus

t̃(I) = t(I)− 2 = 2s(I)− 4 = s̃(I),

and so (U2)I holds in D̃. Further, 1 ∈ I ( [c] but I is not dangerous, so

∆̃1,I + ∆̃2,I ≤ ∆1,I + ∆2,I ≤ s(I)− 1 = s̃(I) + 1.

Thus (U5)I holds, and so also (5) holds.

We now see that there must be a dangerous set; since by Claim 7 we can choose
w ∈ S(1)∩ S([c] \ 1), and then (5) holds for each I ⊆ [c] which is not dangerous. For each
dangerous I ⊆ [c], let W (I) = S(1) ∩ S(I \ 1) be the set of good vertices for I. Note that
v1 ∈ S(1) \ S(I \ 1).

Claim 10. s(I) = 4; and for each dangerous set I, W (I) consists of the two vertices x
with dx,I ≥ 2.

Proof. Let I be dangerous and let x1 and x2 be distinct vertices with dx1,I + dx2,I =
∆1,I + ∆2,I = s(I). Then dy,I = 1 for each y ∈ S(I) \ {x1, x2}, and so W (I) ⊆ {x1, x2}.
Let I ′ = I \ 1. Then I ′ is not critical and thus dx1,I′ + dx2,I′ ≤ s(I ′). Now

2s(I)− 2 = t(I) = dx1,I + dx2,I + s(I)− 2 ≤ dx1,1 + dx2,1 + s(I ′) + s(I)− 2.

Hence

2 ≥ dx1,1 + dx2,1 ≥ s(I)− s(I ′) = s(1)− |S(1) ∩ {x1, x2}| ≥ s(1)− 2 ≥ 2.

Thus s(1) = 4; and dx1,1 = dx2,1 = 1, so W (I) = {x1, x2}.
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Claim 11. Let I and J be dangerous. Then W (I) = W (J).

Proof. Recall that s(1) = 4 and v1 ∈ S(1), and note that v1 6∈ W (I)∪W (J). Suppose that
W (I) 6= W (J). Then W (I) \W (J), W (I) ∩W (J) and W (J) \W (I) are each singletons,
say {x1}, {x2} and {x3}; and then S(1) = {x1, x2, x3, v1}. Since I is not critical, it follows
from Lemma 2.1 that x1x2 is a forced edge in colour q, for some q ∈ I; and q 6= 1, since
dx1,1 + dx2,1 = 2 < 4 = s(1). Similarly, x1x3 is a forced edge in some colour r 6= 1, r ∈ J .
Further, x1 6∈ S(J \ {1}), thus q 6= r. Let K = {1, q, r}, then

s(K) ≤ |S(q) \ S(1)|+ |S(r) \ S(1)|+ s(1) = s(q)− 2 + s(r)− 2 + 4 = s(q) + s(r).

Also, since dx1,q + dx2,q = s(q), dx2,r + dx3,r = s(r) and dx1,1 + dx2,1 + dx3,1 = 3, we have

dx1,K + dx2,K + dx3,K ≥ s(q) + s(r) + 3 ≥ s(K) + 3 :

but now we have a forced triangle, contradicting Claim 2.

Let W ∗ be the common set W (I) of good vertices for each dangerous set I. We may
at last complete the proof of Theorem 1.6 by choosing w ∈ W ∗. For now, w ∈ S̃(I) for
each dangerous set I. Hence (5) holds for each dangerous set I by Claim 6, and we have
already seen that it holds for each non-dangerous set I.

4. Checking the unicycle conditions

In this section we sketch a polynomial time algorithm to check the unicycle conditions
of Theorem 1.6. Note that if c is a constant then this is easy to do in linear time, but we
need to be careful for general c. Finally we sketch how a realisation can be found.

Suppose we are given a demand matrix D = (dv,q : v ∈ [n], q ∈ [c]), where dv,[c] > 0 for
each v ∈ [n] and t(q) > 0 for each q ∈ [c]. We may assume that c ≤ n, as otherwise D
would not satisfy condition (U2), and indeed we may assume that t([c]) ≤ 2n. so c = O(n).
Clearly we can check condition (U1) quickly.

4.1. Checking condition (U2)

We shall construct a bipartite graph G with parts U and V , such that G has a matching
covering U if and only if condition (U2) holds for D.

For each q ∈ [c], let P (q) = {qi : i = 1, . . . , t(q)/2} (so we are creating an element
for every two times colour q is demanded). For each I ⊆ [c], let C(I) =

⋃
q∈I P (q). Let

U = C([c]) (so that |U | = t([c])/2) and let V = [n], and let qi and v be adjacent in G
whenever v ∈ S(q). See Fig. 1 for an example.

There is a matching in G covering U if and only if Hall’s condition holds. Here Hall’s
condition is that for each U ′ ⊆ U , the total number of neighbours in V of the qi ∈ U ′

is at least |U ′|. But it is not hard to see that we need to consider only sets U ′ made of
complete sets P (q), and so Hall’s condition is equivalent to the condition that for each
I ⊆ [c] we have s(I) ≥ t(I)/2 – in other words that condition (U2) holds.

Finally, note that G has at most 2n vertices, and so we can check condition (U2) in
time O(n2.5), by using the Hopcroft–Karp algorithm [15].
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P (s)

P (q)

U V

t

u

v

w

[c] = {s, q}
[n] = {t, u, v, w}

D =

s q
t 2 0
u 1 1
v 0 2
w 1 1

Figure 1: Example of a demand matrix D and corresponding graph G.

4.2. Checking conditions (U3) and (U4)

Suppose that (U2) holds. Let ∅ 6= I ⊆ [c]. We want a subroutine that given q ∈ I,
checks whether q appears in a critical subset of I. Form a bipartite graph G′ by starting
with the induced subgraph of G with parts C(I) and V and adding a vertex q0 to C(I),
adjacent to each v ∈ S(q). Then Hall’s condition fails for G′ if and only if some q ∈ K ⊆ I
is critical. This subroutine takes O(n2.5) time.

We use the subroutine as follows. First we use it for all q ∈ [c] and [c]. Let

J = {q : [c] contains a critical set containing q}.

If J = ∅, then all the conditions hold and we are done . Indeed, at this stage, our algorithm
has checked whether the acyclic conditions in Theorem 1.3 hold, in time O(n3.5).

So assume that there is a critical set. Now we run the subroutine on each of the sets
J \ {q} for each r ∈ J \ q, to determine the set

F = {q ∈ [c] : [c] \ {q} contains no critical set} = {q ∈ [c] : q is in each critical set}.

If (U4) fails, then clearly F = ∅. If (U4) holds, then there is a unique minimal critical
set I∗ (since the intersection of two critical sets is critical) and so F = I∗. Thus if F = ∅
we know that (U4) fails, and we are done. So assume that F 6= ∅, and then (U4) holds
and F = I∗. But now we may easily check (U3), since we need consider only F .

We have now seen how to check all the unicyclic conditions, in total time O(n4.5).

4.3. Finding a realisation

Suppose that D satisfies the unicyclic conditions. If each degree dv,[c] = 2 then the
proof of Lemma 2.4 indicates how to find a unicyclic realisation in time O(n2). Let v
be a leaf, with say dv,q = dv,[c] = 1. We check the conditions for D̃(w) as in the proof of
Theorem 1.6, for all possible neighbours w ∈ S(q) of v, and fix vw in colour q if they hold.
There are at most s(q)− 1 ≤ n calls to check the conditions, so arguing crudely that gives
an overall complexity of O(n6.5).
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