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Abstract

Motivated by Chudnovsky’s structure theorem of bull-free graphs, Abu-Khzam, Feghali, and Müller
have recently proved that deciding if a graph has a vertex partition into disjoint cliques and a triangle-
free graph is NP-complete for five graph classes. The problem is trivial for the intersection of these
five classes. We prove that the problem is NP-complete for the intersection of two subsets of size
four among the five classes. We also show NP-completeness for other small classes, such as graphs
with maximum degree 4 and line graphs.

Keywords: Graph coloring, NP-completeness.

1. Introduction

In this paper we consider the problem of recognizing graphs having a vertex partition into disjoint
cliques and a triangle-free graph. We say that a graph is partitionable if it has such a partition. The
vertices in the P3-free part are colored blue and the vertices in the K3-free part are colored red.
This problem is known to be NP-complete on general graphs [6]. The NP-completeness on bull-
free graphs was motivated by an open question in [11] (after Thm 2.1) about the complexity of
recognizing the class τ1 introduced by Chudnovsky [3] in her characterization of bull-free graphs.
Abu-Khzam, Feghali, and Müller [1] have then investigated the complexity of deciding whether a
bull-free graph is partitionable. They have shown the following.

Theorem 1. [1] Recognizing partitionable graphs is NP-complete even when restricted to the fol-
lowing classes:

(1) planar graphs,

(2) K4-free graphs,

(3) bull-free graphs,

(4) (C5, . . . , Ct)-free graphs (for any fixed t),

(5) perfect graphs.

In Section 2, we prove Theorem 2 which improves Theorem 1. The classes h1 and h2 of theo-
rem 2 show that the problem remains NP-complete for the intersection of two subsets of size four
among the five classes of Theorem 1 (graphs in the intersection of the five classes are partition-
able). The class h1 also answers the open question [1] of the complexity of recognizing partitionable
Meyniel graphs, since every graph in h1 is a parity graph and parity graphs correspond to gem-free
Meyniel graphs. We also show NP-completeness for several other classes. The clases h3 to h9 are
motivated by the introduction of other natural forbidden inducesd subgraphs (mainly C4, K−4 , and
K1,3) and/or restriction on the maximum degree. The interesting feature of every class is briefly
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discussed at the end of its dedicated subsection. We study the tightness of this result in Section 3 by
considering all the intersections between every two graph classes of Theorem 2.

We use standard notations for graphs (see [12]), some of them are reminded in Figure 1.

paw
bull butterflynet house gem

Figure 1: Some small graphs and their name.

A k-vertex is a vertex of degree k. Given a graph G, we denote its line graph by L(G). Given a
graph class C, we denote by L(C) the set of line graphs of graphs in C.

2. Main result

In this section we prove the following result.

Theorem 2. Recognizing partitionable graphs is NP-complete even when restricted to the following
classes:

h1: planar (C4, . . . , Ct, bull, gem, odd hole)-free graphs with maximum degree 8,

h2: planar (K4, bull, house, C5, . . . , Ct)-free graphs,

h3: planar (K4, C4, gem, C7, . . . , Ct, odd hole of length > 7)-free graphs with maximum degree 7,

h4: (K4, C5, . . . , Ct, net, odd hole)-free graphs with maximum degree 8,

h5: (K−4 , butterfly, C6, . . . , Ct)-free graphs with maximum degree 4,

h6: (K4,K
−
4 , C4, . . . , Ct, butterfly)-free graphs,

h7: planar (K1,3,K
−
4 , C4, . . . , Ct, odd hole)-free graphs with maximum degree 6,

h8: planar (K1,3,K
−
4 , C9, . . . , Ct, odd hole)-free graphs with maximum degree 5,

h9: (K1,3,K
−
4 , C4, . . . , Ct,K5, odd hole)-free graphs with maximum degree 5,

Kratochvíl proved that PLANAR (3,64)-SAT is NP-complete [7]. In this restricted version of
SAT, the graph of variable-clause incidences of the input formula must be planar, every clause is
a disjonction of exactly three literals, and every variable occurs in at most four clauses. For every
class considered in Theorem 2, we provide a reduction from PLANAR (3,64)-SAT. Given an instance
formula I of PLANAR (3,64)-SAT, we construct a graph G such that G is partitionable if and only
if I is satisfiable.

For the classes h1, h2, h3, and h4, the boolean value true is associated to the color red, the boolean
value false is associated to the color blue, and the clause gadget is P3. This way, an unsatisfied clause
corresponds to a blue P3. For the classes h5 and h6, the boolean value true is associated to the color
blue, the boolean value false is associated to the color red, and the clause gadget is K3. This way, an
unsatisfied clause corresponds to a redK3. For brevity, we say that a vertex with the color associated
to the boolean value true (resp. false) is colored true (resp. false).

Given a variable x, a variable gadget is a graph Gx with two disjoint subsets of vertices Sx and
Sx such that:

• There exists an involutive automorphism of Gx which swaps Sx and Sx.
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• There exists a partition of Gx such that every vertex in Sx is colored true and no blue vertex
in Sx ∪ Sx is adjacent to a blue vertex.

• No partition of Gx is such that both a vertex in Sx and a vertex in Sx are colored true.

The variable gadget depends on the considered graph class and is built on forcers. A forcer is a
partitionable graph with a specified vertex q.

• A red forcer is such that q is red in every partition.

• A blue forcer is such that q is blue in every partition and there exists a partition such that every
neighbor of q is red.

We construct G from I as follows. We take one copy of the variable gadget per variable. We
take one copy of the clause gadget (either P3 or K3) per clause. Each of the 3 vertices of the clause
gadget corresponds to a literal of the clause. The vertices in Sx ∪ Sx are depicted in green in the
representation of the variable gadgets (Fig. 3 and 5b). A subset of these green vertices corresponds
to the literals of the variable x. For every literal `x of I , one vertex corresponding to `x in Gx is
identified to the vertex corresponding to `x in the clause gadget.

For the classes h1, h2, h3, and h4, we use a parity labelling to ensure that G has no induced
odd hole. This labelling assigns a value in {1, 2} to every vertex of a subgraph of G, such that the
values alternate on every labelled induced path with at least 3 vertices. In every clause gadget P3

of G, the two extremities of P3 are labelled 1 and the middle vertex is labelled 2. Notice that in the
variable gadget in Fig. 3, there exist green vertices labelled 1 and 2 both in Sx and Sx. Thus, we can
make sure that every vertex of a clause gadget is identified to a green vertex corresponding to the
suitable literal having the same parity label. To check thatG contains no odd hole, we consider the 2-
connected components ofG. They have a bounded number of vertices, except one large 2-connected
component which is entirely labelled and contains every clause gadget.

Only a part of the variable gadget is depicted in the figures. The actual size of the variable gadget
depends (linearly) on t. The variable gadget consists in sufficiently many copies of the depicted
part that are arranged circularly, as suggested by the dotted edge. Thus, we can ensure that G is
(Ci, . . . , Ct)-free by identifying every green vertex to at most one vertex of a clause a gadget and by
requiring that the distance in the variable gadget between two "used" green vertices is at least t. For
subclasses of planar graphs, we also make sure to identify green vertices and vertices of the clause
gadget so that G is planar.

Let us prove that this construction provides a reduction.

Lemma 3. I is satisfiable if and only if G is partitionable.

Proof. Suppose that I is satisfiable. For every variable x, if x is set to true (resp. false) in the
satisfying assignment, then we partition Gx such that every vertex in Sx (resp. Sx) is colored true
and no blue vertex in Sx∪Sx is adjacent to a blue vertex. This implies that every clause gadget of G
contains a vertex colored true. Moreover, there exists no blue P3 across the intersection of variable
gadget and an edge gadget. So G is partitionable. Conversely, suppose that G is partitionable and
consider a partition of the vertices of G. Thus, every clause gadget of G contains a vertex colored
true. By the property of the variable gadget, if a vertex corresponding to a literal is colored true, then
every vertex corresponding to the opposite literal of the variable is colored false. Every variable x
of I is set to true if and only if there exists a vertex colored true in Sx. By previous discussion, this
gives a satisfying assignment of I .

We leave to the reader to check that the variable gadgets satisfy the required properties and that
G contains none of the induced subgraphs that the considered class forbids.

2.1. Class h1
We use the blue forcer in Figure 2a and the variable gadget in Figure 3. The class h1 is a subclass

of parity graphs.

3



����
����
����
����
����

����
����
����
����
����

=⇒
q

(a) The blue forcer for h1.
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(b) The blue forcer for h2.

Figure 2
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Figure 3: The variable gadget for h1, h2, h3, and h4. The corresponding clause gadget is P3.

2.2. Class h2
We use the blue forcer in Figure 2b and the variable gadget in Figure 3. We make sure that the

length of the odd-hole in the blue forcer is at least t+ 1, so that G is (C5, . . . , Ct)-free. Notice that
the maximum degree ofG is a linear function of t. The class h2 is almost perfect andK4-free (which
would imply partitionable), except that it contains large odd holes.

2.3. Class h3
The graph F on the left of Figure 4a admits no partition such that every neighbor of w is red.

However, it has a partition such that w is blue and a partition such that w is red. We use five copies
of F to obtain the red forcer, as depicted on the right of Figure 4a. Suppose for contradiction that the
red forcer admits a partition such that the specified vertex q is blue. By the property of F , at least
one neighbor r of q is also blue. Again, by the property of F , at least one of neighbor s of r in the
copy of F attached to r is also blue. Then qrs is a blue induced P3, which is a contradiction.

We obtain the blue forcer from the red forcer using Figure 4b. We use the variable gadget in Fig-
ure 3. Notice that G only avoids odd holes of length at least 7 since the red forcer contains C5. The
class h3 is almost perfect and K4-free (which would imply partitionable), except that it contains C5.
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(a) The red forcer for h3.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

=⇒
q

(b) Obtaining a blue forcer from
a red forcer for h3, h5, h6, h7,
and h8.

Figure 4
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2.4. Class h4
We describe a blue forcer for h4. Consider the graph C7 with vertices v0, . . . , v6 such that vi

is adjacent to vj unless |i − j| 6 1 (mod 7). Every partition of C7 is such that three consecutive
vertices are blue and the other vertices are red. So a partition is characterized by its monochromatic
blue edge vtvt+2 (indices are taken modulo 7). We add to C7 a false twin v′i to vi for i ∈ {3, 4, 6}. A
vertex contained in a monochromatic blue edge cannot have a false, since it would create a blue P3.
Thus, the monochromatic blue edge is either v5v0 or v0v2. The blue forcer is obtained by adding a
copy of K−4 and identifying a 2-vertex of K−4 with v0. The specified vertex of the blue forcer is the
2-vertex (the "other" 2-vertex of K−4 ). Then we use the variable gadget in Figure 3. The class h4 is
almost perfect and K4-free (which would imply partitionable), except that it contains C7.

2.5. Class h5
We use the red forcer in Figure 5a. We obtain a blue forcer for h5 from this red forcer using

the construction of Figure 4b. We use the variable gadget in Figure 5b. Notice that degree 4 is best
possible since graphs with maximum degree 3 are partitionable, as shown in the last section.
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(a) The red forcer for h5.
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(b) The variable gadget for h5 and h6. The correspond-
ing clause gadget is K3.

Figure 5

2.6. Class h6
To obtain a red forcer for h6, we first prove that h6 is not a subclass of partitionable graphs.

By probabilistic arguments, there exists a graph J1 among the random graphs Gn,p with probability
p = n−1+1/2t such that:

• J1 contains at most n
100 cycles of length at most 2t.

• J1 contains a path of length at least 99
100n (Theorem 8.1 in [2]).

• J1 contains no independent set of size n
7 .

We call bag a subset of three vertices that induce either a P3 or a K3. Let J2 be the graph induced
by the 99

100n of the mentioned path in J1. Thus, J2 can be split into 33
100n bags. Notice that we can

destroy every cycle of length at most 2t in J1 by removing at most n
100 vertices. For every such

vertex v, we remove from J2 the bag containing v. This way, we obtain a graph J3 with girth at least
2t + 1 and having at least 33

100n − n
100 = 8

25n bags. We obtain the graph J3 by adding to J2 the
edge between the extremities of each of the 8

25n copies of P3 contained in a bag. Every vertex in J3
is contained in exactly one triangle. Also, every cycle of length at least 4 in J3 has length at least
2
3 (2t+1) > t+1. This implies that J3 ∈ h6. Notice that neither J1 nor J3 contains an independent
set of size n

7 . Suppose for contradiction that J3 is partitionable. Without loss of generality, every
triangle contains exactly one blue vertex. So, the graph induced by the blue vertices is (P3,K3)-free
and is thus bipartite. Thus, there exists an induced blue independent set of size at least 1

2 × 8
25n >

n
7 .

This contradiction shows that J3 is a graph in h6 that is not partitionable.
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Consider a graph Jmin in h6 that is not partitionable and is minimal with respect to the number
of edges. The red forcer is obtained from Jmin by subdividing once an edge uv that is not contained
in a triangle. The specified vertex is the subdivision vertex. By minimality, the graph Jmin \ {uv}
is partitionable and both u and v are blue in every partition. Then the specified vertex must be red in
order to avoid a blue P3.

We obtain a blue forcer for h6 from this red forcer using the construction of Figure 4b. We use
the variable gadget in Figure 5b.

The class h6 is interesting because it avoids cycles of length 4 to t as (not necessarily induced)
subgraphs. Moreover, every vertex is contained in at most one triangle since it is butterfly-free.

2.7. Classes h7, h8, and h9
The classes h7, h8, and h9 are subclasses of (K1,3,K

−
4 ,K5, odd hole)-free graphs, which cor-

respond to the class of line graphs of bipartite graphs with maximum degree 4. For convenience,
we thus consider the corresponding edge-partitioning problem described as follows. A triangle-free
graph is edge-partitionable in red and blue if the blue edges induce a star forest and every vertex is
incident to at most two red edges. We then have that a triangle-free graph G is edge-partitionable if
and only if L(G) is partitionable.

Lemma 4. If a graph G is such that every edge is incident to a 4-vertex and a 2-vertex, then G is
edge-partitionable and every edge-partition of G is such that every 4-vertex is incident to exactly
two blue edges and every 2-vertex is incident to exactly one blue edge.

Proof. In every edge-partition of G, every 4-vertex is incident to at least two blue edges. So, at least
half of the edges of G are blue. Moreover, every 2-vertex is incident to at most one blue edge, since
otherwise there would be a blue path on 4 edges. So, at most half of the edges of G are blue. Thus,
there are equally many red and blue edges in every edge-partition of G. Moreover, every 4-vertex is
incident to exactly two blue edges and every 2-vertex is incident to exactly one blue edge.

Now we show that G is edge-partitionable. We define the contraction of a 2-vertex v adjacent
to u1 and u2 as the deletion of v and the addition of one (additional) edge u1u2. Let G′ be the
multigraph obtained by contracting every 2-vertex of G. Since G′ is 4-regular, we can orient the
egdes of G′ such that the out-degree of every vertex is 2. We extend this orientation of G′ to G such
that the incidences of the arcs to the 4-vertices are unchanged. We assign red (resp. blue) to an edge
ofG if its tail (resp. head) is incident to a 4-vertex. This gives a valid egde-partition ofG since every
vertex is incident to at most two red edges and the graph induced by the blue edges is a star forest
such that the 4-vertices are the centers of the stars.

Lemma 5. Recognizing edge-partitionable bipartite graphs with maximum degree 4 is NP-complete
even when restricted to:

h′7: planar (C3, . . . , Ct)-free graphs such that every 4-vertex is a cut vertex.

h′8: planar (C9, . . . , Ct)-free graphs such that no edge is incident to two 4-vertices and such that
every 4-vertex is a cut vertex.

h′9: (C3, . . . , Ct)-free graphs such that no edge is incident to two 4-vertices.

Proof. For every class, we give a red edge forcer. The red edge forcers for h′7 and h′8 are depicted
in Figure 6. Let us construct a red edge forcer for h′9. Consider a cage J with degree 4 and girth⌈
t+1
2

⌉
(see [5] for more information on cages) and subdivide every edge once to obtain the bipartite

graph J ′. We obtain a red edge forcer for h′9 by adding a 1-vertex adjacent to one of the 2-vertices
of J ′. By Lemma 4, the added edge is necessarily red.

For every class, we obtain a blue edge forcer from two copies of the red edge forcer of the class,
as depicted in Figure 7a. This is the counterpart for edge-partition of the construction in Figure 4b.
These red and blue edge forcers are used in the construction of the variable gadget (Fig. 7b) and
the clause gadget (Fig. 7c). To obtain the instance graph of the edge-partition problem, we identify
every green edge corresponding to a literal in the variable gadget to the green edge corresponding

6



=⇒
(a) The red edge forcer for h′

7.
=⇒

(b) The red edge forcer for h′
8.

Figure 6

to this literal in the clause gadget. The boolean value false is associated to the color red, so that
the clause gadget is not edge-partitionable if the clause is not satisfied. The blue forcer in the clause
gadget implies that if the edge corresponding to a literal is colored blue, then this edge is not incident
to another blue edge in the variable gadget. So we can check that if a green edge marked x in the
variable gadget is colored blue, then every edge marked x must be blue and every edge marked x
must be red.

=⇒
(a) Obtaining a blue edge forcer
from a red edge forcer.

x

x

x x

x

x

x

x

x

x

(b) The variable gadget.

(c) The clause gadget.

Figure 7: The gadgets for h′7, h′8, and h′9.

If a planar graph with maximum degree 4 is such that every 4-vertex is a cut vertex, then its line
graph is planar [10]. We thus have L(h′7) ⊂ h7, L(h′8) ⊂ h8, and L(h′9) ⊂ h9. So, deciding whether
a graph in h7, h8, and h9 is partitionable is NP-complete.

3. Polynomial classes

We gather here known graph classes for which deciding whether a member is partitionable is
polynomial time solvable.

3.1. Chordal graphs

See [1].

3.2. P4-free graphs

Abu-Khzam, Feghali, and Müller [1] have shown that we can test in polynomial time whether a
P4-free graph is partitionable.
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3.3. Paw-free graphs

Olariu [9] has proved that every connected component of a paw-free graph is either triangle-free
or a complete multipartite graph. Since a complete multipartite graph is P4-free, we can test in
polynomial time whether a paw-free graph is partitionable.

3.4. Kk-free graphs

Recall that the Ramsey number R(s, t) is the least r such that every graph on r vertices contains
an independent set on s vertices or a clique on t vertices. In a Kk-free graph, every K3-free induced
subgraph thus contains at most R(k, 3) − 1 vertices. Consider a Kk-free graph G with n vertices.
For each of the O

(
nR(k,3)−1) subsets S of at most R(k, 3)− 1 vertices of G, we can test in O(n3)

time whether S induces a K3-free graph and G \ S induces a P3-free graph. So, for any fixed k, we
can test in polynomial time whether a Kk-free graph is partitionable.

4. Partitionable classes

We gather below known classes of partitionable graphs. The motivation is the conjecture that
for every two of the classes considered in Theorem 2, their intersection is a subclass of partitionable
graphs. For most pair of classes, we have identified a class of partitionable graphs containing the
intersection, see Table 1. The remaining two open cases of the conjecture are denoted by a question
mark.

h1 h2 h3 h4 h5 h6 h7 h8
h2 p2
h3 p2 p2
h4 p2 p2 p2
h5 p3 p3 ? p2
h6 p2 ∩ p3 p3 p2 p2 ∩ p3 ?
h7 p3 p2 ∩ p3 p2 p2 ∩ p3 p4 ∩ p5 p2 ∩ p4
h8 p3 ∩ p5 p2 ∩ p3 p2 ∩ p5 p2 p4 p2 ∩ p4 ∩ p5 p5
h9 p3 ∩ p5 p2 ∩ p3 ∩ p5 p2 ∩ p5 p2 ∩ p3 p4 p2 ∩ p4 p5 p5

Table 1: Intersections of the classes considered in Theorem 2.

A graphG is (d1, . . . , dl)-colorable if the vertex set ofG can be partitioned into subsets V1, . . . , Vl
such that the graph induced by the vertices of Vi has maximum degree at most di for every 1 6 i 6 l.
As it is well known, for every a, b > 0, every graph with maximum degree a+b+1 is (a, b)-colorable.

4.1. p1: (1, 0, 0)-colorable graphs

Every (1, 0, 0)-colorable graph is partitionable since the color class of degree 1 induces a P3-free
graph and the two color classes of degree 0 induce a bipartite graph, which is K3-free.

4.2. p2: (K4, C7, odd hole)-free graphs

This class corresponds to perfect graphs with maximum clique size 3. By the strong perfect graph
theorem, their chromatic number is at most 3. So, they are (0, 0, 0)-colorable and thus (1, 0, 0)-
colorable. To quickly check that an entry in Table 1 is a subclass of p2, recall that K−4 , C4, house,
and gem are subgraphs of C7.

8



4.3. p3: (K−4 , house, net)-free graphs

We define a big clique as a maximal clique with at least 3 vertices. Let G be a (K−4 , house,
net)-free graph and let B be a big clique in G. Consider a vertex x ∈ G \ B. Then x cannot be
adjacent to every vertex in B since B is maximal. Also, x cannot be adjacent to at least two vertices
in B since G is K−4 -free. So every vertex in G \ B is adjacent to at most one vertex in B. Since G
is house-free, two vertices in G \B that are adjacent to distinct vertices in B must be non-adjacent.
Since G is net-free, at most two vertices in B are adjacent to a vertex in G \B. For every big clique
in G, we color blue every vertex of the big clique that has no neighbor outside of the big clique. The
remaining vertices of G are colored red. This gives a partition of G since the blue part is a disjoint
union of cliques and the red part is triangle-free.

To quickly check that an entry in Table 1 is a subclass of p3, recall that C4 is a subgraph of house
and that bull is a subgraph of net.

4.4. p4: (K−4 , K1,3, K5, butterfly)-free graphs

Let us call p′4 the class of K3-free graphs with maximum degree 4 and such that no edge is
incident to two vertices with degree at least 3. We show that every graph in p′4 is edge-partitionable.
Suppose that G is a counterexample to this statement that is minimal with respect to the number of
edges. If G contains an edge e adjacent to at most 2 edges, then we can extend an edge-partition of
G \ e by assigning red to e unless every edge adjacent to e is red. So, by minimality, every edge of
G is adjacent to at least 3 edges. We also have that G is in p′4, so that every edge of G is incident to a
vertex with degree 3 or 4 and a vertex with degree 1 or 2. Notice that G is a subgraph of some graph
considered in Lemma 4.

So G is edge-partitionable, and thus every graph in p′4 is edge-partitionable. Since p4 = L(p′4),
every graph in p4 is partitionable.

To quickly check that an entry in Table 1 is a subclass of p4, recall that planar graphs areK5-free.

4.5. p5: planar (K1,3,K
−
4 , C4, . . . , C10)-free graphs with maximum degree 5

Let us call p′5 the class of planar graphs with girth at least 11, maximum degree 4, and such that
no edge is incident to two 4-vertices. We show that every graph in p′5 is edge-partitionable. Suppose
that G is a counterexample to this statement that is minimal with respect to the number of edges. So
G is connected and contains at least 4 edges.

Firstly, G does not contain a vertex v with degree at most 3 that is adjacent to a 1-vertex w. We
can extend an edge-partition of G \ {w} by assigning red to the edge vw, unless v is incident to two
red edges in G \ {w}.

Secondly, G does not contain a 4-vertex v adjacent to at least two 1-vertices w1 and w2. Since
G contains no edge incident to two 4-vertices, the other neighbors w3 and w4 of v have degree at
most 3. If there exists a partition of G \ {w1, w2} such that vw3 and vw4 have the same color, then
we assign blue to vw1 and vw2. Otherwise, we assume without loss of generality that vw3 is red
and vw4 is forced to be blue. This means that the other two edges incident to w4 are red. So we can
assign blue to vw1 and red to vw2.

By the previous properties, the graph G′ obtained from G by removing every 1-vertex of G has
minimum degree 2. It is well known that every planar graph with girth at least 5k+ 1 and minimum
degree 2 contains a path of k 2-vertices (Lemma 5 in [8]). Consequently, G′ contains two adjacent
2-vertices x and y. By the previous properties, x and y also have degree 2 in G. Then we can extend
an edge-partition of G \ xy by assigning red to xy. This contradiction shows that every graph in p′5
is edge-partitionable.

Notice that p5 ( L(p′5) since the line graph of a graph in p′5 can be non-planar. So, every graph
in p5 is partitionable.

4.6. p6: graphs with maximum degree 3

Whereas the problem is NP-complete for graphs with maximum degree 4, graphs with maximum
degree 3 are partitionable since they are (1, 1)-colorable graphs and thus (1, 0, 0)-colorable.
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[10] J. Sedláček. Some properties of interchange graphs. Theory of Graphs and its Applications
(Proceedings of the Symposium, Smolenice, 1963), Publishing House of the Czechoslovak
Academy of Sciences, Prague (1964), 145–150.
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