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Abstract. An edge-colored graph G is said to be rainbow connected if
between each pair of vertices there exists a path which uses each color
at most once. The rainbow connection number, denoted by rc(G), is the
minimum number of colors needed to make G rainbow connected. Along
with its variants, which consider vertex colorings and/or so-called strong
colorings, the rainbow connection number has been studied from both
the algorithmic and graph-theoretic points of view.
In this paper we present a range of new results on the computational com-
plexity of computing the four major variants of the rainbow connection
number. In particular, we prove that the Strong Rainbow Vertex
Coloring problem is NP-complete even on graphs of diameter 3. We
show that when the number of colors is fixed, then all of the considered
problems can be solved in linear time on graphs of bounded treewidth.
Moreover, we provide a linear-time algorithm which decides whether it is
possible to obtain a rainbow coloring by saving a fixed number of colors
from a trivial upper bound. Finally, we give a linear-time algorithm for
computing the exact rainbow connection numbers for three variants of
the problem on graphs of bounded vertex cover number.

1 Introduction

The concept of rainbow connectivity was introduced by Chartrand, Johns, McK-
eon, and Zhang in 2008 [8] as an interesting connectivity measure motivated by
recent developments in the area of secure data transfer. Over the past years,
this strengthened notion of connectivity has received a significant amount of at-
tention in the research community. The applications of rainbow connectivity are
discussed in detail for instance in the recent survey [24], and various bounds are
also available in [10,25].

An edge-colored graph G is said to be rainbow connected if between each
pair of vertices a, b there exists an a − b path which uses each color at most
once; such a path is called rainbow. The minimum number of colors needed to
make G rainbow connected is called the rainbow connection number (rc), and the
Rainbow Coloring problem asks to decide if the rainbow connection number
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is upper-bounded by a number specified in the input. Precise definitions are
given in Section 2.

The rainbow connection number and Rainbow Coloring have been studied
from both the algorithmic and graph-theoretic points of view. On one hand,
the exact rainbow connection numbers are known for a variety of simple graph
classes, such as wheel graphs [8], complete multipartite graphs [8], unit interval
graphs [28], and threshold graphs [6]. On the other hand, Rainbow Coloring
is a notoriously hard problem. It was shown by Chakraborty et al. [5] that
already deciding if rc(G) ≤ 2 is NP-complete, and Ananth et al. [1] showed
that for any k > 2 deciding rc(G) ≤ k is NP-complete. In fact, Chandran and
Rajendraprasad [6] strengthened this result to hold for chordal graphs. In the
same paper, the authors gave a linear time algorithm for rainbow coloring split
graphs which form a subclass of chordal graphs with at most one more color than
the optimum. Basavaraju et al. [2] gave an (r+3)-factor approximation algorithm
to rainbow color a general graph of radius r. Later on, the inapproximability of
the problem was investigated by Chandran and Rajendraprasad [7]. They proved
that there is no polynomial time algorithm to rainbow color graphs with less than
twice the minimum number of colors, unless P = NP. For chordal graphs, they
gave a 5/2-factor approximation algorithm, and proved that it is impossible to
do better than 5/4, unless P = NP.

Several variants of the notion of rainbow connectivity have also been consid-
ered. Indeed, a similar concept was introduced for vertex-colored graphs by Kriv-
elevich and Yuster [21]. A vertex-colored graph H is rainbow vertex connected if
there is a path whose internal vertices have distinct colors between every pair of
vertices, and this gives rise to the rainbow vertex connection number (rvc). The
strong rainbow connection number (src) was introduced and investigated also
by Chartrand et al. [10]; an edge-colored graph G is said to be strong rainbow
connected if between each pair of vertices a, b there exists a shortest a− b path
which is rainbow. The combination of these two notions, strong rainbow vertex
connectivity (srvc), was studied in a graph theoretic setting by Li et al. [23].

Not surprisingly, the problems arising from the strong and vertex variants of
rainbow connectivity are also hard. Chartrand et al. showed that rc(G) = 2 if
and only if src(G) = 2 [8], and hence deciding if src(G) ≤ k is NP-complete for
k = 2. The problem remains NP-complete for k > 2 for bipartite graphs [1], and
also for split graphs [20]. Furthermore, the strong rainbow connection number of
an n-vertex bipartite graph cannot be approximated within a factor of n1/2−ε,
where ε > 0 unless NP = ZPP [1], and the same holds for split graphs [20]. The
computational aspects of the rainbow vertex connection numbers have received
less attention in the literature. Through the work of Chen et al. [12] and Chen
et al. [11], it is known that deciding if rvc(G) ≤ k is NP-complete for every
k ≥ 2. However, to the best of our knowledge, the complexity of deciding whether
srvc(G) ≤ k (the k-SRVC problem) has not been previously considered.

In this paper, we present new positive and negative results for all four variants
of the rainbow coloring problems discussed above.



– In Section 3, we prove that k-SRVC is NP-complete for every k ≥ 3 even
on graphs of diameter 3. Our reduction relies on an intermediate step which
proves the NP-hardness of a more general problem, the k-Subset Strong
Rainbow Vertex Coloring problem. We also provide bounds for approx-
imation algorithms (under established complexity assumptions), see Corol-
lary 6.

– In Section 4, we show that all of the considered problems can be formulated
in monadic second order (MSO) logic. In particular, this implies that for
every fixed k, all of the considered problems can be solved in linear time on
graphs of bounded treewidth, and the vertex variants can be solved in cubic
time on graphs of bounded clique-width.

– In Section 5, we investigate the problem from a different perspective: we ask
whether, given an n-vertex graph G and an integer k, it is possible to color G
using k colors less than the known upper bound. Here we employ a win-win
approach and show that this problem can be solved in time O(n) for any
fixed k.

– In the final Section 6, we show that in the general case when k is not fixed,
three of the considered problems admit linear-time algorithms on graphs of
bounded vertex cover number. This is also achieved by exploiting a win-
win approach, where we show that either k is bounded by a function of the
vertex cover number and hence we can apply the result of Section 4, or k
is sufficiently large which allows us to exploit the structure of the graph to
precisely compute the connectivity number.

The authors acknowledge support by the Austrian Science Fund (FWF, projects
P26696 and W1255-N23).

2 Preliminaries

2.1 Graphs and Rainbow Connectivity

We refer to [15] for standard graph-theoretic notions. We use [i] to denote the set
{1, 2, . . . , i}. All graphs considered in this paper are simple and undirected. The
degree of a vertex is the number of its incident edges, and a vertex is a pendant
if it has degree 1. We will often use the shorthand ab for the edge {a, b}. For a
vertex set X, we use G[X] to denote the subgraph of G induced on X.

A vertex coloring of a graph G = (V,E) is a mapping from V to N, and
similarly an edge coloring of G is a mapping from E to N; in this context, we
will often refer to the elements of N as colors. An a − b path P of length p is a
finite sequence of the form (a = v0, e0, v1, e1, . . . b = vp), where v0, v1, . . . vp are
distinct vertices and e0, . . . ep−1 are distinct edges and each edge ej is incident
to vj and vj+1. An a − b path of length p is a shortest path if every a − b path
has length at least p. The diameter of a graph G is the length of its longest
shortest path, denoted by diam(G). Given an edge (vertex) coloring α of G, a
color x ∈ N occurs on a path P if there exists an edge (an internal vertex) z on
P such that α(z) = x.



A vertex or edge coloring of G is rainbow if between each pair of vertices a, b
there exists an a − b path P such that each color occurs at most once on P ;
in this case we say that G is rainbow connected or rainbow colored. We denote
by rc(G) the minimum i ∈ N such that there exists a rainbow edge coloring
α : E → [i]. Similarly, rvc(G) denotes the minimum i ∈ N such that there exists
a rainbow vertex coloring α : V → [i]. Furthermore, an edge or vertex coloring of
G is a strong rainbow coloring if between each pair of vertices a, b there exists a
shortest a− b path P such that each color occurs at most once on P . We denote
by src(G) (srvc(G)) the minimum i ∈ N such that there exists a strong rainbow
edge (vertex) coloring α : E → [i] (α : V → [i]).

Let G and H be two graphs with n and n′ vertices, respectively. The corona
of G and H, denoted by G ◦ H, is the disjoint union of G and n copies of H
where the i-th vertex of G is connected by an edge to every vertex of the i-th
copy of H. Clearly, the corona G ◦H has n(1 + n′) vertices. Coronas of graphs
were first studied by Frucht and Harary [17].

2.2 Problem Statements

Here we formally state the problems studied in this work.

Rainbow k-Coloring (k-RC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ k?

Strong Rainbow k-Coloring (k-SRC), Rainbow Vertex k-Coloring
(k-RVC) and Strong Rainbow Vertex k-Coloring (k-SRVC) are then de-
fined analogously for src(G), rvc(G) and srvc(G), respectively. We also consider
generalized versions of these problems, where k is given as part of the input.

Rainbow Coloring (RC)
Instance: A connected undirected graph G = (V,E), and a positive inte-
ger k.
Question: Is rc(G) ≤ k?

The problems SRC, RVC, and SRVC are also defined analogously. In Section 5
we consider the “saving” versions of the problem, which ask whether it is possible
to improve upon the trivial upper bound for the number of colors.

Saving k Rainbow Colors (k-SavingRC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ |E| − k?

Saving k Rainbow Vertex Colors (k-SavingRVC)
Instance: A connected undirected graph G = (V,E).
Question: Is rvc(G) ≤ |V | − k?



2.3 Structural Measures

Several of our results utilize certain structural measures of graphs. We will mostly
be concerned with the treewidth and the vertex cover number of the input graph.
Section 4 also mentions certain implications of our results for graphs of bounded
clique-width, the definition of which can be found for instance in [14].

A tree decomposition of G is a pair (T, {Xi : i ∈ I}) where Xi ⊆ V , i ∈ I,
and T is a tree with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Xi }] is a (connected) tree with at least

one node.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth [27] of G is
the minimum width taken over all tree decompositions of G and it is denoted
by tw(G).

Fact 1 ([4]). There exists an algorithm which, given a graph G and an integer

p, runs in time 2p
O(1) ·(|V (G)|+ |E(G)|), and either outputs a tree decomposition

of G of width at most p or correctly determines that tw(G) > p.

A vertex cover of a graph G = (V,E) is a set X ⊆ V such that each edge in
G has at least one endvertex in X. The cardinality of a minimum vertex cover
in G is denoted as vcn(G). Given a vertex cover X, a type T is a subset of V \X
such that any two vertices in T have the same neighborhood; observe that any
graph contains at most 2|X| many distinct types.

2.4 Monadic Second Order Logic

We assume that we have an infinite supply of individual variables, denoted by
lowercase letters x, y, z, and an infinite supply of set variables, denoted by up-
percase letters X,Y, Z. Formulas of MSO2 logic are constructed from atomic
formulas I(x, y), x ∈ X, and x = y using the connectives ¬ (negation), ∧ (con-
junction) and existential quantification ∃x over individual variables as well as
existential quantification ∃X over set variables. Individual variables range over
vertices and edges, and set variables range either over sets of vertices or over
sets of edges. The atomic formula I(x, y) expresses that vertex x is incident to
edge y, x = y expresses equality, and x ∈ X expresses that x is in the set X.
From this, we define the semantics of MSO2 logic in the standard way.

MSO1 logic is defined similarly as MSO2 logic, with the following distinc-
tions. Individual variables range only over vertices, and set variables only range
over sets of vertices. The atomic formula I(x, y) is replaced by E(x, y), which
expresses that vertex x is adjacent to vertex y.

Free and bound variables of a formula are defined in the usual way. A sentence
is a formula without free variables. It is known that MSO2 formulas can be
checked efficiently as long as the graph has bounded tree-width.



Fact 2 ([13]). Let φ be a fixed MSO2 sentence and p ∈ N be a constant. Given
an n-vertex graph G of treewidth at most p, it is possible to decide whether G |= φ
in time O(n).

Similarly, MSO1 formulas can be checked efficiently as long as the graph
has bounded clique-width [14] (or, equivalently, rank-width [18]). In particular,
while the formula can be checked in linear time if a suitable rank- or clique-
decomposition is provided, current algorithms for finding (or approximating)
such a decomposition require cubic time.

Fact 3 ([14, 18]). Let φ be a fixed MSO1 sentence and p ∈ N be a constant.
Given an n-vertex graph G of clique-width at most p, it is possible to decide
whether G |= φ in time O(n3).

3 Hardness of Strong Rainbow Vertex k-Coloring

It is easy to see that srvc(G) = 1 if and only if diam(G) = 2. We will prove that
deciding if srvc(G) ≤ k is NP-complete for every k ≥ 3 already for graphs of
diameter 3. This is done by first showing hardness of an intermediate problem,
described below.

In the k-Subset Strong Rainbow Vertex Coloring problem (k-SSRVC)
we are given a graph G which is a corona of a complete graph and K1, and a
set P of pairs of pendants in G. The goal is to decide if the vertices of G can be
colored with k colors such that each pair in P is connected by a vertex rainbow
shortest path. We will first show this intermediate problem is NP-complete by
reducing from the classical k-vertex coloring problem: given a graph G, decide
if there is an assignment of k colors to the vertices of G such that adjacent
vertices receive a different color. The k-vertex coloring problem is well-known to
be NP-complete for every k ≥ 3.

Lemma 4. The k-SSRVC problem is NP-complete for every k ≥ 3.

Proof. Let G = (V,E) be an instance of the k-vertex coloring problem, where
k ≥ 3. We will construct an instance 〈G′, P 〉 of the k-SSRVC problem such that
〈G′, P 〉 is a YES-instance if and only if G is k-vertex colorable.

The graph G′ = (V ′, E′) along with the set of pairs P are constructed as
follows:

– V ′ = V ∪ {pv | v ∈ V },
– E′ = {uv | u, v ∈ V ∧ u 6= v} ∪ {vpv | v ∈ V }, and
– P = {{pu, pv} | uv ∈ E}.

Clearly, G′ = K|V | ◦K1. This completes the construction of G′.
Suppose G is k-vertex colorable. Let c be the color assigned to vertex v in

V . We assign the color c to both v and pv in G′. Observe that the shortest path
between any pair of vertices in G′ is unique. It is then straightforward to verify
that any pair in P is strong rainbow vertex connected.



For the other direction, suppose there is a vertex coloring of G′ using k colors
under which there is a vertex rainbow shortest path between every pair in P .
Since any two vertices {pu, pv} ∈ P are strong rainbow vertex connected, the
two internal vertices on the unique pu − pv shortest path have distinct colors.
Thus by assigning to the vertex v ∈ V the color on the corresponding vertex
v′ ∈ (V ′ \ {pv | v ∈ V }) we get a proper vertex coloring of G. This completes
the proof. ut

We are now ready to prove the following.

Theorem 5. The problem k-SRVC is NP-complete for every integer k ≥ 3, even
when the input is restricted to graphs of diameter 3.

Proof. Let k ≥ 3 and 〈G = (V,E), P 〉 be an instance of the k-SSRVC problem.
We will construct a graph G′ = (V ′, E′) that is strong rainbow vertex colorable
with k colors if and only if 〈G = (V,E), P 〉 is a YES-instance of k-SSRVC.

Let V1 denote the set of pendant vertices in G. For every vertex v ∈ V1 we
introduce a new vertex xv. For every pair of pendant vertices {u, v} 6∈ P , we add
two vertices x1uv and x2uv. We also add two new vertices s and t. In the following,
we denote by kv, where v ∈ V1, the unique vertex that v is adjacent to in G.
Formally, we construct a graph G′ = (V ′, E′) such that:

– V ′ = V ∪ {xv | v ∈ V1} ∪ {x1uv, x2uv | {u, v} ∈
(
V1

2

)
\ P} ∪ {s, t},

– E′ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4,
– E1 = {vxv, sxv, txv | v ∈ V1},
– E2 = {ux1uv, x1uvx2uv, x2uvv | {u, v} ∈

(
V1

2

)
\ P},

– E3 = {sx1uv, tx2uv, kux1uv, kvx2uv | {u, v} ∈
(
V1

2

)
\ P}, and

– E4 = {sy, ty | y ∈ V \ V1}.

This completes the construction of G′. It is straightforward to verify diam(G′) =
3, and this is realized between any pair of vertices in V1. An example illustrating
the reduction is shown in Figure 1.

First, suppose G′ admits a strong rainbow vertex coloring φ using k colors.
Observe that for each {u, v} ∈ P , the shortest path between u and v in G′

is unique. Therefore ku and kv must receive distinct colors by φ. Hence the
restriction of φ to V witnesses that 〈G,P 〉 is a YES-instance of k-SSRVC.

On the other hand, suppose 〈G,P 〉 is k-subset strong rainbow vertex con-
nected under some coloring φ : V → {c1, . . . , ck}. We will describe an extended
k-coloring φ′ under which G′ is strong rainbow vertex connected. We retain the
original coloring on the vertices of G, i.e., φ′(v) = φ(v) for every v ∈ V . The
remaining vertices in G′ receive colors as follows:

– φ′(xv) = c1, for every v ∈ V1,
– φ′(x1uv) = c1, φ′(x2uv) = c2, for every {u, v} ∈

(
V1

2

)
\ P , and

– φ′(s) = c2, and φ′(t) = c2.

Since each pair of vertices {a, b} ∈ V ′ at distance at most 2 are always rainbow
connected regardless of the chosen coloring, and each pair of vertices {u, v} ∈(
V1

2

)
\ P are connected by the path through x1uv, x

2
uv, it is straightforward to

verify that G′ is indeed strong rainbow vertex connected under φ′. ut
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Fig. 1. The graph K3 ◦ K1 transformed to a graph of diameter 3 with P =
{{4, 5}, {4, 6}}. The color c1 is represented with grey, and the color c2 with black.
White vertices represent an unknown vertex coloring under which the pairs in P are
strong rainbow vertex connected.

It can be observed that the size of the above reduction does not depend on
k, the number of colors. In fact, if the instance of the k-vertex coloring problem
has n vertices, then the graph G′ we build in Theorem 5 has no more than
O(n2) vertices. Furthermore, a strong rainbow vertex coloring of G′ gives us a
solution to the k-vertex coloring problem. Since the vertex coloring number of
an n-vertex graph cannot be approximated within a factor of n1−ε for any ε > 0
unless P = NP [30], we obtain the following corollary.

Corollary 6. There is no polynomial time algorithm for approximating the
strong rainbow vertex connection number of an n-vertex graph of bounded di-
ameter within a factor of n1/2−ε for any ε > 0, unless P = NP.

4 MSO Formulations

This section will present formulations of the k-coloring variants of rainbow con-
nectivity in MSO logic, along with their algorithmic implications.

Lemma 7. For every k ∈ N there exists a MSO1 formula φk such that for every
graph G, it holds that G |= φ iff G is a YES-instance of k-RVC. Similarly, for
every k ∈ N there exists a MSO2 formula ψk such that for every graph G, it
holds that G |= ψ iff G is a YES-instance of k-RC.

Proof. In the case of k-RC, we wish to partition the edges of the graphG = (V,E)
into k color classes C1, . . . , Ck such that each pair of vertices is connected by a



rainbow path. Let us consider the following MSO2 formula ψk.

ψk := ∃C1, . . . , Ck ⊆ E
(
∀e ∈ E

(
e ∈ C1 ∨ · · · ∨ e ∈ Ck

))
∧
(
∀i, j ∈ [k], i 6= j : (Ci ∩ Cj = ∅)

)
∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

∨
1≤i≤k

(
∃e1, . . . , ei ∈ E

(
Path(u, v, e1, . . . , ei)

∧ Rainbow(e1, . . . , ei)
))))

,

where the auxiliary predicates are defined as

Path(u, v, e1, . . . , e`) := ∃v1, . . . , v`−1 ∈ V(
∀i, j ∈ [`− 1], i 6= j : (vi 6= vj)

)
∧ I(e1, u) ∧ I(e`, v)

∧
(
∀i ∈ [`− 1] : (I(ei, vi) ∧ I(ei+1, vi))

)
and

Rainbow(e1, . . . , e`) := ∀i ∈ [`] ∃j ∈ [k] :
(
ei ∈ Cj ∧ (∀p 6= i : ep /∈ Cj)

)
.

Here, Path(u, v, e1, . . . , e`) expresses that the edges e1, . . . , e` form a path be-
tween the vertices u and v. The predicate Rainbow(e1, . . . , e`) expresses that the
edges e1, . . . , e` are each in precisely one color class.

In the case of k-RVC, the MSO1 formula φk is defined analogously, with the
following distinctions:

1. instead of edges, we partition the vertices of G into color classes;
2. the predicate Path speaks of vertices instead of edges and uses the adjacency

relation instead of the incidence relation; and
3. the predicate Rainbow tests the coloring of vertices instead of edges. ut

Using a similar approach, we obtain an analogous result for the strong vari-
ants of these problems.

Lemma 8. For every k ∈ N there exists a MSO1 formula φk such that for every
graph G, it holds that G |= φ iff G is a YES-instance of k-SRVC. Similarly, for
every k ∈ N there exists a MSO2 formula ψk such that for every graph G, it
holds that G |= ψ iff G is a YES-instance of k-SRC.

Proof. In the case of k-SRC, we wish to partition the edges of the graph G =
(V,E) into k color classes C1, . . . , Ck such that each pair of vertices is connected
by a rainbow shortest path. We will assume the predicates Path(u, v, e1, . . . , e`)
and Rainbow(e1, . . . , e`) are defined precisely as in Lemma 7.



Let us then construct the following MSO2 formula ψk:

ψk := ∃C1, . . . , Ck ⊆ E
(
∀e ∈ E

(
e ∈ C1 ∨ · · · ∨ e ∈ Ck

))
∧
(
∀i, j ∈ [k], i 6= j : (Ci ∩ Cj = ∅)

)
∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

(
∃i ∈ [k] ∃e1, . . . , ei ∈ E

(
Path(u, v, e1, . . . , ei)

∧ Rainbow(e1, . . . , ei)

∧ ∀j ∈ [i− 1] ¬
(
∃w1, . . . , wj ∈ E Path(u, v, w1, . . . , wj)

)))))
.

To capture the property of being a shortest path, we require there to be a u− v
path of length i, and no paths of length less than i. Furthermore, observe that no
path of length greater than k can be rainbow. The construction for k-SRVC then
uses the same ideas, with the same distinctions as those specified in Lemma 7.

ut

Theorem 9. Let p ∈ N be fixed. Then the problems k-RC, k-SRC, k-RVC,
k-SRVC can be solved in time O(n) on n-vertex graphs of treewidth at most p.
Furthermore, k-RVC, k-SRVC can be solved in time O(n3) on n-vertex graphs
of clique-width at most p.

Proof. The proof follows from Lemma 7 and Lemma 8 in conjunction with Fact 2
and Fact 3. ut

In the language of parameterized complexity [16,26], Theorem 9 implies that
these problems are fixed-parameter tractable (FPT) parameterized by treewidth,
and their vertex variants are FPT parameterized by clique-width.

5 The Complexity of Saving Colors

This section focuses on the saving versions of the rainbow coloring problems
introduced in Subsection 2.2, and specifically gives linear-time algorithms for
k-SavingRC and k-SavingRVC. Our results make use of the following facts.

Fact 10 ([19]). There is a MSO1 predicate VertexConnects such that on a
graph G = (V,E) VertexConnects(S, u, v) is true iff S ⊆ V is a set of vertices
of G such that there is a path from u to v that lies entirely in S.

The above is easily modified to give us the following.

Fact 11. There is a MSO2 predicate EdgeConnects such that on a graph G =
(V,E) EdgeConnects(X,u, v) is true iff X ⊆ E is a set of edges of G such that
there is path from u to v that lies entirely in X.

Theorem 12. For each k ∈ N, the problem k-SavingRC can be solved in time
O(n) on n-vertex graphs.



Proof. Observe that by coloring each edge of a spanning tree of G with a distinct
color we have that rc(G) ≤ n− 1. Thus, if m ≥ n+ k, we have a YES-instance
of k-SavingRC. Otherwise, suppose m < n+ k. Then G has a feedback edge set
of size at most k, and hence G has treewidth at most k. We construct a MSO2

formula ψk such that it holds that G |= ψk is true iff G is a YES-instance of
k-SavingRC. Using Fact 11, we construct ψk as follows:

ψk := ∃R1, . . . , Rk ⊆ E
(
∀i, j ∈ [k], i 6= j : (Ri ∩Rj = ∅)

)
∧
(
∀i ∈ [k] :

(
∃e ∈ E(e ∈ Ri)

))
∧ |R1 ∪R2 ∪ · · · ∪Rk| ≥ 2k

∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

(
∃X ⊆ E

(
EdgeConnects(X,u, v)

∧ ∀e1, e2 ∈ X
(
∀i ∈ [k] : (e1 ∈ Ri ∧ e2 ∈ Ri) =⇒ (e1 = e2)

)))))
.

In the above, the expression |A| ≥ 2k is shorthand for the existence of 2k
pairwise-distinct edges in A, which can be expressed by a simple but lengthy
MSO2 expression. The formula ψk expresses that there exist k disjoint sets
R1, . . . , Rk of edges (each corresponding to a different color set with at least
1 edge) such that their union contains at least 2k edges, with the following prop-
erty: there is a path using at most one edge from each set R1, . . . , Rk between
every pair of vertices. Formally, this property is stated as the existence of an
edge-set X for each pair of vertices u, v such that the graph (V,X) contains an
u − v path that cannot repeat edges from any Ri. The proof then follows by
Fact 2. ut

To prove a similar result for k-SavingRVC, we will use the following result.

Fact 13 ([3]). If the treewidth of a connected graph G is at least 2k3, then G
has a spanning tree with at least k vertices with degree 1.

Theorem 14. For each k ∈ N, the problem k-SavingRVC can be solved in time
O(n) on n-vertex graphs.

Proof. Using Fact 1, we will test if the treewidth of G is at least 2k3. If it is, then
by Fact 13 the graph G has a spanning tree with at least k vertices of degree 1.
Each of these k vertices can receive the same color, and we conclude we have a
YES-instance. Otherwise, suppose the treewidth of G is less than 2k3, and we
construct a MSO1 formula φk such that it holds that G |= φk is true iff G is
a YES-instance of k-SavingRVC. The construction is analogous to Theorem 12,
but instead of EdgeConnects we use VertexConnects from Fact 10. The proof
then follows by Fact 2. ut

6 Rainbow Coloring Graphs with Small Vertex Covers

In this section we turn our attention to the more general problem of determining
whether the rainbow connection number is below a number specified in the input.



Specifically, we show that RC, RVC, and SRVC admit linear time algorithms on
graphs of bounded vertex cover number. In particular, this implies that RC,
RVC, SRVC are FPT parameterized by vcn(G).

Lemma 15. Let G = (V,E) be a connected graph and p = vcn(G). Then
rvc(G) ≤ 2p and srvc(G) ≤ p2.

Proof. Let us fix a vertex cover X of cardinality p. For the first claim, let S be a
spanning tree of G of minimum diameter, and observe that the diameter of S is
at most 2p. Let Z be the non-leaf vertices of S. Furthermore, it must hold that
Z ∩ (V \X) ≤ p, and hence |Z| ≤ 2p. Let α be a vertex coloring which assigns a
unique color from [|Z|] to each vertex in Z, and then assigns the color 1 to each
vertex in V \ Z. Then α is a rainbow vertex coloring: indeed, for any choice of
a and b, there exists an a− b path whose internal vertices are a subset of Z.

For the second claim, consider the set Q constructed as follows: for each
distinct a, b ∈ X, if there exists a vertex v in V \X adjacent to both a and b, we
choose an arbitrary such v and add it into Q. Let Z = Q ∪X, and observe that
|Z| ≤ p2. Once again, let α be a vertex coloring which assigns a unique color
from [|Z|] to each vertex in Z, and then assigns the color 1 to each vertex in
V \Z. We claim that α is a strong rainbow vertex coloring. Indeed, consider any
a, b ∈ V and let P be an arbitrary shortest a − b path. Then for every internal
vertex vi of P such that vi 6∈ X, it must hold that vi−1 ∈ X and vi+1 ∈ X.
Consider the path P ′ obtained from P by replacing each internal vertex vi 6∈ X
by v′i, where v′i is an element of Q which is adjacent to vi−1 and vi+1. Since P ′

has the same length as P and P ′ is rainbow colored by α, the claim follows. ut

The following lemma will be useful in the proof of Lemma 17, a key com-
ponent of our approach for dealing with RC on the considered graph classes.
An edge separator is an edge e such that deleting e separates the connected
component containing e into two connected components.

Lemma 16. Let G = (V,E) be a graph and X be a minimum vertex cover of
G. Then there exist at most 2|X| − 2 edge separators which are not incident to
a pendant outside of X.

Proof. We prove the lemma by induction on p = |X|. If p = 1, then the graph
is a star and the lemma holds (in a star, every edge separator is incident to a
pendant).

So, assume the lemma holds for p− 1 and assume G has a vertex cover X of
size p. Let S be the set of all edge separators in G which are not incident to a
pendant outside of X. If S contains an edge separator e whose both endpoints
lie in X, then e separates X into two non-empty subsets X1 and X2 and every
other separator has both endpoints either in X1 or in X2. Let G1 and G2 be
the connected components of G−e containing X1 and X2, respectively. Observe
that Xi is a vertex cover of Gi for i ∈ [2]. Since |X1| < p and |X2| < p, by
our inductive assumption it follows that G1 contains at most 2|X1| − 2 edge
separators which are not incident to a pendant outside of X, and similarly G2



contains at most 2|X2| − 2 edge separators which are not incident to a pendant
outside of X. Since each edge separator in G is either e or an edge separator in
G1 or G2, it follows that |S| = 1 + 2|X1| − 2 + 2|X2| − 2 = 1 + 2p− 4 < 2p− 2,
and hence in this case the lemma holds.

On the other hand, assume S contains an edge separator e = ax where
x ∈ X, a 6∈ X. Since the connected component of G − e containing a is not a
pendant, it follows that a has a neighbor in G which is different from x, and
hence this connected component (say G1) contains at least one vertex from X.
Let X1 = X ∩ V (G1), X2 = X \ X1 and G2 be the connected component of
G− e containing X2. This implies that in this case e also separates X into two
non-empty subsets X1 and X2. Furthermore, if there exists another e′ ∈ S which
separates X into the same sets X1 and X2 as e, then e′ must also be incident to a
and in particular this other edge e′ is unique; every other separator in S has both
endpoints either in X1 or in X2. Since |X1| < p and |X2| < p, by our inductive
assumption it follows that G1 contains at most 2|X1| − 2 edge separators which
are not incident to a pendant outside of X, and similarly G2 contains at most
2|X2|−2 edge separators which are not incident to a pendant outside of X. Since
each edge separator in G is either e or e′ or an edge separator in G1 or G2, it
follows that |S| ≤ 2 + 2|X1| − 2 + 2|X2| − 2 = 2 + 2p− 4 ≤ 2p− 2, and hence in
this case the lemma also holds. ut

For ease of presentation, we define the function β as β(p) = 2p− 2 + p · (p2 +
2p · 2p). The next Lemma 17 will represent one part of our win-win strategy, as
it allows us to precisely compute rc(G) when the number of edge separators is
sufficiently large. We remark that an analogous claim does not hold for src(G)
(regardless of the choice of β).

Lemma 17. Let G = (V,E) be a connected graph and p = vcn(G). Let z be the
number of edge separators in G. If z ≥ β(p), then rc(G) = z.

Proof. Let us fix a vertex cover X of cardinality p. It is known that the number
of edge separators is a lower bound for rc(G) [9], i.e., rc(G) ≥ z. We will show
that z is also an upper bound for rc(G).

Consider the edge z-coloring α constructed as follows. Since X is a vertex
cover and, by Lemma 16 in conjunction with our assumption on z, there are
at least p · (p2 + (4 + p) · 2p) leaves in G, it follows that there must exist some
x ∈ X adjacent to at least z′ = p2 + 2p · 2p pendants. Let {e1, . . . , ez′} be the
edges incident to both x and a pendant vertex, and let {ez′+1, . . . , ez} be all the
remaining edge separators; then for each edge separator we set α(ei) = i.

Let f1, . . . , fq be the edges of G[X] which are not edge separators; for each
such edge we set α(fi) = z′ − i. Observe that for each such fi we have α(fi) >
2p · 2p.

Consider the set τ = {Ti | Ti is a type in G and |N(Ti)| > 1 }. Let Qi =
{2pi + 1, . . . , 2pi + 2p}. For each Ti ∈ τ , we let Gi be the subgraph of G on
Ti ∪N(Ti) which contains exactly the edges incident to Ti. Then Gi is bipartite,
and furthermore can be rainbow colored using at most 2p colors as follows: we
pick an arbitrary y ∈ Ti and uniquely color all edges in Gi incident to y using



colors c1, . . . , cp, and for every other vertex in Ti we color all edges in Gi incident
to y′ using colors c1+p, . . . , c2p. For each type Ti ∈ τ , we let α color the edges
incident to Ti in this manner using the colors from Qi.

We will proceed by arguing that α is a rainbow edge z-coloring of G, but
before that we make three key observations. First, there are only two cases when
α can use the same color for two distinct edges e, f : either one of e, f is an edge
between x and a pendant, or both e, f occur in some Gi. Second, if |Ti| > 1,
then for every u ∈ N(Ti) and every v ∈ V (Gi) and every color c, there exists
a rainbow u − v path in Gi under α which does not use c. Third, each Gi is
rainbow colored by α.

We now make the following case distinction.

1. Let a, b ∈ V be such that neither is a pendant adjacent to x. Consider an
arbitrary a− b path P such that the number of pairs of edges in P assigned
the same color by α is minimized. If P contains two edges e, f such that
α(e) = α(f), then both e and f must occur in some Gi. Let t and u be the
first and last vertex in V (Gi) on P , respectively. Since Gi is rainbow colored
by α, there exists a t−u rainbow path P ∗ in Gi. Let P ′ be obtained from P
by replacing the path segment between t and u by P ∗; by the key observation
made above, it follows that P ′ has a strictly lower number of pairs of edges
in P which are assigned the same color by α, hence contradicting our choice
of P .

2. Let a be a pendant adjacent to x, and b ∈ V . Let c = α(xa). Consider an
arbitrary a− b path P such that the number of pairs of edges in P assigned
the same color by α is minimized. If P contains two edges e, f such that
α(e) = α(f) 6= c, then both e and f must occur in some Gi s.t. |Ti| > 1.
Let t and u be the first and last vertex in V (Gi) on P , respectively. Since
t ∈ X ∩ N(Ti), by our observations above it follows that there exists a
rainbow t − u path P ∗ in Gi which avoids c. Hence the path obtained by
replacing the path segment between t and u by P ∗ once again contradicts our
choice of P . On the other hand, if P contains an edge e such that α(e) = c,
then either e is an edge in G[X] or e is incident to some Ti. In the latter
case, the same argument can be used to contradict our choice of P . In the
former case it follows by construction of α that c only occurs on the edge
(x, a) and on e, and furthermore e is contained in some 2-edge-connected
component D of G. Let d,w be the first and last vertex, respectively, in D
which occurs in P , and let P ′ be the path obtained from P by replacing the
path segment between d and w by an arbitrary rainbow path segment in D
which does not contain e. It is readily verified that the colors which occur
in D are only repeated on edges between x and pendants, and in particular
such edges cannot occur on P ′. Hence P ′ again contradicts our choice of P .

To summarize, for any a, b ∈ V there exists a rainbow a − b path under α,
and hence α witnesses that rc(G) ≤ z. We conclude that rc(G) = z. ut
Lemma 18. Let G = (V,E) be a graph with a vertex cover X ⊆ V of cardinality
p. Let z be the number of edge separators in G. If z < β(p), then rc(G) ≤
β(p) + p2 + 2p · 2p.



Proof. Consider the following edge coloring α which assigns a unique color to
each edge in G[X] and to each edge incident to a pendant. For each nonempty
type Ti, we choose an arbitrary vertex yi and let α assign a unique color for
each of the at most p edges incident to yi. Finally, for each type Ti and each
x ∈ X adjacent to (the vertices of) Ti, α uses a single new color for all edges
between x and the vertices in Ti. It is readily verified that α uses no more than
z + p2 + 2p · 2p colors.

We argue that α is rainbow. Let Gi be the subgraph of G on Ti∪N(Ti) which
contains exactly the edges incident to Ti, and observe that each Gi is rainbow
colored by α. Consider any a, b ∈ V and let P be an a − b path such that the
number of pairs of edges in P assigned the same color by α is minimized. By
construction of α, two edges e, f in P may only have the same color if e, f are
both incident to some Ti. Let t and u be the first and last vertex in V (Gi) on P ,
respectively. Since Gi is rainbow colored by α, there exists a t− u rainbow path
P ∗ in Gi under α. Let P ′ be obtained from P by replacing the path segment
between t and u by P ∗. Then P ′ has a strictly lower number of pairs of edges in
P with the same color, which contradicts our choice of P . ut
Theorem 19. Let p ∈ N be fixed. Then the problems RC, RVC, SRVC can be
solved in time O(n) on n-vertex graphs of vertex cover number at most p.

Proof. For RVC and SRVC, we first observe that if k (the queried upper bound
on the number of colors) is greater than 2p and p2, respectively, then the algo-
rithm can immediately output YES by Lemma 15. Otherwise we use Theorem 9
and the fact that the vertex cover number is an upper bound on the treewidth
to compute a solution in O(n) time.

For RC, it is well known that the total number of edge separators in G, say
z, can be computed in linear time on graphs of bounded treewidth. If z ≥ β(p),
then by Lemma 17 we can correctly output YES when z ≤ k and NO when
z > k. On the other hand, if z < β(p), then by Lemma 18 the value rc(G) is
upper-bounded by a function of p. We compare k and this upper bound on rc(G);
if k exceeds the upper bound on rc(G), then we output YES, and otherwise we
can use Theorem 9 along with the fact that the vertex cover number is an upper
bound on the treewidth to compute a solution in O(n) time. ut

7 Concluding Notes

We presented new positive and negative results for the most prominent variants
of rainbow coloring. We believe that the techniques presented above, and in
particular the win-win approaches used in Section 5 and Section 6, can be of use
also for other challenging connectivity problems.

It is worth noting that our results in Section 4 leave open the question
of whether Rainbow Coloring or its variants can be solved in (uniformly)
polynomial time on graphs of bounded treewidth. Hardness results for related
problems [22, 29] do not imply that finding an optimal coloring of a bounded-
treewidth graph is hard, and it seems that new insights are needed to determine
the complexity of these problems on graphs of bounded treewidth.
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