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a b s t r a c t

We study those unit interval graphs having amodel with intervals of integer endpoints and
prescribed length. We present a structural result for this graph subclass which leads to a
quadratic-time recognition algorithm, giving as positive certificate a model of minimum
total length and as negative certificate a forbidden induced subgraph. We also present a
quadratic-time algorithm to build, given a unit interval graph, a unit interval model with
integer endpoints for which the interval length is as minimum as possible.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction1

A graph is an interval graph if there exists a bijectionQ3 between a family of open intervals in the real line, and its vertex2

set, such that two vertices are adjacent if and only if their corresponding intervals intersect. Such a family of intervals is3

called an interval model of the graph. Let G = (V , E) be a graph, H = (V ′, E ′) is said to be an induced subgraph of G if V ′
⊆ V4

and E ′
= {uv ∈ E : u, v ∈ V ′

}. Given a collection of graphs H, G is defined to be H-free if for any graph H ∈ H, G does not5

contain an inducedH . IfH is a set with a single elementH , we just useH-free for short. Interval graphswere characterized by6

forbidden induced subgraphs in a celebrated paper of Boland and Lekkerkerker [7]. Graphs in this class can be recognized in7

linear-time (see e.g. [6]). A unit interval graph is an interval graph having amodelwith all its intervals of the same
∧
length. Such8

an interval model is called a unit interval model. Roberts proves that unit interval graphs are exactly those claw-free interval9

graphs [11]. Unit interval graphs can be recognized in linear-time. For instance, a direct and simple linear-time
∧
recognition10

algorithm for unit interval graphs based on BFS search can be found in [1]; in case the input graph is a unit
∧
interval, the11

algorithm outputs a unit interval model in which every endpoint is an integer ranging from 0 to n2.12

For definitions and concepts not defined
∧
here, see [13]. Two adjacent vertices are true twins, or simply twins, if they have13

the same closed neighborhood, where two vertices are neighbors if they are adjacent. Given an edge vx and a vertex y of G, if14

x, y are twin vertices in G−{v} but not in G, that is, NG[x]∆NG[y] = {v}, we will say that v distinguishes x from y. Roberts [11]15
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shows that the ordering of the left endpoints of any unit interval model of a connected unit interval graph without twins 1

is unique up to reversal, called a canonical ordering. Throughout this paper, the results given will concern finite, undirected 2

and connected graphs. Every connected component can be analyzed separately for disconnected
∧
graphs; thus, we will only 3

consider the connected graphs. Extending the results for unconnected graphs is trivial. Given an interval I , denote by ℓ(I) 4

and r(I) the left endpoint and the right endpoint of I , respectively. For a twin-free connected graph, let M = {I1, . . . , In} 5

be a unit interval model indexed in the canonical order, where I1 has the leftmost left endpoint and In has the rightmost 6

one, we define the total length of M as |M| = r(In) − ℓ(I1). We also define Left(M) = ℓ(I1) and Right(M) = r(In). For a 7

positive integer k, an open (resp. closed) interval with integer endpoints and length k is a (k)-interval (resp. [k]-interval). 8

Given a graph G and a positive integer k, we say that G is a (k)-interval graph (resp. a [k]-interval graph) if G admits a model 9

M of (k)-intervals (resp. [k]-intervals). This unit interval model is called (k)-interval model (resp. [k]-interval model). Notice 10

that every unit interval graph has a (k)-interval model for some k. Therefore, given a unit interval modelM, it is interesting 11

to find another unit interval model M′ such that k and
⏐⏐M′

⏐⏐ are minimum. This problem was studied in different contexts. 12

Continuing with some ideas developed by Pirlot in [10], Mitas presents a linear-time algorithm that constructs a (k)-interval 13

model with a minimum k for a given unit interval model [9]. This algorithm was developed in the context of the study of 14

interval semiorders representablewith intervals of a given length k. Moreover, those semiorders representablewith intervals 15

of length kwere characterized by forbidden suborders for every integer k. Recently, Soulignac [12] reported a flaw in Mitas’ 16

algorithm [9], showed examples in which the integer k, found by the algorithm, is not minimum and the flaw is fixed but 17

the complexity becomes quadratic-time. The problem of finding a unit interval model with minimum k and minimum total 18

length is also studied in the context of gene clusters as intersection of powers of paths [2]. 19

In this
∧
work, we give a new approach to solve the following problems: 20

1. recognize if a graph is a (k)-interval graph for a given k and exhibit a (k)-interval model of minimum total length, 21

2. find the minimum k in which a graph is a (k)-interval graph. 22

More precisely, given a graph G and a nonnegative integer k, we develop an algorithm that determines (in quadratic-time) 23

if G is a (k)-interval graph and if so, shows a (k)-interval model of minimum total length. Otherwise, it shows a forbidden 24

induced subgraph contained in G (a negative certificate). In addition, we derive from this algorithm another one that, given 25

a unit interval graph G and a unit interval model of it, finds the minimum k in which G is a (k)-interval graph. This algorithm 26

also constructs a (k)-interval model. Furthermore, we present a characterization by forbidden induced subgraphs for the 27

class of (k)-interval graphs for every integer k. Notice that recognizing a unit interval graph and obtaining a unit interval 28

model is linear [1]
∧
; therefore, we shall assume that a unit interval model of an input graph is given whenever the input 29

graph is a unit interval graph. 30

This paper is organized as follows. In Section 2, we present a characterization for the class of (k)-interval graphs for every 31

integer k by forbidden induced subgraphs and a quadratic-time algorithm that decides for a given integer k whether a unit 32

interval graph has a (k)-interval model or not. Finally, in Section 3, we present an algorithm that finds in quadratic-time a 33

(k)-interval model of minimum k and minimum total length. 34

An extended abstract of this work was published in [3]. 35

2. Structural characterization 36

In this
∧
section, we present a family of forbidden induced subgraphs for a (k)-interval graph. Our main result is a 37

characterization of this class and an algorithm to exhibit a model of minimum total length. 38

Before presenting the main result of this
∧
section, we need to introduce new definitions. Given an interval I = (a, b), we 39

say that I is left shifted if it is replaced by the interval (a−1, b−1), that is, if I is shifted one unit to the left. Given a (k)-interval 40

model M of a (k)-interval graph G and I ∈ M, we define Lk(I) as the minimum submultiset S of M such that left shifting 41

all intervals in S ∪ I yields a new (k)-interval model of G and Lk(A) for some multiset A of (k)-intervals as ∪I∈ALk(I), where 42

Lk(∅) = ∅. Let RO(I) be the multiset of the intervals of a (k)-interval model which overlap I one unit on the right endpoint 43

and the emptyset otherwise, and L(I) be the multiset of the intervals of a (k)-interval model whose right endpoint coincides 44

with the left endpoint of I and the emptyset otherwise. Fig. 1 shows RO(I) and L(I) of a certain interval I = (k, 2k). If I is left 45

shifted, RO(I) and L(I) must also be left shifted so that M is still a (k)-interval model of G.
∧
But, as RO(I) and L(I) will be left 46

shifted, Lk(L(I)) and Lk(RO(I)) must also be left
∧
shifted; therefore, a recursive way of defining Lk : M → P(M) is as follows: 47

Lk(I) = Lk(RO(I)) ∪ Lk(L(I)) ∪ RO(I) ∪ L(I), 48

where P(M) is the family of all submultisets S ⊆ M. When the length k is clear in the
∧
context, we shall omit the subindex 49

and use L = Lk. 50

Consider the (k)-interval model M̃ obtained fromM left shifting all intervals in L(I)∪{I} for some I ∈ M. Notice that M̃ 51

is a (k)-interval model of the same graph as M. In fact, L(I) is the minimum multiset of intervals that has to be left shifted 52

when translating I one unit to the left so as to preserve adjacencies. Suppose M is a (k)-interval model with two coinciding 53

intervals I = I ′. The interval I belongs to L(I ′) if and only if there exists a sequence of intervals I1, I2, . . . , IN in L(I ′) ∪ {I ′} 54

such that I1 = I ′ and Ii+1 equals either L(Ii) or RO(Ii) for each 1 ≤ i ≤ N − 1 and either L(IN ) = I or RO(IN ) = I . Suppose that 55

L(IN ) = I , the other case is analogous as noted in Remark 1. Given two integers a and b, [[a, b]] stands for the set formed by 56
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Fig. 1. Configurations that do not preserve adjacencies if I is the only interval left shifted.

Fig. 2. The (4)-interval model of the string RLRRRL and its corresponding (4)-interval graph.

the integers from a to b. Let i and j
∧
be,

∧
respectively, the number of ‘‘right overlap’’ intervals in the sequence and the number1

of ‘‘left’’ intervals in the sequence, that is, i = |{l ∈ [[1,N − 1]] : Il+1 = RO(Il)}| and j = |{l ∈ [[1,N − 1]] : Il+1 = L(Il)}|.2

Let li = ℓ(Ii), we have that3

l1 + (k − 1)i − jk = lN = l1 + k,4

and, therefore,5

k =
i

i − j − 1
.6

Then, as k is an integer, for some m ≥ 1, i = km and j = m(k − 1) − 1. In the next
∧
lemma, we show that if m = 1 then7

the sequence in which I ∈ L(I ′) is minimum.8

To simplify the notation, we will denote these particular (k)-interval models defined by a sequence I1, . . . , IN as a string9

of length N havingmk R’s andm(k − 1) − 1 L’s in the following way: for all 1 ≤ i ≤ N − 1, an L in the (i + 1)th position is to10

denote that Ii+1 = L(Ii) and an R in that position is to denote that Ii+1 = RO(Ii). Fig. 2 shows a particular string of (4)-intervals11

and its corresponding unit interval graph, taking k = 4 and m = 1.12

Lemma 1. Let G be the unit interval graph corresponding to a (k)-model represented by a string S of i = mk R’s and13

j = m(k − 1) − 1 L’s with m > 1. Then, there exists a contiguous substring S′ of S consisting of k R’s and k − 2 L’s.14

Proof. Let S be a string ofmk R’s andm(k − 1) − 1 L’s withm > 1. We will prove that there exists a contiguous substring S′
15

of S consisting of k R’s and k − 2 L’s.16

Let x1 be the number of R’s before the first L, xi be the number of R’s between the (i−1) th and the ith L, 2 ≤ i ≤ m(k−1)−1,17

and xm(k−1) be the number of R’s after the last L. Clearly,
∑m(k−1)

i=1 xi = km. In order to exist a substring S′ of k R’s and k − 218

L’s, there should exist i satisfying simultaneously19

xi + xi+1 + · · · + xi+k−3 + xi+k−2 ≥ k (1)20

xi+1 + · · · + xi+k−3 ≤ k. (2)21

Suppose there is no such S′, then for all i, xi + xi+1 + · · · + xi+k−3 + xi+k−2 ≤ k− 1 or xi+1 + · · · + xi+k−3 ≥ k+ 1. It is easy22

to see that there exists some i satisfying (1). For this i, since
∑m(k−1)

i=1 xi = km, the inequality (2) does not hold therefore.23

Then, the next sequence xi+1, xi+2, . . . , xi+k−1 also satisfies inequality (1). By analogous arguments, this sequence24

contradicts inequality (2). Repeating this for the next sequences as well as for the previous sequences, we have m disjoint25

substrings with at least k + 1 R’s each, which results in a contradiction as there are onlymk R’s in S.26
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Fig. 3. The graphs bull and gem.

Remark 1. The k R, k− 2 L strings construct, as detailed above, (k)-intervals in which if adding a last L to the string, this last 1

interval coincides with the first one. Notice that the (k)-interval graph represented by a string after adding the extra L, that 2

is, a k R, k − 1 L string, is isomorphic to the intersection graph of the representation of any circular rotation of the string: it 3

only changes the interval in which the construction starts. 4

To illustrate Remark 1 see Fig. 2 in which there is the string RLRRRL and by adding an L at the end of it, the interval I0 5

is repeated. A circular rotation of this new string, such as RRRLLRL is represented by the same (k)-intervals starting from 6

interval I2 instead of I0. 7

The circular rotation of the k R, k− 1 L strings in which
∧
there is an R at the end coincides with those strings coming from 8

the analysis if RO(IN ) = I . 9

For k ≥ 2, letFk be a family of the (k)-interval graphs with the following (k)-representations defined recursively: (i) Place 10

the first interval I0 of length k with its endpoints on integer numbers, this interval is called the generator vertex. (ii) Let I be 11

the last so far interval placed, choose one of the following two options: Left-choice: Build a new interval J of length k with 12

its right endpoint coinciding with the left endpoint of the previous one, that is, J satisfies that r(J) = ℓ(I). This choice can 13

be done if and only if the new interval is not fully to the left of I0, or Right-choice: Build a new interval J of length k such 14

that its left endpoint intersects in one unit the right endpoint of the previous one, that is, J satisfies left(J) = right(I) − 1. 15

(iii) Repeat step (ii) until exactly k − 2 Left-choices and k Right-choices are carried out. 16

In
∧
Fig. 2, a graph ofF4 is

∧
exhibited; its construction as described above is after choosing the string RLRRRLwhen repeating 17

step (ii) for 2 Left-choices and 4 Right-choices (k = 4). In Fig. 3, the graphs in F3 are shown, with the corresponding strings 18

of R’s and L’s that construct them. All graphs in F4 are depicted in Fig. 4 removed of isomorphic graphs. Some of the graphs 19

in Fk+1 are shown in Fig. 5. 20

The following theorem gives a structural characterization of (k)-interval graphs: 21

Theorem 2. Let G = (V , E) be a connected unit interval graph without twins and n = |V |. The following statements are 22

equivalent: 23

1. G is a (k)-interval graph, 24

2. G is an induced subgraph of (Pl)k−1, the (k − 1)th power of the path Pl with n ≤ l ≤ d(k − 1) + 1, where d is the diameter 25

of G, 26

3. G is Fk+1–free. 27

4. G is a [k − 1]–interval graph. 28

Unit interval graphs F4–free can be represented in a (3)-interval model. The proof of Theorem 2 will require some 29

definitions and lemmas. For a graph G, we define q(G) as the number of maximal cliques of it. 30

Lemma 3. Let G be a unit interval graph without twins, C1, C2, . . . , Cq its maximal cliques in the canonical order, v ∈ C1 a 31

simplicial vertex of G and G̃ = G − {v}. Then, 32

1. q(̃G) = q(G) − 1. Moreover, the maximal cliques of G̃ are C2, C3, . . . , Cq. 33

2. if G̃ has twin vertices x, y ∈ V (G) such that ℓ(Ix) ≤ ℓ(Iy), then x, y ∈ C2, x ∈ C1, and x, y are the only twins in G̃. 34

Proof. Such a vertex v exists because given a unit interval graph without twins, the order of the left (and right) endpoints 35

of the intervals is invariant no matter the chosen representation, except for the reverse [11]. 36

(1) Since C2, C3, . . . , Cq do not contain the vertex v which was removed from G, they are maximal cliques in G̃. Arguing 37

towards a contradiction, suppose that C1 − {v} is a maximal clique of G̃. As G̃ is a unit interval graph, there is a simplicial 38

vertex u in the first maximal clique C1 − {v}, then u ̸= v, u ∈ C1, u ̸∈ C2, C3, . . . , Cq. Therefore, u and v are twins in G, a 39

contradiction. The contradiction arose
∧
from supposing that C1 − {v} is a maximal clique of G̃. 40

(2) Suppose there are two pairs of twins in G, namely x, y and x, y. As G is a graphwithout twins, vertex v must distinguish 41

inG each vertex from its twin in G̃.We can assume,without loss of generality, that x and x are adjacent to v and that y and y are 42
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Fig. 4. Forbidden subgraphs for (3)-interval graphs and their corresponding strings of R’s and L’s.

Fig. 5. Some of the forbidden subgraphs for (k)-interval graphs.

not. As v ∈ C1 is simplicial, we have that x, x ∈ C1, while y, y ̸∈ C1. If x and x are the same vertex, thenNG̃[y] = NG̃[x] = NG̃[y],1

and then y and y would be twins in G as they are not adjacent to v. Therefore, x and x are distinct vertices. As the maximal2

cliques are indexed in the canonical order, there exist i, i ∈ [[1, q]] such that x ∈ C1, C2, . . . , Ci and x ̸∈ Ci+1, x ∈ C1, C2, . . . , Ci3

and x ̸∈ Ci+1. If i = i then NG[x] = NG[x] and so they would be twins in G, which cannot happen. Without loss of generality,4

suppose that i < i. Since x and y are twins in G̃, that is, y is adjacent to N[x] \ {v}, then y ∈ C2, C3, . . . , Ci and y ̸∈ C1, Ci+1.5

Similarly, y ∈ C2, C3, . . . , Ci and y ̸∈ C1, Ci+1, as shown in Fig. 6.6

As y ∈ Cl ∀l = 2, . . . , i and x ∈ Cl ∀l = 1, . . . , i with i < i, the model is non-proper (Iy ⊊ Ix), a contradiction.7

Vertices x and y of Lemma 3, that is two vertices that become twins after removing the simplicial vertex v, will be called8

temporary twins.9

Recall that the first interval I0 in the construction of a member of Fk is called the generator vertex. The following lemma10

gives a recursive method to build Fk+1 from Fk:11

Lemma 4. Let G = (V , E) be a graph in Fk with V = {v1, v2, . . . , vn} indexed in the canonical ordering. Let x = vi be the12

generator vertex of G, and H be the twin-free graph obtained by adding to G a twin x′ to x and a simplicial vertex s adjacent to13

v1, . . . , vi−1, vi = x, thus removing the twin condition between x and x′. Then, H ∈ Fk+1.14
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Fig. 6. A representation of G having two pairs of twins x, y and x, y. The vertex sets C1, C2, . . . , Cq are the maximal cliques in the canonical order.

Proof. The vertex s is in fact a simplicial vertex of H as the generator vertex x = vi, by construction, is always in the first 1

clique, ordering the cliques in the canonical order. Then, as the vertices are in the canonical order v1, . . . , vi−1, vi are all in 2

the first clique. 3

The graph G is a member of Fk with a particular string S of k Right choices and k − 2 Left choices resulting in a (k)-model
with the intervals Ix, I1, I2, . . . , I2k−2, in the order they were built. If this same string S is taken to construct a member of the
(k + 1)-interval family Fk+1, interval (0, k + 1) being the generator, then the last interval I2k−2 would be placed as follows:

ℓ2k−2 = ℓx + k · k − (k − 2)(k + 1)
ℓ2k−2 = k + 2

Adding x′ a twin to x such that I ′x = (1, k + 2) and the simplicial Is = (−k, 1), this (k + 1)–model results in a member of 4

the Fk+1 with the sequence of choices R S L, being the generator the interval Is. Notice that the number of Right choices is 5

k + 1 and the number of Left choices is k − 2 + 1 = k − 1. 6

Before adding S, it is easy to prove that x and x′ are twins since there is no interval I whose L(I) or RO(I) is Ix. In case this 7

happens, it would contradict that in Fk+1 we have the minimum string of R’s and L’s in which we can create a copy of an 8

interval, by virtue of Lemma 1. By construction, Is intersects Ix and all intervals with smaller left endpoint. Therefore, a string 9

in Fk+1 has been found to represent H . Since the process can be reversed to obtain a member of Fk from one of Fk+1, family 10

Fk+1 can be
∧
built from Fk. 11

Let us now prove Theorem 2: 12

Proof. (2) ⇒ (1) Let Pl = v1, v2, . . . , vl, being G an induced subgraph of (Pl)k−1. Represent each vi as a (k)-interval with its 13

left endpoint on the integer i. In this model, remove every interval associated with the vertices that has to be eliminated to 14

construct G. 15

(1) ⇒ (2) Reverse construction as (2) ⇒ (1). It remains to prove that the bounds of l are correct. Since vertices from (Pl)k−1
16

are removed, then n ≤ l. To prove the upper
∧
bound, we first claim the following: 17

We claim that for a graph with a unit interval model M = {I1, I2, . . . , In}, intervals index as in the canonical order 18

associated to V = {1, 2, . . . , n}, there exists an induced path that starts at the vertex 1 and ends at n which realizes the 19

diameter of G. 20

Suppose the claim does not hold. Let P = u1, u2, . . . , ul be an induced path that realizes d. Therefore, at least one of 21

its endvertices is neither 1 nor n. Assume, without loss of generality, that u1 ̸= 1. The proof continues depending on 22

the existence of the edge (1, u1). 23

Case (1, u1) ∈ E: Vertex 1 can also be adjacent only to u2, since otherwise the path P would not be induced, as noted in 24

Fig. 7. If (1, u2) ∈ E, the induced path 1, u2, u3, . . . , ul has the same length as P and therefore it is a path that realizes 25

the diameter, with first vertex 1. Else, the path 1, u1, u2, . . . , ul is an induced path longer than P . 26

Case (1, u1) ̸∈ E: Let P ′
= 1, v2, v3, . . . , vj, u1, with j ≥ 2, be an induced path between vertices 1 and u1. If there are 27

no edges between P and P ′, then there exists an induced path longer than P , by joining P ′P . The only possible edge 28

between these induced paths is (vj, u2), since any other would contradict the fact that P and P ′ are induced paths. The 29

induced path 1, v2, . . . , vj, u2, u3, . . . , ul is longer than P , which results in a contradiction. 30

Consider an induced path P = 1, v2, . . . , vd, n which satisfies the claim. The model of P of maximum total length is that 31

in which the intersecting intervals are placed overlapping each other by one unit. The left endpoint of all the other intervals 32
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Fig. 7. If there is an edge between 1 and u3 then all vertices between them must induce a complete subgraph.

must fit between ℓ1 and rn as they are labeled in the canonical order. The maximum number of possible intervals without1

twins between I1 and In is d · (k − 1) + 1.2

(1) ⇔ (3) The proof is by induction on n = |V |:3

If n = 1, an isolated vertex can be represented in a (k)-interval model and does not have any graph in Fk+1 as an induced4

subgraph.5

Suppose the claim holds for i < n. LetG be a unit interval graph of n verticeswithout twins. Let us index the vertices in the6

canonical ordering {v1, v2, . . . , vn}. Remove the first vertex v1, which corresponds to a simplicial vertex. In the remaining7

graph, by virtue of Lemma 3, there is at most one pair of temporary twins, which must be consecutive, vj and vj+1; let8

G̃ = G − {v1, vj}.9

If G is Fk+1–free, we will show that G can be represented in a (k)-interval model. Since
⏐⏐V (̃G)

⏐⏐ < n and G̃ is free of Fk+110

as induced subgraphs, by inductive hypothesis, there exists a (k)-interval model M = {I2, . . . , Ij−1, Ij+1, . . . In} of G̃, where11

interval Ii is associated to vertex vi. Notice that if temporary twins did not appear after removing v1, the model M would12

also include the interval Ij. The proof is done as the removed vertices {v1, vj} are represented with (k)-intervals in M.13

First, in case there is a temporary twin, place Ij initially coinciding with Ij+1. Since I1 must intersect only the Ij, we shall14

slide Ij one unit to the left. In order to make sure the adjacencies are preserved, we proceed as follows.15

After placing Ij coincidingwith Ij+1, slide all intervals inL(Ij)∪{Ij} one unit to the left. Now, place I1 such that r(I1) = ℓ(Ij+1).16

Therefore, I1 intersects Ij but not Ij+1, completing the construction. Such a strategy will work if and only if Ij+1 ̸∈ L(Ij).17

In order to hold that Ij+1 ∈ L(Ij), by virtue of Lemma 1, there must be a string of k R’s and k − 2 L’s having Ij as the18

generator. Then, we would have a graph in Fk as an induced subgraph of G. After adding the Ij+1 and I1, we would be in the19

hypothesis of Lemma 4 in which we build recursively Fk+1 from Fk. So, G is (k)-interval if and only if G is Fk+1-free.20

In case there is no pair of temporary twins after removing v1, we add it in M as follows. Let j ∈ [[1, n]] be such that21

Ij+1 ∈ C2 \ C1 and Ij ∈ C1 where C1 and C2 denote for the first two maximal cliques. Then, place I1 such that I1 = L(Ij+1).22

(4) ⇒ (1) LetM be a [k−1]-intervalmodel ofG. LetM̃ be themodel obtained fromM by opening all intervals. Adjacencies of23

each vertex either remains the same or decreases only in the case the interval shares just an endpoint with another interval.24

Augment the right endpoint of all intervals by one unit. This transformsM into a (k)-interval model M̃where r(̃I) = r(I)+125

and ℓ(̃I) = ℓ(I) ∀̃I ∈ M̃ and I ∈ M.26

It does not change its adjacencies since for I, J ∈ M and Ĩ, J̃ ∈ M̃, I precedes J ⇔ r(I) < ℓ(J) ⇔ r(̃I) − 1 < ℓ(̃J) ⇔ r(̃I) ≤27

ℓ(J) ⇔ Ĩ precedes J̃ .28

(1) ⇒ (4) Symmetrical to the proof of (4) ⇒ (1), closing the intervals and decreasing their right endpoint by one unit.29

Theorem 2 plays a central role in this characterization. The proof of (3) ⇒ (1) is constructive; i.e, it describes how to30

construct a (k)-interval model (in quadratic-time) for a given Fk+1–free unit interval graph. We apply this construction in31

the algorithm to solve the associated optimization problem of finding a (k)-interval model of minimum k andminimum total32

length, described in the next section.33

3. Minimum representation and complexity34

In this
∧
section, we prove that the (k)-interval model constructed in the previous section minimizes the total length, and35

we present a quadratic-time algorithm to find the minimum k such that a unit interval graph is a (k)-interval graph.36

3.1. Model of minimum total length37

Given a (k)-interval graph G, a vertex v of G, and a positive integer T , we define the parameter MAXL(v) as the rightmost38

left endpoint of the corresponding interval Iv of v among all possible (k)-interval modelsM of G such that Right(M) = T . We39

assume hereafter that T is some positive constant. Using the uniqueness of the ordering of left endpoints of a unit interval40

model with no twins, it is easy to prove that, for a fixed integer T , a (k)-interval model of minimum total length will be that41

which has its first interval as right as possible.42

Lemma 5. Let G = (V , E) be a connected (k)-interval graph and M a (k)–interval model. If ℓ(Iv) = MAXL(v) for every vertex43

v ∈ V and its corresponding interval Iv ∈ M, then M is a minimum length model of G.44
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∧
Next, we will summarize the steps of the main algorithm of our work. This algorithm, given a unit interval model of a 1

graph G and a fixed k as an input, finds in quadratic-time a (k)-interval model of minimum total length if G is (k)-interval or 2

a forbidden subgraph for a graph being (k)-interval otherwise. 3

The (k)-interval model described in Theorem 2 consists in disassembling the unit interval model by removing a simplicial 4

interval and one twin of the possible pair of twins appearing after the removal. Then, the model can be reconstructed 5

inductively by adding the eliminated twin and the simplicial vertex to the (k)-interval model given by induction, keeping 6

the model as (k)-interval. This construction can be computed inO(n2)–time. In [1], anO(n+m)-time algorithm is described 7

to recognize unit interval graphs, removing all twins of a graph can be done in linear time [4]. In addition, it is proved that 8

the model constructed by Theorem 2 satisfies the hypothesis of
∧
Lemma 5 and thus it is a (k)-interval model of minimum 9

total length. 10

Using the uniqueness of the ordering of unit interval graphs, it is easy to prove the following: 11

Lemma 6. Let G be a (k)-interval graph without twins and M a (k)–model. If r(Iv) ≤ ℓ(Iu), then MAXL(v) ≤ MAXL(u) − k. 12

Proposition 7. The model obtained from Theorem (2), (1) ⇔ (3), satisfies Lemma 5. 13

Proof. By induction on |V |: 14

The basis step is trivial. Inductive step: ConsiderG a (k)-interval graph and G̃ = G−{v1, vj}with themodelM as described 15

in Theorem 2. By inductive hypothesis, G̃ satisfies Lemma 5. In order to obtain a (k)-interval model for G, I1 and Ij are added 16

to M as follows: 17

• Ij satisfies that ℓj = ℓj+1 − 1 and, by the inductive hypothesis, ℓj+1 = MAXL(vj+1). As G does not contain twins, 18

MAXL(vj) ≤ MAXL(vj+1) − 1 = ℓj. Therefore, ℓj = MAXL(vj). 19

• I1 = L(Ij+1), then ℓ1 = ℓj+1 − k = MAXL(Ij+1) − k, using the inductive hypothesis. By Lemma 6, MAXL(v1) ≤ 20

MAXL(vj+1) − k = ℓ1. Therefore, ℓ1 = MAXL(v1). 21

3.2. Finding the minimum k 22

We present an algorithm to find the minimum k for which a unit interval graph can be represented with a (k)-interval 23

model, and that outputs a (k)-interval model of minimum total length. 24

Recall that all intervals in Lk(I) have length k and, if I is moved to the left, must be moved along with I the same number 25

of units. 26

Given G a (k)-interval graph without twins, G is also a (k + 1)–interval graph. Considering the algorithm detailed in 27

Theorem 2, (1) ⇔ (3), in the constructions of the (k) and the (k + 1)–interval model, at every iteration the sets Lk(I) and 28

Lk+1(I) will coincide. For a (k)-interval graph, in the algorithm proposed at every iteration we left shift the set L(I), where I 29

is the last twin we have modeled. As Lk(I) = Lk+1(I), we have the same construction for a (k) as for a (k+1)–interval model. 30

Thus, the relative positions between the temporary twins is the same for both models. 31

Therefore, we can find the minimum k, for a unit interval graph without twins, with the following simple sketch of 32

algorithm. If it is a connected (1)–interval graph, then it is an isolated vertex since for two or more vertices it would have 33

twins. Thus,we startwith length k = 2, place the last temporary twins Ij, Ij+1 in the elimination of the induction in Theorem2, 34

(1) ⇔ (3), slide one unit to the left the twin Ij and all intervals in L(Ij) as long as Ij+1 ̸∈ L(Ij). Place the interval associated to 35

the simplicial vertex v such that Iv = L(Ij+1). Continue with the next temporary twins. 36

Everytime Ij+1 ∈ L(Ij), we are running into a member of Fk+1 and, therefore, the graph is not (k)-interval. In that case, in 37

order to enlarge in one unit the intervals already placed, do a sweep along the intervals in the order they were built. In the 38

sweep place every temporary twins Ij, Ij+1 preserving their relative position and the simplicial vertex v such that Iv = L(Ij+1), 39

all of length k + 1. The complexity of this sweep is O(n). Increase k in one unit and continue with the next temporary twins 40

until the model is finished. 41

To sum up, the minimum k and a (k)-interval model of minimum total length can easily be computed in O(n2)–time. 42

4. Conclusions 43

We have presented several characterizations of (k)-interval graphs and [k − 1]-interval graphs for every k ∈ N. We 44

generate the family Fk+1 of forbidden induced subgraphs by particular sequences of intervals of length k + 1. Furthermore, 45

we construct a positive certificate for their recognition giving a (k)-intervalmodel ofminimum total length, for theminimum 46

k possible or for a fixed k. This can be computed in O(n2)-time with a simple algorithm. 47

Wemention here some directions for future investigations. First, characterize the unit interval graphs that admit a [k)-or 48

a (k]-interval model, that is, models in which the
∧
endpoints of the intervals are closed-open or open-closed, respectively. 49

Second, characterize thoroughly the families Fk removing isomorphic graphs. Third, characterize interval graphs that admit 50

two different lengths with integer endpoints. 51
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