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Abstract. A path P = v1, . . . , vt is a triangle path (respectively, mono-

phonic path) of G if no edges exist joining vertices vi and vj of P such
that |j − i| > 2; (respectively, |j − i| > 1). A set of vertices S is convex

in the triangle path convexity (respectively, monophonic convexity) of
G if the vertices of every triangle path (respectively, monophonic path)
joining two vertices of S are in S. The cardinality of a maximum proper
convex set of G is the convexity number of G and the cardinality of a
minimum set of vertices whose convex hull is V (G) is the hull number of

G. Our main results are polynomial time algorithms for determining the
convexity number and the hull number of a graph in the triangle path
convexity.

Keywords: Convexity number, graph convexity, hull number, triangle
path convexity

1 Introduction

Given a finite set X , a family C of subsets of X is a convexity on X if ∅, X ∈ C
and C is closed under intersections [22]. For every set S, we say that S is a
convex set of C if S ∈ C and a concave set of C if X \ S ∈ C. The convex

hull of S ⊆ X in C, 〈S〉C , is the minimum convex set of C containing S. Many
convexities can be defined by a 2-interval operator. A 2-interval operator is a
function I : X ×X → 2X satisfying a, b ∈ I(a, b) and I(a, b) = I(b, a). Then, we
say that a convexity C is induced by an interval operator I if for every convex set
C ∈ C and elements u, v ∈ C, it holds I(u, v) ⊆ C. Hence, we can also denote
the convex hull of S by 〈S〉I . This is the case of the most well studied graph
convexities, in which the interval operator is generally defined using a family of
paths P . More specifically, the interval operator is defined as I(u, v) = {w : w
belongs to some path of P joining u to v}. Sometimes, it will be useful to know
the union of the intervals of all pairs of a set. Then, we define the interval of a
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set S as [S]I =
⋃

u,v∈S

I(u, v) if |S| ≥ 2; and [S]I = S otherwise. If [S]I = X we

say that S is an interval set of C and if 〈S〉I = X that S is a hull set of C.
In this work, we present some results on the triangle path [5] convexity. Recall

that a path P = v1, . . . , vt is a triangle path of a graph G if no edges exist in
G joining pairs of vertices vi and vj of P such that |j − i| > 2. Then a set of
vertices S of a graph G is convex in the triangle path convexity, or t-convex, if
the vertices of every triangle path of G, joining two vertices of S, are contained
in S.

Other well-known graph convexities are the geodetic convexity [15,20], the
monophonic convexiy [12,13], and the P3 convexity [11,17], where the set of
paths considered in the definition of the interval operator are the “geodetic
paths”, “minimal paths”, and “paths of order three”, respectively. For concise-
ness, sometimes we will use the corresponding symbols t (triangle path convex-
ity), m (monophnic convexity), g (geodetic convexity), and P3 (P3 convexity) for
indicating the associated convexity instead of its entire name. For example, we
will write “t-hull set” when refering to a “hull set in the triangle path convexity”.
Further, we will indicate the graph for which the convexity is associated in the
cases that it is not obvious. For instance, if S is a set of vertices of a graph G
that is subgraph of G′, then [S]Gg is the interval of S in the geodetic convexity
of G.

The classical convexity invariants Carathéodory, Helly, and Radon num-
bers have already been determined for the triangle path [5] and the mono-
phonic [12,18] convexities. Our results are concerned on the following well known
graph convexity problems:

Problem 1 : To decide whether a set of vertices is convex;
Problem 2 : To compute the interval of a set of vertices;
Problem 3 : To compute the convex hull of a set of vertices;
Problem 4 : To find a maximum proper convex set of a graph (convexity number

of the graph);
Problem 5 : To find a minimum interval set of the graph (interval number of the

graph); and
Problem 6 : To find a minimum hull set of the graph (hull number of the graph).

All these six problems have already been considered in the geodetic [1,8,14,16],
monophonic [7,10], and P3 [4,2] convexities.

The text is organized as follows. The results contained in Sections 2 to 5 are
relatively to the triangle path convexity. More specifically, in Section 2 we present
some definitions, notations, and observe that some results for Problems 2 and 5
can be obtained using known results. In Section 3, we present a characterization
of convex sets that leads to a polynomial time algorithm for solving Problems 1
and 3 for general graphs. In Section 4, we present a polynomial time algorithm
for determining the convexity number of a graph, solving Problem 4 for general
graphs. It is worth to observe that, among the considered convexities, this is the
only one in which this problem can be solved in polynomial time. In Section 5,
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we present a characterization of minimum hull sets, Problem 6, which leads to
a polynomial time algorithm for finding such a set.

2 Preliminaries

We begin this section giving some useful definitions. For a natural number k
denote {1, . . . , k} by [k]. We consider finite, simple, and undirected graphs. For
a graph G, its vertex and edge sets are denoted V (G) and E(G), respectively,
whose cardinalities are the order and the size of G. For S ⊆ V (G), denote by
G − S the subgraph obtained by the deletion of the vertices of S and by G[S]
the subgraph of G induced by S. If every two vertices of S are adjacent, then
S is a clique of G; and if every two vertices are not adjacent, then S is an
independent set of G. A graph is bipartite if its vertex set can be partitioned into
two independent sets. We say that S is a separator of G if there are non-empty
sets A,B ⊂ V (G)\S such that every path in G, between some a ∈ A and b ∈ B,
contains a vertex in S. And that S is a minimal separator for v, w ∈ V (G)
if S, but no proper subset of S, separates v and w in G. We say that S is a
relative minimal separator for G if there are vertices v, w ∈ V (G) such that S
is a minimal separator for v and w. Separators that are cliques are called clique

separators. If S is a clique separator of G, for every connected component H
of G − S, the subgraph G[V (H) ∪ S] is a S-component of G. We say that G
is reducible if it contains a clique separator, otherwise it is a prime. A maximal

prime subgraph of G, or mp-subgraph of G, is a maximal induced subgraph of G
that is a prime.

Consider an ordering of the mp-subgraphs F1, . . . , Ft of G and then de-
fine Ri = V (Fi) ∩ (V (F1) ∪ . . . ∪ V (Fi−1)), for i ∈ [t]. This ordering of the
mp-subgraphs is a D-ordering if, for all i ∈ {2, . . . , t}, there is a p < t with
Rt ⊆ V (Fp). According to Theorem 2.5 of [19], there is a D-ordering for the
mp-subgraphs of any graph. Further, Proposition 2.4 of [19] says that every per-
mutation of the mp-subgraphs of G that is a D-ordering has the same family of
Ri sets. Then, we can define R(G) = {R2 ∪ . . .∪Rk} and R(G) = R2 ∪ . . .∪Rk,
taking as basis any D-ordering of the mp-subgraphs of G. The following result
contains important properties of the members of R(G).

Theorem 1. [19] A set C of vertices of a graph G is a clique and a relative

minimal separator for G if and only if C ∈ R(G).

Observe that the convex hull of a set can be obtained by applying the interval
operator that induces the considered convexity. The procedure consists simply of
testing if S is a convex set and, for the negative answer, since there exists some
pair of elements u, v ∈ S such that its inverval is not contained in S, redefine
S as S ∪ I(u, v) and reapply until a convex set be obtained. This process will
eventually converge because we are considering the ground set is finite.

Since every minimum path is an induced path, and the latter is also a triangle
path, the following relation holds for every set of vertices S of a graph [S]g ⊆
[S]m ⊆ [S]t and, consequently, 〈S〉g ⊆ 〈S〉m ⊆ 〈S〉t, where g,m, and t stand
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for the interval operators inducing the geodetic, monophonic, and triangle path
convexities, respectively. Further, note that the monophonic and the triangle
path convexites coincide on bipartite graphs. This fact allows us to use known
results to conclude that in the triangle path convexity Problems 2 and 5 are
NP-complete even for bipartite graphs.

Theorem 2. [7] Let u, v, w be vertices of a bipartite graph G. The problem of

dedicing if w belongs to the interval of {u, v} in the monophonic convexity is

NP-complete.

Then, the decision version of Problem 2 is NP-complete in the triangle path
convexity even for bipartite graphs and sets of size two.

Corollary 1. Let u, v, w be vertices of a bipartite graph G. The problem of dedic-

ing if w belongs to the interval of {u, v} in the triangle path convexity is NP-

complete.

Corollary 1 has as consequence that the algorithm proposed above for com-
puting the convex hull of a set using the interval operator, can not be used
efficiently for the triangle path convexity, unless P = NP , as can be done for
other convexities, like geodetic and P3 convexities, in which the interval of a set
can be computed in polynomial time even for general graphs. However, in the
next section, we show how to compute the convex hull of a set in the triangle
path convexity in polynomial time.

Theorem 3. [7] Let G be a bipartite graph. The problem of dedicing if there

exists a set S such that [S]m = V (G) for |S| ≤ 2 is NP-complete.

Then, the decision version of Problem 5 is NP-complete in the triangle path
convexity even for bipartite graphs and any fixed integer greater than or equal
to two.

Corollary 2. Let G be a bipartite graph. The problem of dedicing if there exists

a set S such that [S]t = V (G) for |S| ≤ 2 is NP-complete.

3 Convex sets and convex hulls

This section has two parts, one concerned to general graphs and other to prime
graphs. The first one contains characterization of t-convex sets which leads to
polynomial time algorithms for Problems 1 and 3 defined in Section 1. In the
second one, these results are adapted for prime graphs and will be very useful
in next sections.

3.1 General graphs

We begin presenting a characterization of t-convex sets.
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Theorem 4. A set of vertices S of a graph G is t-convex if and only if there is no

vertex outside of S having two neighbours in S and there are no two non-adjacent

vertices of S having neighbours in a same connected component of G− S.

We observe that the above result can be rewritten using characterizations
of m-convex and P3-convex sets. We recall the characterizations of such convex
sets below.

Theorem 5. [10] A set of vertices S of a graph G is m-convex if and only if there

are no two non-adjacent vertices of S having neighbours in a same connected

component of G− S. Further, one can decide in O(nm) if S is m-convex.

It is clear from the definition that a set of vertices S of a graph G is P3-
convex if and only if there is no vertex outside of S having two neighbours in S.
Further, one can decide in O(n2) if S is P3-convex. Using this observation and
the last two results we have a characterization of t-convex sets which allows the
recognition of such sets in polynomial time.

Corollary 3. A set of vertices S of a graph G is t-convex if and only if S is

m-convex and P3-convex. Further, one can decide in O(nm) if S is t-convex.

Now, we show how to use this result for computing the t-convex hull of a set
in polynomial time.

Theorem 6. Let G be a graph and S ⊆ V (G). The t-convex hull of S can be

computed in O(n2m) steps.

Proof. Using the algorithm that follows directly of Corollary 3, we test if S is
a t-convex set in time O(nm). In the affirmative case, we are done. Otherwise,
the test returns either a vertex v 6∈ S such that v has two neighbours in S or a
connected component C and two vertices u, v ∈ X such that both vertices have
neighbours in V (C). In the former case, redefine S as S ∪{v}. It the latter case,
since any shortest path of an induced subgraph of G is an induced path of G, we
look for a shortest path from u to v in the induced subgraph G[V (C) ∪ {u, v}].
Such induced subgraph and path P can be found in time O(n +m) [6]. Then,
redefine S as S∪V (P ). Repeat this process until a t-convex set be obtained. It is
clear that the number of iterations is less than n. Hence, the overall complexity
of this algorithm is O(n2m).

We remark that in [5] there exists a characterization of the t-convex hull of
a set of vertices (Theorem 2.1 of [5]). However, no polynomial time algorithm to
compute it seems to follow.

3.2 Prime graphs

The special case of prime graphs turns out interesting since its solution is easier
for these problems and, as we will see in next sections, can be used for solving
the general case. Since every induced path is a triangle path, the following result
also holds for the triangle path convexity.
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Theorem 7. [10] Every pair of non-adjacent vertices is an m-hull set of a prime

graph.

Corollary 4. Every pair of non-adjacent vertices is a t-hull set of a prime

graph.

Using Theorem 4 and Corollary 4 we can charactize t-convex sets of prime
graphs in a simpler way.

Theorem 8. Let G be a prime graph and S ⊂ V (G). Then, S is a t-convex set

if and only if S is a clique such that every vertex outside S has at most one

neighbour in S.

Proof. Let G be a prime graph and S ⊂ V (G) a t-convex set. First, suppose that
S is not a clique and let u, v ∈ S such that uv 6∈ E(G). Then, by Corollary 4,
{u, v} is a hull set of G, a contradiction. Hence S is a clique. Now, if some vertex
outside S had two or more neighbours in S, by Theorem 4, S would not be a
t-convex set. Completing the proof of the sufficiency. The necessity is direct from
Theorem 4.

This result has interesting consequences.

Corollary 5. If G is a prime graph, then any two t-convex sets of G share at

most one vertex.

These two results can be used to show an upper bound on the number of big
non-trivial t-convex sets.

Corollary 6. If G is a prime graph or order n, then the number of non-trivial

t-convex sets of G with at least three vertices is less then n.

Corollary 6 implies that the number of t-convex sets of a prime graph G of
order n is upper bounded by 2n+1, since every vertex is a t-convex set and the
sets ∅ are V (G) are t-convex. Next, we present a characterization of t-convex
hulls of prime graphs.

Lemma 1. Let S be a set of vertices of a prime graph G. Then, 〈S〉t = [S]t =
[S]P3

or 〈S〉t = V (G).

Proof. Let S be a set of vertices of a prime graph G. If S is not a clique, by
Corollary 4, 〈S〉t = V (G). Then, assume that S is a clique. Therefore, using
Theorem 8, we conclude that [S]t = [S]P3

= S ∪{u : u 6∈ S and |N(u)∩S| ≥ 2}.
Again, if [S]t is not a clique, then 〈S〉t = V (G). Hence, assume that [S]t is a
clique. If [S]t is t-convex set, we are done. Otherwise, there is a vertex u 6∈ [S]t
having two neighbours in [S]t. This means that u ∈ 〈S〉t and u is not adjacent
to some vertex of v ∈ S. Since {u, v} is a t-hull set of G, we have 〈S〉t = V (G).

Corollary 7. Let S be a set of vertices of a prime graph G of order n. Then,
one can test if S is t-convex or compute its t-convex hull in O(n2).
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Algorithm 1: Enumerating all t-convex sets of a prime graph.

input: A prime graph G

1 C ← {∅, V (G)} ∪ {{u} : u ∈ V (G)},
2 H ← E(G)
3 while H 6= ∅ do

4 uv ← some element of H
5 S ← {u, v} ∪ {w : u, v ∈ N(w)}
6 if S is t-convex then

7 C ← C ∪ S

8 remove from H the edges of G[S]

9 return C

Using these results, one can enumerate all t-convex sets of a prime graph
efficiently, as shown in the following algorithm.

A direct analysis of Algorithm 1 runned on a prime graph of order n and size
m leads to a time complexity equals O(n2m), because the loop of lines 3 to 8 is
repeated m times, line 5 has complexity O(n), and line 6 can be done in O(n2)
time (Corollary 7).

4 Convexity number

In this section we present an algorithm for finding a maximum proper t-convex
set of any graph. This is an unexpected result, since this parameter is NP-
complete for general graphs in the monophonic convexity [10], for bipartite
graphs in the geodetic convexity [9], and for split graphs in the P3 convexity [3].
We begin showing relating t-convex sets and mp-sugraphs. Given a t-convex set
S and an mp-subgraph F of a graph G, the set S∩V (F ) can be or not a t-convex
set of G. The following result shows that such set is a t-convex set of F .

Lemma 2. Let S be a t-convex set of a graph G and F an mp-subgraph of G.

Then V (F ) ∩ S is a t-convex set of F .

Proof. Let S, F, and G as in the statement of the corollary. Denote C = V (F )∩S.
If C = V (F ) or C = ∅, we are done. Then, suppose for contradiction that
∅ ⊂ C ⊂ V (F ) and that C is not a t-convex set of F . This implies that there is
a triangle path P of F , not contained in C, joining two vertices of C. It is clear
that P is also an induced path of G. This implies that S is not a t-convex set of
G, a contradiction.

For every mp-subgraph of a graph, we define a function on its t-convex sets
and show how to combine them to obtain the t-convexity number of the graph.
In the following definitions, denote by F(G) the family of mp-subgraphs of G
and F ∈ F(G).

– For every C ∈ Ct(F ), denote F (C) = C union the vertices of the connected
components of G− C not containing V (F ) \C;
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– c(G) = max{max{{|F (C)| : C ∈ Ct(F ) \ {V (F )}} : F ∈ F(G)}}.

Theorem 9. The t-convexity number of a connected graph G is c(G).

Proof. Let F be an mp-subgraph of a graph G and C a t-convex set of F such
that c(G) = |F (C)|. We have to show that S = F (C) is a t-convex set of G.
Observe that, by the construction of S, the only vertices of S that can have
neighbours outside S are the vertices in C. Since C is a t-convex set of F , by
Theorem 8, C is a clique. Therefore, there are no two non-adjacent vertices of
S having neighbours in a same connected component of G− S. Theorem 8 also
says that every vertex outside C has at most one neighbour in C. Then, using
Theorem 4, we conclude that S is a t-convex set of G.

Conversely, let S be a maximum t-convex set of G. We will show that c(G) ≥
|S|. If |S| = 1, it is trivial. Then, assume |S| ≥ 2. Since S ⊂ V (G) and G is
connected, there is an mp-subgraph F of G such that |2| ≤ |S∩V (F )| < |V (F )|.
Denote C = S ∩ V (F ). By Lemma 2, C is a t-convex set of F .

We claim that there is no other mp-subgraph with this property. Then,
suppose for contradiction that F ′ is an mp-subgraph different of F such that
|2| ≤ |S ∩ V (F ′)| < |V (F ′)|. By Theorem 1, we can consider F = Fi, F

′ = Fj ,
i > j. Then F and F ′ belong to distinct B-components of G, for B = Ri. Fur-
thermore, B ∩ S 6= ∅. If B \ S = ∅, the union of S with the vertices of the
B-component containing F ′ that are not in S would be a t-convex set of G with
more vertices than S. Therefore B \ S 6= ∅. This implies that |B ∩ S| = 1,
because the fact that S is t-convex implies that if S contains two vertices of
some clique, it contains all vertices of that clique. Write {w} = B ∩ S. By the
choice of B, w has neighbours outside F . Let F ′′ be the mp-subgraph containing
w that appears in the same B-component that F ′. Observe that F ′′ satisfies
|2| ≤ |S∩V (F ′′)| < |V (F ′′)| because, otherwise, the union of S with the vertices
of the B-component containing F ′ that are not in S would be a t-convex set of
G with more vertices than S. This also implies that there is u ∈ (B \S)∩V (F ′′).
Denote C′′ = S ∩ V (F ′′).

Now, observe that, by the choice of F and F ′′, there is a vertex v ∈ C\V (F ′′)
and a vertex v′′ ∈ C′′ \ V (F ), both different of w. Since F and F ′′ are mp-
subgraphs, there is a triangle path P from v to u in F − (C \ {v}) and a triangle
path P ′′ from v′′ to u in F ′′ − (C \ {v′′}). It is clear that these two paths have
only u in common and that their concatenation form a triangle path joining two
non-adjacent vertices of S containing vertices outside S, which is a contradiction,
then the claim holds.

To conclude the proof it suffices to observe that S is a subset of F (C).

The algorithm for determining the t-convexity number of a general graph,
Algorithm 2, follows directly from Theorem 9.

The computational complexity of Algorithm 2 is discussed in the sequel.
Line 1 can be done in O(nm) time [19] and the size of F(G) is smaller than
n [19,21]. Then, the loop of lines 3 to 7 is executed at most n − 1 times. Line
4 has time complexity O(n2m) using Algorithm 1. Since the number of non-
trivial t-convex sets of a prime graph is less than m, te loop of line 5 is executed
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Algorithm 2: t-Convexity number

input : A graph G

1 F ← find the family of mp-subgraphs of G
2 c(G)← 1
3 for F ∈ F do

4 Ct ← find the t-convex sets of F
5 for C ∈ Ct do

6 if F (C) > c(G) then
7 c(G)← F (C)

8 return c(G)

O(m) times. Since line 6 can be done in time O(m), the total complexity is
O(n3m+ nm2) = O(nm2).

5 Hull number

In this section we present a characterization of hull sets of a graph in the triangle
path convexity and show how to use it for finding a minimum hull set of the
graph. We begin considering the case where the graph is prime.

Corollary 8. The t-hull number of a non-trivial prime is two.

Proof. If G is a complete graph, any two vertices form a t-hull set of the graph.
Otherwise, the result follows from Corollary 4.

Consider an mp-subgraph F of a graph G and a set S of vertices of G. We
say that v ∈ V (F ) is a pivot of F if there is an mp-subgraph F ′ of G such that
v ∈ V (F ′) and there is a vertex of S \ V (F ) in the (V (F ) ∩ V (F ′))-component
containing F ′. We say that S satisfies F if at least one of the following conditions
holds:

Condition 1: There are two pivots in F forming a t-hull set of F ;
Condition 2: There is a pivot u ∈ V (F ) contained in an mp-subgraph F ′ and a

vertex v ∈ S ∩ (V (F ) \V (F ′)) such that {u, v} is a t-hull set of F ;
Condition 3: S ∩ V (F ) is a t-hull set of F .

The next result characterizes the t-hull sets of a graph.

Theorem 10. A set of vertices S is a t-hull set of a reducible graph G if and

only if |S| ≥ 2 and S satisfies all mp-subgraphs of G.

Proof. Let G be a reducible graph. First, consider a t-hull set S of G. It is clear
that |S| ≥ 2. Suppose for contradiction that F is an mp-subgraph of G such that
none of the three conditions are satisfied in F by S. Denote D = S ∩ V (F ).
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If D 6= ∅, then since S does not satisfy Condition 3 in F , D is not a t-hull
set of F and, by Corollary 4, 〈D〉Ft is a clique. But, since S is a t-hull set of G,
exists one vertex w ∈ S \V (F ) such that there is a triangle path from w to some
vertex in 〈D〉Gt containing a vertex u ∈ V (F ) \ 〈D〉Gt . It is clear that we choose
u in V (F ) ∩ V (F ′) for some mp-subgraph F ′, i.e., u is a pivot of F . If u is not
adjacent to some vertex v of D, then {u, v} would be a t-hull set of F . Which
would mean that Condition 2 is satisfied in F . Then, u is adjacent to all vertices
of D. This implies that |D| = 1, because otherwise u would belong to 〈D〉Ft .
Write D = {v}. We know that {u, v} is not a t-hull set of F , because Condition
2 is not satisfied in F by S. Then, F contains at least two pivots. Further, we
can say that v is adjacent to all pivots of F . Denote by D′ the set formed by v
union all pivots of F . Since D′ is not a t-hull set of F , every two pivots of F are
adjacent. But, observe that this implies that S is not a t-hull set of G. Then, D′

is a t-hull set, which would mean that F contains two non-adjacent pivots and
that S satisfies Condition 1. Then, D = ∅.

Let F1, . . . , Fk be the mp-subgraphs of G containing pivots of F . Denote
Ci = V (F ) ∩ V (Fi) for i ∈ k and C′ =

⋃

i∈[k]

Ci. Observe that, since S is a t-hull

set of G, we have k ≥ 2. Further, the fact that S does not satisfy Condition 1
in F implies that no Ci is a t-hull set of F for i ∈ [k]. his also implies that C′ is
not a t-hull set of F . Observe that this means that S is not a t-hull set of G, a
contradiction.

Conversely, consider a set S ⊆ V (G) satisfying all mp-subgraphs of G with
|S| ≥ 2. We show that, for every mp-subgraph F of G, it holds V (F ) ⊆ 〈S〉Gt . If
S satisfies Condition 3 in F , it is clear that V (F ) ⊆ 〈S〉Gt .

Now, suppose that S satisfies Condition 2 in F . Let u a pivot of F , v ∈
S ∩ V (F ) \ V (F ′), where F ′ is an mp-subgraph different of F containing u, and
w ∈ S \V (F ′) a vertex in the (V (F )\V (F ′))-component containing F ′. Observe
that there is a triangle path P in G, joining v to w, passing through u. Since
{u, v} is a t-hull set of F , we have that V (F ) ⊆ 〈S〉Gt .

Finally, it remains the case in which S satisfies only Condition 1 in F . If F
contains two pivots u1 and u2 and there are two distinct mp-subgraphs F1 and
F2 different of F such that u1 ∈ V (F1) \ (F2) and u2 ∈ V (F2) \ (F1). Then, it
is clear that u, v ∈ [S]Gt , which implies that V (F ) ⊆ 〈S〉Gt . Then, there is an
mp-subgraph F1 different of F containing all pivots of F .

This implies that all vertices of S are in the (V (F ) ∩ V (F1))-component
containing F1. If S satisfies Condition j1 in F1, for j1 6= 1, or there are at least two
other mp-subgraphs containing the pivots of F1, we are done. Therefore, suppose
that S satisfies only Condition 1 in F1 and exists an mp-subgraph F2 different of
F1 containing all pivots of F . Observe that the vertices of V (F )∩V (F1) are not
pivots of F1. Repeating this analysis in F2 and so on, we will obtain a sequence
F0, F1, . . . , Fk of mp-subgraphs, for some k ≥ 2, where F0 = F such that S
satisfies only Condition 1 in Fj , all pivots of Fj are in Fj+1, for 0 ≤ j < k, and
V (Fk) ⊂ 〈S〉

G
t . Now, it is easy to see that V (F ) ⊂ 〈S〉Gt , concluding the proof.
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The algorithm for finding a minimum t-hull set of a general graph is given
below.

Algorithm 3: Hull number in the triangle path convexity

input : A connected reducible G

1 S ← ∅
2 F ← D-ordered family of the mp-subgraphs of G
3 R← {Ri = V (Fi) ∩ (V (F1) ∪ . . . ∪ V (Fi−1)) : i ∈ [t], t = |F|}
4 for i = t to 2 do

5 P ← pivots of Fi

6 if P ∪Ri is not a t-hull set of Fi then

7 let v ∈ V (Fi) \ 〈P ∪Ri〉
Fi

t such that 〈P ∪Ri ∪ {v}〉
Fi

t = V (Fi)
8 S ← S ∪ {v}

9 if V (F1) * 〈S〉Gt then

10 if exists v ∈ V (F1) such that S ∪ {v} is a t-hull set of F1 then

11 S ← S ∪ {v}

12 else

13 let u, v ∈ V (F1) be a t-hull set of F1

14 S ← S ∪ {u, v}

15 return S

Now, we discuss the time complexity of Algorithm 3. Let G be a graph of
order n and size m. Using the algorithm of [19], we can perform lines 2 and 3
in O(nm) time. Since the number of mp-subgraphs is less than n [19,21], the
number of iterations of the loop is O(n).

Line 5 can be done in O(m) time as follows. Define Gi as the graph obtained
by adding a vertex vi to G adjacent to all vertices of Fi. Then, obtain a tree Ti

performing a breadth-first search rooted in vi. Next, set Si = S and, for every
vertex u of Si not chosen yet, add to Si the neighbours of u belonging to depth
d − 1 if d is the depth of u in T . It is easy to see that the set of pivots of Fi is
Si ∩R(G).

By Corollary 7, line 6 can be tested in O(n2) steps. Line 7 can be done
in constant O(n). Since the remaining lines of the algorithm can clearly be
performed in less time, the overall complexity for computing the t-hull number
of a general graph is O(n3).
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Appendix

Proof of Theorem 4.

Proof. Let S ⊂ V (G). If there is a vertex v 6∈ S such that v has neighbours
u,w ∈ S, then uvw is a triangle path not contained in S. Then S is not t-
convex. Now, consider that there exist two non-adjacent vertices u, v ∈ S such
that u′ ∈ N(u), v′ ∈ N(v), and u′, v′ ∈ V (C) for some connected component
C of G − S. If u′ = v′, we come back to the first case. Then, we can assume
that u′ 6= v′. Consider a minimum path P of C joining u′ to v′. Since C is a
connected component of G−C, P is an induced path of G. Now, note that uPv
is also an induced path, i.e., a triangle path of G. Then S is not a t-convex set.

Assume now that S is a t-convex set. Then, there exists a triangle path
uw1 . . . wkv joining a pair of vertices u, v ∈ S such that k ≥ 1 and wi /∈ S for
every i ∈ [k]. If uv ∈ E(G), then k = 1, and w1 is a vertex outside S having two
neihgbours in S. Otherwise, since P ′ = w1 . . . wk is a path of G− S, all vertices
of P ′ belong to a same connected component of G−S. Then, S has two vertices,
namely, u and v, having neighbours in a same connected component of G− S.

Proof of Corollary 5.

Proof. Let G be a prime graph and suppose for contradiction that S1 and S2

are two t-convex sets of G such that {u, v} ⊆ S1 ∩ S2. Since S1 6= S2, without
loss of generality we can say that there is a vertex w ∈ S1 \ S2. Recall that, by
Theorem 8, S1 is a clique. Hence, w is a vertex outside of a t-convex set, namely
S2, having two neighbours in S2, u and v, contradicting Theorem 8.

Proof of Corollary 6.

Proof. We use induction on n. If n = 1, it is trivial. Now, let G be a prime graph
of order n, for some n ≥ 2, and suppose that every prime graph of order n′ < n
has less than n′ non-trivial t-convex sets. If G has no non-trivial convex sets
with at least three vertices, we are done. Then, let C be a non-trivial t-convex
set of G with at least three vertices and denote G′ = G − C. Since G is prime,
G′ is also prime. Using the induction hypothesis and the fact that |C| ≥ 3, we
conclude that G′ has less than n− 3 non-trivial t-convex sets with at least three
vertices. Now, Theorem 8 and Corollary 5 imply that every non-trivial t-convex
set of G with at least three vertices different of C is also a non-trivial t-convex
set of G′. Concluding the proof.

Proof of Corollary 7.

Proof. Let S be a set of vertices of a prime graph G of order n. To test whether
S is a clique can be done in O(n2) and to test, for every vertex u 6∈ S, whether
u has two neighbours in S can be done in O(n). Then, by Theorem 8, one can
test if S is t-convex in O(n2) time.

For computing the t-convex hull of S we compute S′ = S ∪ {u : u 6∈ S and
|N(u) ∩ S| ≥ 2}. Next, as observed in the proof of Lemma 1, if S′ is t-convex,
then 〈S〉t = [S]t, otherwise 〈S〉t = V (G). It is clear that these tasks can be done
in O(n2) steps.
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Theorem 11. Algorithm 1 is correct.

Proof. Let G be a prime graph. We need to show that every t-convex set of G
will be added to C exactly once. All trivial t-convex sets of G are identified at
line 1. Since all non-trivial t-convex sets contain at least one edge, it is clear that
if we consider every edge uv ∈ E(G) once, to compute its t-convex hull, to check
if it is different of V (G), and add it to C, we will generate all proper t-convex
sets of G. However, it is possible that some of them have been generated more
than once.

We claim that, for achieving the unicity, instead of computing the t-convex
hull of {u, v}, we compute S ← {u, v} ∪ {w : u, v ∈ N(w)} (line 5) and after
testing whether it is a t-convex set we remove all edges of G[S] (line 8).

This clearly avoids that a proper t-convex set be generated twice. It remains
to show that it does not yield that some of them be not generated at least once.
Let xy be an edge removed at line 8 in some iteration i of the loop and denote
by Si the set constructed at line 5 of this iteration. On one hand, Si is a t-convex
set of G. By Lemma 1, there is no proper t-convex of G different of Si containing
both x and y. Then, xy can be removed from H at this moment. On the other
hand, Si is not a t-convex set of G. By Lemma 1 again, the only t-convex set
containing both x and y is V (G). Then, xy can also be removed from H at this
moment.

Next, we present the correctness of the algorithm for finding a minimum
t-hull set of a general graph.

Theorem 12. Algorithm 3 is correct.

Proof. Let G be a graph with t ≥ 2 mp-subgraphs and S the set obtained by
the Algorithm 3 runned over G. Note that every mp-subgraph of G is considered
exactly once by the algorithm, t−1 of them in the loop of the algorithm and the
remaining one in the Lines 9 to 14. Denote by Si, Pi, and vi the corresponding
instances of S, P , and v at the end of iteration i, for 2 ≤ i ≤ t.

First, we show that S is a t-hull set of G. For this, we prove that S satisfies
every mp-subgraph of G. Consider some iteration i, 2 ≤ i ≤ t, of the loop. Since
the vertex chosen at line 7 is a vertex of V (Fj) \ Rj , for 2 ≤ j ≤ t, and these
vertices will no more be considered at line 7 in the future, we conclude that at
moment of the execution of line 6 it holds Sj−1 ∩ V (Fj) = ∅.

Hence, if the algorithm does not run line 7, it means that Si−1 satisfies
Condition 1 in Fi or |〈Si−1〉

G
t ∩ Ri| ≤ 1 < |Ri|. In the latter case, we claim

that exists in S \ Si some vertex of some Ri-component of G not containing Fi

and this will imply that S satisfies Condition 1 in Fi. Consider the case where
|〈S2〉

G
t ∩ Ri| ≤ 1 < |Ri| and the algorithm reachs line 9. Then, some vertex

will be added to S2 at line 11 or 14, because F1 is contained in some of the
Ri-components of G not containing Fi and no vertex of Si is in any of these
Ri-components, because otherwise 〈Si−1〉

G
t ∩ Ri = Ri. Then, let u ∈ S \ Si.

Observe that there is triangle path in G from u to some vertex of Si not passing
trough 〈Si−1〉

G
t ∩Ri. Then, V (Fi) ⊂ 〈S〉

G
t and S satisfies Condition 1 in Fi.
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Now, if the algorithm executes line 7, then either Si satisfies Condition 2 in
Fi or, for the same reason of the previous paragraph, there is in S \ Si some
vertex of some Ri-component of G not containing Fi. Consequently, S satisfies
Condition 2 in Fi.

If line 10 is not executed, then S2 satisfies Condition 1 in F1. If line 11 is
executed, then S satisfies Condition 2 in F1. If line 14 is executed, then S satisfies
Condition 3 in F1. Then, all mp-subgraphs G are satisfied by S and |S| ≥ 2,
then by Theorem 10, S is a t-hull set of G.

It remains to prove that the t-hull number of G is at least |S|. For every
iteration i of the loop of the algorithm, define Ci = V (Fi) \ 〈Pi−1 ∪ Ri〉

Fi

t if
line 7 is executed, otherwise define Ci = ∅. Observe that if Ci 6= ∅, then Ci is
a t-concave set of G. It is clear that every t-hull set must contain at least one
vertex of each t-concave set. Now, observe that if Ci and Cj are both non-empty
and i 6= j, then Ci ∩ Cj = ∅. Which implies that the t-hull number of G is at
least |S2|.

Finally, consider the execution of lines 9 to 14. We observe that line 14 is
executed only if S2 = ∅. If line 11 is not executed or if |S2| = 1, we are done.
Then, consider |S2| ≥ 2 and let two vertices vi and vj chosen in iterations i and
j, respectively, for j < i. Recall that our numbering of iterations is decreasing.
Observe that vi ∈ V (Fi) \ V (Fj) and vj ∈ V (Fj) \ V (Fi). By Theorem 1, Ri ⊂
V (Fi) of G such that Fi and Fj are contained in different Ri-components of G. It
is clear that Pi ∪Ri ⊂ 〈Si ∪ {vj}〉

G
t . Then, V (Fi) ⊂ 〈S2〉

G
t . This implies that all

t-concave sets Ck defined in the previous paragraph are contained in 〈S2〉
G
t . Since

the vertex chosen in line 11 form a t-hull set of G, it is chosen outside 〈S2〉
G
t , i.e.,

of a t-concave set of G different of the ones already considered. Which means
that the t-hull number of G is at least |S|.


	Complexity aspects  of the triangle path convexity
	1 Introduction
	2 Preliminaries
	3 Convex sets and convex hulls
	3.1 General graphs
	3.2 Prime graphs

	4 Convexity number
	5 Hull number


